Skip to main content
Log in

A locally adaptive time stepping algorithm for the solution to reaction diffusion equations on branched structures

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we present a numerical method for solving reaction-diffusion equations on one dimensional branched structures. Through the use of a simple domain decomposition scheme, the many branches are decoupled so that the equations can be solved as a system of smaller problems that are tri-diagonal. This technique allows for locally adaptive time stepping, in which the time step used in each branch is determined by local activity. Though the method is presented in the specific context of electrical activity in neural systems, it is sufficiently general that it can be applied to other classes of reaction-diffusion problems and higher dimensions. Information in neurons, which can be effectively modeled as one-dimensional branched structures, is carried in the form of electrical impulses called action potentials. The model equations, based on the Hodgkin-Huxley cable equations, are a set of reaction equations coupled to a single diffusion process. Locally adaptive time stepping schemes are well suited to neural simulations due to the spatial localization of activity. The algorithm significantly reduces the computational cost compared to existing methods, especially for large scale simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amitai, D., Averbuch, A., Israeli, M., Itzikowitz, S.: Implicit-explicit parallel asynchronous solver of parabolic PDEs. SIAM J. Sci. Comput. 19, 1366 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Belytschko, T., Gilbertsen, N.D.: Implementation of mixed time integration techniques on a vectorized computer with shared memory. Int. J. Numer. Methods Eng. 35(9), 1803–1828 (1992)

    Article  Google Scholar 

  3. Belytschko, T., Yen, H., Mullen, R.: Mixed methods for time integration. Comput. Methods Appl. Mech. Eng. 17, 259–275 (1979)

    Article  MATH  Google Scholar 

  4. Brown, P.N., Byrne, G.D., Hindmarsh, A.C.: VODE: a variable-coefficient ODE solver. SIAM J. Sci. Stat. Comput. 10(5), 1038–1051 (1989). doi:10.1137/0910062

    Article  MathSciNet  MATH  Google Scholar 

  5. Byrne, G.D., Hindmarsh, A.C.: A polyalgorithm for the numerical solution of ordinary differential equations. ACM Trans. Math. Softw. 1(1), 71–96 (1975). doi: 10.1145/355626.355636

    Article  MathSciNet  MATH  Google Scholar 

  6. Carnevale, N.T., Hines, M.L.: The neuron book. Cambridge University Press, New York (2006)

    Book  Google Scholar 

  7. Cohen, S.D., Hindmarsh, A.C.: CVODE, a stiff/nonstiff ODE solver in C. Comput. Phys. 10(2), 138–143 (1996)

    Article  Google Scholar 

  8. Cooley, J., Dodge, F.: Digital computer solutions for excitation and propagation of the nerve impulse. Biophys. J. 6(5), 583–599 (1966)

    Article  Google Scholar 

  9. Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen differenzengleichungen der mathematischen physik. Math. Ann. 100(1), 32–74 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dawson, C., Du, Q., Dupont, T.: A finite difference domain decomposition algorithm for numerical solution of the heat equation. Math. Comput. 57(195), 63–71 (1991) [URL http://www.jstor.org/stable/2938663]

    Article  MathSciNet  MATH  Google Scholar 

  11. Gear, C.: Algorithm 407: DIFSUB for solution of ordinary differential equations [D2]. Commun. ACM 14(3), 190 (1971)

    MathSciNet  Google Scholar 

  12. Gear, C.: The automatic integration of ordinary differential equations. Commun. ACM 14(3), 179 (1971)

    MathSciNet  MATH  Google Scholar 

  13. Golding, N.L., Kath, W.L., Spruston, N.: Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites. J. Neurophys. 86(6), 2998–3010 (2001) [ http://jn.physiology.org/cgi/content/abstract/86/6/2998]

    Google Scholar 

  14. Hines, M.L.: Efficient computation of branched nerve equations. Int. J. Biomed. Comput. 15(1), 69–76 (1984)

    Article  Google Scholar 

  15. Hines, M.L., Carnevale, N. T.: The neuron simulation environment. Neural Comput. 9(6), 1179–1209 (1997)

    Article  Google Scholar 

  16. Hodgkin, A.L., Huxley, A.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Article  Google Scholar 

  17. Kozloski, J., Wagner, J.: An ultrascalable solution to large-scale neural tissue simulation. Frontiers in Neuroinformatics 5, 1–21 (2011)

    Article  Google Scholar 

  18. Kuznetsov, Y.A.: New algorithms for approximate realization of implicit difference schemes. Russ. J. Numer. Anal. Math. Model. 3(2), 99–114 (1988). doi: 10.1515/rnam.1988.3.2.99

    Article  MATH  Google Scholar 

  19. Lee, J., Smaill, B.: Smith, N. (2006). http://linkinghub.elsevier.com/retrieve/pii/S0022519306000634

  20. Markram, H.: The blue brain project. Nat. Rev. Neurosci. 7(2), 153–160 (2006). doi:10.1038/nrn1848. http://www.nature.com/nrn/journal/v7/n2/full/nrn1848.html

    Article  MathSciNet  Google Scholar 

  21. Mascagni, M.: The Backward Euler method for numerical solution of the Hodgkin–Huxley equations of nerve conduction. SIAM J. Numer. Anal. 27(4), 941–962 (1990). doi:10.1137/0727054. http://link.aip.org/link/?SNA/ 27/941/1

    Article  MathSciNet  MATH  Google Scholar 

  22. Mascagni, M.: A parallelizing algorithm for computing solutions to arbitrarily branched cable neuron models. J. Neurosci. Methods 36(1), 105–114 (1991)

    Article  Google Scholar 

  23. Migliore, M., Cannia, C., Lytton, W.W., Markram, H., Hines, M.L.: Parallel network simulations with neuron. J. Comput. Neurosci. 21(2), 119–129 (2006). doi:10.1007/s10827-006-7949-5 [ http://www.springerlink.com/ content/r41x6t86x6033533/]

    Article  MathSciNet  MATH  Google Scholar 

  24. Nicolson, P., Crank, J.: A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Proc. Camb. Philos. Soc. 43(1), 50–67 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rempe, M.J., Chopp, D.L.: A predictor-corrector algorithm for reaction-diffusion equations associated with neural activity on branched structures. SIAM J. Sci. Comput. 28(6), 2139–2161 (2006). doi:10.1137/050643210. http://link.aip.org/link/?SCE/28/2139/1

    Article  MathSciNet  MATH  Google Scholar 

  26. Rempe, M.J., Spruston, N., Kath, W.L., Chopp, D. L.: Compartmental neural simulations with spatial adaptivity. J. Comput. Neurosci. 25(3), 465–480 (2008). doi:10.1007/s10827-008-0089-3

    Article  MathSciNet  Google Scholar 

  27. Shampine, L.F.: Numerical solution of ordinary differential equations. NY, New York (1997)

    Google Scholar 

  28. Shi, H.S., Liao, H.L.: Unconditional stability of corrected explicit-implicit domain decomposition algorithms for parallel approximation of heat equations. SIAM J. Numer. Anal. 44, 1584 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Smolinski, P., Wu, Y.: An implicit multi-time step integration method for structural dynamics problems. Comput. Mech. 22(4), 337–343 (1998)

    Article  MATH  Google Scholar 

  30. Tan, Z., Zhang, Z., Huang, Y., Tang, T.: Moving mesh methods with locally varying time steps. J. Comput. Phys. 200(1), 347–367 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Xiao, S., Belytschko, T.: A bridging domain method for coupling continua with molecular dynamics. Comput. Methods Appl. Mech. Eng. 193(17-20), 1645–1669 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhuang, Y., Sun, X.H.: Stable, globally non-iterative, non-overlapping domain decomposition parallel solvers for parabolic problems. Proceedings of the 2001 ACM/IEEE conference on Supercomputing (CDROM), 19 (2001)

  33. Zhuang, Y., Sun, X.H.: Stabilized explicit-implicit domain decomposition methods for the numerical solution of parabolic equations. SIAM J. Sci. Comput. 24(1), 335–358 (2002). doi:10.1137/S1064827501384755. URL http://link.aip.org/link/?SCE/24/335/1

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Chopp.

Additional information

Communicated by: Gunnar J. Martinsson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kublik, R.A., Chopp, D.L. A locally adaptive time stepping algorithm for the solution to reaction diffusion equations on branched structures. Adv Comput Math 42, 621–649 (2016). https://doi.org/10.1007/s10444-015-9437-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-015-9437-9

Keywords

Mathematics Subject Classifications (2010)

Navigation