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Abstract

The fast Fourier transform (FFT) based matrix-free ansatz interpolatory approximations
of periodic functions are fundamental for efficient realization in several applications. In this
work we design, analyze, and implement similar constructive interpolatory approximations
of spherical functions, using samples of the unknown functions at the poles and at the uni-
form spherical-polar grid locations ( jπN ,

kπ
N ), for j = 1, . . . , N − 1, k = 0, . . . , 2N − 1. The

spherical matrix-free interpolation operator range space consists of a selective subspace of
two dimensional trigonometric polynomials which are rich enough to contain all spherical
polynomials of degree less than N . Using the O(N2) data, the spherical interpolatory ap-
proximation is efficiently constructed by applying the FFT techniques (in both azimuthal
and latitudinal variables) with only O(N2 logN) complexity. We describe the construction
details using the FFT operators and provide complete convergence analysis of the interpo-
latory approximation in the Sobolev space framework that are well suited for quantification
of various computer models.

We prove that the rate of spectrally accurate convergence of the interpolatory approxi-
mations in Sobolev norms (of order zero and one) are similar (up to a log term) to that of the
best approximation in the finite dimensional ansatz space. Efficient interpolatory quadra-
tures on the sphere are important for several applications including radiation transport and
wave propagation computer models. We use our matrix-free interpolatory approximations to
construct robust FFT-based quadrature rules for a wide class of non-, mildly-, and strongly-
oscillatory integrands on the sphere. We provide numerical experiments to demonstrate fast
evaluation of the algorithm and various theoretical results presented in the article.
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1 Introduction

Approximation of functions defined on the sphere is important for realization and understanding
of various processes described in the spherical-polar coordinate system. In particular, approx-
imation of an unknown spherical function with the requirement of exactly reproducing the
function at certain locations on the sphere, namely the interpolatory approximation, plays an
important role in designing efficient discrete computer models of various continuous systems.

A key tool for several large scale simulations is the FFT-based representation (in polar coor-
dinates) of the polynomial interpolatory approximation of a function defined on the circle (and
in general any periodic function). The polar-coordinate/periodic case analytical interpolatory
representation facilitates fast construction of the approximation without the need to solve any
matrix system of interpolation constraint equations.

For a preferred set of points on the sphere, approximations of spherical functions belong
to either the non-interpolatory class or the interpolatory class for the set. Construction of
each of these approximations can be further subdivided into either the matrix-free class or
that require solutions of linear algebraic systems. The set of points, especially for discretizing
continuous systems based on differential equations (with a known source function), can be chosen
for efficiently setting up discrete computer models. For experimental data based approximations,
the set of observation points are in practice predetermined and such data in general include noise.

In order to avoid data sensitivity with respect to the noise, it is efficient to choose non-
interpolatory class of approximations. There is a large literature on non-interpolatory approx-
imations, depending on whether the data observation points are scattered or can be chosen by
the user, see for example [5, 10, 17, 19, 20, 22, 24, 31, 34, 35] and references therein. Among
these, hyperinterpolation approximations [10, 20, 31, 34] are matrix-free and these are global
spherical polynomial approximations with spherical harmonic Fourier coefficients (integrals on
the sphere) further approximated by a combination of quadratures with certain degree of preci-
sion. Quadrature-free quasi-interpolatory approximations can also be constructed [17] and these
are in particular suitable for a class of scattered data.

The interpolatory class approximations have the advantage of being equal to a known func-
tion at all points in the set. This is in particular ideal for setting up scientific computing models
governed by differential equations with known source functions. Construction of the set of in-
terpolation points and associated interpolatory approximations is essential to develop computer
models based on the collocation method, see [2, 11] and references therein.

As described later in this section, our interest is on efficiently simulating partial differential
equations with applications to wave propagation and radiation transport models. Such simu-
lations substantially benefit from the collocation method based computer models, with a fast
method to compute approximations. Matrix-free interpolatory approximations for the colloca-
tion method can be efficiently built into the computer models, without solving any algebraic
system to setup the discrete collocation system. The FFT based evaluations of approximations
are needed for large scale simulations and precise quantification of accuracy of approximations
in Sobolev spaces is crucial in the mathematical analysis of the discrete models. The main focus
of this article is on developing, analyzing, implementing such matrix-free spherical interpolatory
approximations.

A general approach in approximation theory is to seek a solution (that satisfy certain mod-
eling constraints) in the space of polynomials. Within the space of spherical polynomials, it
is an open problem to construct such a powerful matrix-free representation of interpolatory
approximations of spherical functions. Indeed, if a standard constraint that the spherical inter-
polation operator (with truncated Fourier series ansatz) should exactly reproduce polynomials
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of degree, say N ≥ 3, is imposed, then it is impossible to construct a matrix-free polynomial
interpolatory approximation [32]. This important two decade old work of Sloan [32] resulted
in addressing several theoretical and practical questions, including efficient design of points on
the sphere, see [4, 21, 29, 33] and extensive references therein. It is still an open problem to
prove the numerically observed O(N) Lebesgue constant growth of some of the very efficient
matrix-dependent spherical polynomial interpolation operators [33].

As discussed in detail in [4, 21, 33], the quality of spherical interpolatory approximation
(determined by the Lebesgue constant of the interpolation operator) is important. Further,
mathematically establishing error estimates of the approximation is crucial for quantifying the
validity of various computer models that use such approximations. For applications, in addi-
tion to providing a fast procedure for evaluating interpolatory spherical approximations, it is
important to prove associated error estimates in the L2 and Sobolev (energy) norms. This is
because robust error estimates in various approximate computer models are usually established
in such norms. Our main focus in this article is on such practical (matrix-free and FFT-based)
considerations and associated robust mathematical analysis. To this end, we do not require that
the interpolatory spherical approximations need to be in the space of spherical polynomials.

In [7, 11, 16] a finite dimensional space χN (containing the space of spherical polynomials of
degree less than N) was introduced. Well-posedness of the χN -space based interpolation problem
was established in [7], using equally spaced 2N azimuthal angles in [0, 2π) and arbitrary N + 1
elevation latitudinal angles in [0, π] so that the total number of interpolation points on the sphere
(including the north and south poles) is equal to the dimension of χN .

For the special choice of the N + 1 non-uniform latitudinal angles in [0, π] that are based
on Gauss-Lobatto points, as shown in [16], the χN -space interpolation problem is matrix-free
and Sobolev error estimates for this spherical approximation was proved in [7]. If the N + 1
latitudinal angles in [0, π] are equally spaced, then the χN -space uniquely solvable interpolation
problem was also shown to be matrix-free in [16] and the growth of the Lebesgue constant of
this interpolation operator is only O(log2N). This Lebesgue constant growth (and hence error
estimates in the uniform norm) was proved in [11, 16]. As demonstrated by Sloan and Womersley
in [33] for benchmark smooth and non-smooth functions, this non-polynomial interpolatory
spherical approximation, with proven optimal Lebesgue constant, perform better than several
matrix-dependent polynomial interpolatory approximations.

Practical construction and analysis of the matrix-free interpolation operator in this article is
completely different from that in [16]. The main aim of this article is on the efficient construction
of uniform-grid interpolatory spherical approximation using only the FFT operators and to
provide robust mathematical analysis for quantifying the interpolatory approximations in the
Sobolev norm.

This article is the final of the three part constructive approximation theory and implementa-
tion work by Ganesh et al. [16, 7] on the non-polynomial range space S2 interpolation framework
introduced in [11] (for a 3D potential theory computer model). Our new FFT-based construc-
tion and Sobolev space analysis presented in this article have potential applications in various
large scale computer models that require approximation of spherical functions.

In particular, in our future work, we shall focus on two important classes of specific ap-
plications of the interpolatory approximations developed in this article: (i) Deterministic and
stochastic three dimensional wave propagation models, for evaluation of statistical quantities and
uncertainty quantification in multiple particle configurations [12, 13, 14, 15]; and (ii) Advanced
radiation transport (RT) computer models [23, 26].

The acoustic and electromagnetic wave propagation Galerkin computer models developed by
Ganesh and Hawkins [12, 13, 14, 15] depend on local spherical-polar coordinate system based
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approximations (of surface currents and integrals). These coordinate systems are imposed either
on various patches on the surface of a single scatterer [13] or on individual particles in multiple
particle configurations [12, 14, 15]. The future advanced algorithms and analysis for the three
dimensional wave propagation models will be based on the interpolatory collocation version of
deterministic and stochastic algorithms in [12, 13, 14, 15]. These algorithms will also require
efficient interpolatory cubature rules for medium to highly oscillatory integrals on the sphere.

The linear RT equation (RTE) poses a significant computational challenge, even for the
next generation of super computers, because of the high-dimensional phase space on which it is
posed. In general, the solution of the RTE (an integro-differential equation) is a function of seven
independent variables: one temporal variable, three spatial variables, one energy variable and
two angular spherical-polar coordinate variables (describing the direction of radiation motion).
The integral part of the RTE is an integral on the sphere and, in practice, integrands with lim-
ited smoothness properties on the sphere (similar to functions in χN ). The industrial standard
approach hitherto is to apply cubature on the sphere with certain symmetry properties, such
as that in [3]. However, a recent derivation [2] demonstrates that interpolatory approximation
based cubature on the sphere are efficient. As discussed in the conclusion section in [2], solu-
tions to the RTE in practice are poorly behaved in the angular variables. Hence interpolatory
approximations and associated interpolatory cubature on the sphere based on approximations
in the non-polynomial space χN will facilitate developing future advance RT computer models.

In addition to the requirement of interpolatory approximations in both the above classes of
applications, an important common tool required in this future application work is an efficient
FFT evaluation based interpolatory cubature on the sphere with non-, mildly-, and strongly-
oscillatory integrands and quantify the error in such cubature rules for integrands with limited
smoothness properties. This article is structured as follows. After developing (i) an FFT-based
interpolatory approximation in Section 2; (ii) introducing a functional framework in Section 3,
based on Sobolev space decomposition [9]; and (iii) proving the quality of our spherical interpo-
latory approximations in Section 4, we develop an efficient FFT-based interpolatory cubature on
the sphere with error estimates in Section 5. Numerical results in Section 6 (and Appendix A)
demonstrate various constructive and theoretical results developed and proved in this article
and efficiency over a recent matrix-free interpolatory construction [7]. We conclude this article
in Appendix B with proofs of some technical results stated in Section 3. This will also be of
independent interest for analysis/applications on rotationally invariant manifolds [18].

2 An interpolatory approximation of spherical functions

Let S2 be the unit sphere in R3 parameterized, for x̂ ∈ S2, using the standard convention:

x̂ = p(θ, φ) := (sin θ cosφ, sin θ sinφ, cos θ), θ, φ ∈ R. (1)

For any continuous scalar-valued function F ◦ defined on the sphere, we denote F := F ◦ ◦ p
and observe that

F (θ, φ) = F (θ + 2π, φ) = F (θ, φ+ 2π), F (θ, φ) = F (−θ, φ+ π), ∀θ, φ ∈ R. (2)

Conversely, for any continuous scalar-valued function F on R2 satisfying (2), there exists a
unique associated function F ◦ on the sphere. Motivated by this observation, we define the space

C :=
{
F : R2 → C : F is continuous and satisfies (2)

}
(3)
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which in view of (2) can be identified with C(S2), the space of complex valued continuous
scalar-valued functions on the unit sphere.

In this work we will introduce a trigonometric interpolant for functions F ◦ on C(S2) using
the following details: For N ∈ N with N ≥ 2, consider the equally spaced grid points

θj =
jπ

N
, φk =

kπ

N
, j, k ∈ Z.

We recall that, for any φ ∈ R, the north and south poles are respectively p(θ0, φ) = n and
p(θN , φ) = s. Using (1), the parametrized uniform grid

GN = {(θj , φk) : j = 0, . . . , N, k = 0, . . . , 2N − 1} (4)

in [0, π]× [0, 2π) corresponds to a grid of 2N(N − 1) + 2 distinct points on the sphere. We also
note that, similar to (2), we have

p(θj , φk) = p(θj+2N , φk) = p(θj , φk+2N ), p(θj , φk) = p(θj+N , φk−N ). (5)

It is convenient to introduce the space of even and odd functions

De
N := span 〈cos jθ : j = 0, . . . , N〉 = span 〈cosj θ : j = 0, . . . , N〉 (6)

Do
N := span 〈sin jθ : j = 1, . . . , N + 1〉 = span 〈sin θ cosj θ : j = 0, . . . , N〉, (7)

and then, as in [7, 11, 16], we consider a 2N2 − 2N + 2 dimensional subspace of C, defined as

χN :=

{
p0(θ) +

∑
−N<m≤N
even m 6=0

sin2 θ pm(θ) exp(imφ) +
∑

−N<m≤N
odd m

pm(θ) exp(imφ) :

p0 ∈ De
N , p2` ∈ De

N−2, ` 6= 0, p2`+1 ∈ Do
N−2

}
(8)

=

{ ∑
−N<m≤N

even m

pm(θ) exp(imφ) +
∑

−N<m≤N
odd m

pm(θ) exp(imφ) :

p2` ∈ De
N , p2`(0) = p2`(π) = 0 for ` 6= 0, p2`+1 ∈ Do

N−2

}
. (9)

The equality between (8) and (9) follows from the fact that for p ∈ De
N

p(0) = p(π) = 0 ⇐⇒ p(θ) = sin2 θ q(θ), with q ∈ De
N−2.

We refer to [11, Section 2] for details of arriving at the subspace χN of C from the standard
trigonometric polynomial two dimensional Fourier approximation space on [0, 2π]× [0, 2π].

It is easy to check that any function FN ∈ χN satisfies (2). In other words, the elements of
χN can be identified with continuous functions on the sphere. Next we consider an interpolation
problem with 2N2 − 2N + 2 interpolatory points on the unit sphere.

The spherical χN -interpolatory approximation problem is defined as follows: For any F ∈ C,

find QNF ∈ χN , such that QNF (θj , φk) = F (θj , φk), j = 0, . . . , N, k = 0, . . . , 2N − 1.
(10)

In [7, Proposition 1] we proved that the interpolation problem on χN , with the 2N uniform grid
azimuthal angles φk and arbitrary N + 1 latitudinal points θ ∈ [0, π], is uniquely solvable and
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hence QN reproduces functions in χN . In fact the unique solution to the interpolation problem
can be expressed analytically without the need to solve any linear system. That is, (10) is a
matrix-free interpolation problem.

In this article, we present a constructive (FFT operators based) matrix-free proof of this
result, adapted to the particular choice of uniform grid latitudinal points, for two reasons: (a) it
shows, from a practical point of view, how the interpolant can be fast computed employing only
the FFT techniques; (b) it will provide an indication on how the analysis of the convergence of
the interpolatory approximation QNF to F could be carried out. The FFT friendly uniform
grid latitudinal points provide a challenging Sobolev space analysis framework on the sphere
compared to that with latitudinal points that are zeros of certain orthogonal polynomials [7]. Our
analysis in this article leads to an interesting trigonometric polynomials based one dimensional
inequality conjecture (that we could numerically verify for practically useful cases).

Next we consider some FFT based operators that we use in the construction of the matrix-
free interpolatory approximation. Let DSTN : CN−1 → CN−1 and DCTN : CN+1 → CN+1

denote the discrete sine and cosine transform (of type I) defined as

(DSTN (y))j :=

N−1∑
k=1

yk sin

(
kjπ

N

)
, j = 1, . . . , N − 1, (11)

(DCTN (x))j :=
N∑
k=0

′′xk cos

(
kjπ

N

)
, j = 0, . . . , N, (12)

where
∑′′ means the usual summation with only half the first and last terms included. These

operators can easily be constructed using the standard FFT operator. Let iDSTN and iDCTN

respectively denote the inverse discrete sine and cosine transforms. We will also need the inverse
of the discrete Fourier transform iFFTM : CM → CM ,

(iFFTM (z))j :=
1

M

M−1∑
k=0

zk exp
(
− 2kjπ i

M

)
, j = 0, . . . ,M − 1, (13)

with the associated forward discrete Fourier transform denoted by FFTM . For construction of
the matrix-free interpolation operator we will use only the above explicitly defined operators.
Their inverses are defined in the following proposition and are used to prove the properties of
the spherical interpolatory operator QN in (10).

Proposition 2.1 For any given data

Fj,k = F (θj , φk), j = 0, . . . , N, k = 0, . . . , 2N − 1,

representing a function F ∈ C at the grid locations GN in (4), the well defined interpolatory
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approximation in (10) can be efficiently constructed using the FFT appropriate matrix-free ansatz

(QNF )(θ, φ) =
2

N

∑
0≤m≤N/2

[ N∑
`=0

′′α2m
` cos `θ

]
exp(2miφ)

+
2

N

∑
−N/2<m≤−1

[ N∑
`=0

′′α2m+2N
` cos `θ

]
exp(2miφ)

+
2

N

∑
1≤n≤(N+1)/2

[N−1∑
`=1

β2n−1
` sin `θ

]
exp((2n− 1)iφ),

+
2

N

∑
(−N+1)/2<n≤0

[N−1∑
`=1

β2n−1+2N
` sin `θ

]
exp((2n− 1)iφ),

(14)

where the coefficients
(
α2m
`

)N
`=0

and
(
β2n−1
`

)N−1

`=1
, for m = 0, . . . , N − 1 and n = 1, . . . , N , can

be computed using the data and the following fast algorithm:

1. Compute inverse transform data

(fj,m)2N−1
m=0 := iFFT2N ((Fj,k)

2N−1
k=0 ), j = 0, . . . , N. (15)

2. Then compute the coefficients in (14) using the sine and cosine transforms as(
α2m
`

)N
`=0

:= DCTN ((fj,2m)Nj=0), m = 0, . . . , N − 1, (16a)(
β2n−1
`

)N−1

`=1
:= DSTN ((fj,2n−1)N−1

j=1 ), n = 1, . . . , N. (16b)

Proof. With coefficient vectors α and β as in (14)-(16), we first define, for 0 ≤ m ≤ N/2 and
1 ≤ n ≤ (N + 1)/2, the even and odd functions:

p2m(θ) =
2

N

N∑
`=0

′′α2m
` cos `θ ∈ De

N , p2n−1(θ) =
2

N

N−1∑
`=1

β2n−1
` sin `θ ∈ Do

N−2,

and similarly define for −N/2 < m ≤ −1 and (−N + 1)/2 < n ≤ 0 the even and odd functions:

p2m(θ) =
2

N

N∑
`=0

′′α2m+2N
` cos `θ ∈ De

N , p2n−1(θ) =
2

N

N−1∑
`=1

β2n−1+2N
` sin `θ ∈ Do

N−2.

In particular, for 0 ≤ m ≤ N/2, 1 ≤ n ≤ (N + 1)/2, j = 0, . . . , N , and k = 1, . . . , N −1, we have

p2m(θj) =
(
iDCTN (α2m

` )N`=0)
)
j
, p2n−1(θk) =

(
iDSTN (β2n−1

` )N−1
`=1 )

)
k
.

Using (9) and (14), to prove that QNF ∈ χN , it is sufficient to show that pm(0) = pm(π) = 0
for m 6= 0. Applying property (2), we obtain

F0,k = F (0, φk) = F (0, ·), FN,k = F (π, φk) = F (π, ·), for k = 0, . . . , 2N − 1,

and therefore, (f0,m)2N−1
m=0 and (fN,m)2N−1

m=0 are the result of applying the iFFT operator to
constant vectors. Thus,

f0,m =

{
F (0, 0), if m = 0,

0, otherwise,
fN,m =

{
F (π, 0), if m = 0,

0, otherwise.
(17)
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Furthermore taking into account (17), we easily see that for 0 ≤ m ≤ N/2 it holds

p2m(π) =
2

N

N∑
`=0

′′α2m
` cos(`π) =

(
iDCTN ((α2m

` )N`=0)
)
N

=
(
iDCTN (DCTN ((fj,2m)Nj=0))

)
N

= fN,2m =

{
F (π, 0), if m = 0,

0, otherwise.
(18)

For −N/2 ≤ m ≤ −1, proceeding analogously we obtain

p2m(π) =
2

N

N∑
`=0

′′α2m+2N
` cos(`π) =

(
iDCTN (DCTN ((fj,2m+2N )Nj=0))

)
N

= fN,2m+2N = 0.

Similarly we derive

p2m(0) = f0,2m =

{
F (0, 0), if m = 0,

0, otherwise.
(19)

Thus QNF ∈ χN and that

QNF (θj , φk) = F (θj , φk), j ∈ {0, N}, k = 0, . . . , 2N − 1. (20)

To check that QNF interpolates F at the rest of the grid points in GN , we can use a similar
argument. For j = 1, . . . , N − 1 and k = 0, . . . , 2N − 1, using

(QNF )(θj , φk) =
∑

−N/2<m≤N/2

p2m(θj) exp(2miφk) +
∑

(−N+1)/2<n≤(N+1)/2

p2n−1(θj) exp((2n− 1)iφk)

=
∑

0≤m≤N/2

(
iDCTN ((α2m

` )N`=0)
)
j

exp(2miφk)

+
∑

1≤n≤(N+1)/2

(
iDSTN ((β2n−1

` )N−1
`=1 )

)
j

exp((2n− 1)iφk)

+
∑

−N/2<m≤−1

(
iDCTN ((α2m+2N

` )N`=0)
)
j

exp(2miφk)

+
∑

(−N+1)/2<n≤0

(
iDSTN ((β2n−1+2N

` )N−1
`=1 )

)
j

exp((2n− 1)iφk)

=

N∑
n=0

fj,n exp
(niπk

N

)
+

−1∑
n=−N+1

fj,n+2N exp
(niπk

N

)

=

N∑
n=0

fj,n exp
(niπk

N

)
+

2N−1∑
n=N+1

fj,n exp
((n− 2N)iπk

N

)

=

2N−1∑
n=0

fj,n exp
(niπk

N

)
=
(
FFT2N ((fj,n)2N−1

n=0 )
)
k

=
(
FFT2N

(
iFFT2N

(
(Fj,k)

2N−1
k=0

)))
k

= Fj,k = F (θj , φk),

where in the penultimate step we have used exp( (n−2N)iπk
N ) = exp(niπk

N ). Combining this re-
sult with (20), we proved that the matrix-free representation in (14) solves the interpolation
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problem (10). The uniqueness of the interpolant follows either from similar arguments or as
a consequence of the existence of the solution since the underlying matrix in the interpolation
problem is square. �

Remark 2.2 It is easy to see that the matrix-free representation (14) also provides fast evalu-
ation in the azimuthal variable φ, using the FFT. We note that the process described in Propo-
sition 2.1 does not need that F ∈ C: It suffices F to be a continuous function in [0, π]× [0, 2π],
but if F /∈ C, the interpolant is a trigonometric polynomial which need not be in χN . �

Remark 2.3 Roughly speaking the process explained in Proposition 2.1 consists in applying
the FFT to the matrix Fkj by columns and then the DCT and DST to the even and odd rows
respectively. Obviously, we can also revert the order of application of these transformations. In
any case, the calculations are fast requiring only O(N2 logN) operations and are parallelizable.
Moreover, the matrix-free representation can be exploited for performing fast evaluations of the
interpolatory approximation for example, on dyadic grids, or by combining with appropriate
piecewise polynomial interpolation. �

We conclude this section by presenting the main result of this article, namely the convergence
of the matrix-free interpolatory approximation in Sobolev norms ‖ · ‖Hs(S2) on the sphere for
s ∈ [0, 1] with the regularity of spherical functions to be approximated also measured in Sobolev
norms. We introduced these spaces, in terms of spherical harmonics, in the next section. Before
presenting the result, we need the following technical hypothesis. Although we do not have a
proof of the hypothesis, at least for all practical cases, we have numerically verified that the
hypothesis is true: In Appendix 1 we demonstrate that the hypothesis is true for any integer
2 ≤ N ≤ 214. The N = 214 = 16, 384 case correspond to the spherical interpolation problem
with over 500 million data locations. Thus we have verified the hypothesis for almost all practical
application of the interpolant studied in this article. In Appendix 1, we provide details of how
we numerically verified the hypothesis.

Hypothesis 1 (Numerically verified in Appendix 1):

For each j = 1, 2, 3, there exists c
(j)
H < 1, independent of N , so that

− 2

∫ π

0
|pN (θ)|2 cos(2Nθ) sin θ dθ ≤ c(j)

H

∫ π

0
|pN (θ)|2 sin θ dθ, ∀pN ∈ AjN , (21)

where

A1
N := De

N−2, A2
N := Do

N−2, and A3
N := {sin2(θ)qN−2(θ) : qN−2 ∈ De

N−2} ⊂ De
N . (22)

Now we state the main theoretical spectrally accurate convergence result of the article.

Theorem 2.4 Suppose that Hypothesis 1 holds. Then, for F ∈ Ht with t > 5/2 there exists
Ct > 0 so that, for s ∈ [0, 1],

‖F −QNF‖Hs ≤ CrN s−t(logN)s/2‖F‖Ht . (23)
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Remark 2.5 A similar estimate in the continuous function space norm (‖·‖∞) for the spherical
interpolation operator (using Chebyshev polynomial basis based matrix-free representation) was
proved in [16]:

‖F −QNF‖∞ ≤ C(logN)2N−m‖F ◦ x−1‖Cm(S2),

where Cm(S2) denotes the space of functions on S2 with continuous derivatives up to order m,
endowed with the natural norm. We recall that H1+ε(S2) ⊂ C0(S2), for any ε > 0.

Convergence analysis of Galerkin computer models of partial differential equations (PDEs)
are usually studied in the Hilbert space setting Sobolev (and equivalent energy) norms and hence
our new result is widely applicable, for example, in analyzing fully discrete Galerkin methods
for approximating PDE (and its equivalent boundary integral equation) based models. Fully
discrete Galerkin methods are obtained by approximating Galerkin integrals (and also integral
operators) in the model by finite sums (quadratures/cubatures). In Section 5 we demonstrate the
applicability of the Sobolev norm estimate (23) for analyzing efficient interpolatory cubatures. �

Remark 2.6 In [7] a similar interpolation process was studied with a non-uniform distribution
of the nodes in the elevation angle, namely, that which makes cos θn the Gauss-Lobatto points.
The convergence in this non-uniform grid case was shown to be very similar to that stated in
Theorem 2.4 but without the penalizing logN term. As demonstrated in Section 6, the FFT-
based approximation considered in this article is computationally more efficient than that in [7].
However, the mathematical analysis for the equally spaced grid points case is challenging in the
Sobolev framework as shown in the next two sections.

�

3 Functional framework and properties

In this section we describe orthogonal decompositions of some Sobolev spaces [9] that are
crucial for proving Theorem 2.4. To this end, we introduce some fundamental properties of
various norms that we state in this section and prove these properties in Appendix B.

3.1 Spherical harmonics and Sobolev spaces on the sphere

The Sobolev spaces on the unit sphere can be introduced in several equivalent forms. One can
work, for instance, with an atlas of the surface, associated local charts and partition of unity
functions and defined them in terms of Hs(R2). This general approach is valid for any sufficiently
smooth surface [1, 27]. We may also construct the Sobolev spaces on the sphere as a Hilbert scale
using the eigenfunctions of the Laplace-Beltrami operator, namely, the spherical harmonics. We
follow the spectral approach [28] for functional framework and introduce essential details that
we use throughout this article.

Using the associated Legendre polynomial

Pmn (x) :=
(−1)m

2nn!
(1− x2)m/2

dm+n

dxm+n
(x2 − 1)n, (24)

we define

Qmn (θ) :=

(
2n+ 1

2

(n−m)!

(n+m)!

)1/2

P |m|n (cos θ), Q−mn := Qmn , 0 ≤ m ≤ n, n = 0, 1, . . .

(25)
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Denoting

em(φ) :=
1√
2π

exp(imφ), m ∈ Z, (26)

we introduce the spherical harmonics [4, 28], a polynomial of degree n on the S2, as

Y m
n (θ, φ) := (−1)(m+|m|)/2Qmn (θ)em(φ), m = −n, . . . , n, n = 0, 1, . . . . (27)

It is well known that {Y m
n : n = 0, 1, 2, . . . , |m| ≤ n} is an orthonormal basis of

H0 :=
{
F : R2 → R : F satisfies (2),

∫ π

0

∫ 2π

0
|F (θ, φ)|2 sin θ dφ dθ <∞

}
,

endowed with the natural inner product and the induced norm ‖F‖H0 . That is, if we define for
any F ∈ H0,

F̂n,m :=

∫ π

0

∫ 2π

0
F (θ, φ)Y m

n (θ, φ) sin θ dφ dθ (28)

then

F =

∞∑
m=−∞

∞∑
n=|m|

F̂n,mY
m
n , ‖F‖2H0 =

∞∑
m=−∞

∞∑
n=|m|

|Fn,m|2.

We recall that for any F ◦ : S2 → C, we have denoted F = F ◦ ◦ p. We follow the standard
convention to identify [Y m

n ]◦ with Y m
n , using the identity [Y m

n ]◦ = Y m
n ◦ p. Clearly, if L2(S2)

denotes the space of all square integrable functions on S2, we have

H0 = {F : F ◦ ∈ L2(S2)}, with ‖F‖H0 = ‖F ◦‖L2(S2).

The Sobolev spaces Hs for s ∈ R, and their counterparts Hs(S2), can be defined proceeding
analogously. Hence, the Sobolev norm of order s is given by

‖F‖2Hs :=
∞∑

m=−∞

∞∑
n=|m|

(
n+ 1

2

)s |F̂n,m|2,
which is well defined for instance if F ∈ T := span 〈Y m

n : n = 0, 1, . . . , |m| ≤ n〉. We may also
define Hs as the completion of T in ‖ · ‖Hs . Finally, the Sobolev space on S2 can be defined as

Hs(S2) := {F ◦ : F ∈ Hs}.

3.2 Sobolev-like spaces for the Fourier modes and properties

We will introduce now an orthogonal decomposition of the Sobolev spaces Hs which will play
an essential role in the analysis of the convergence of our interpolator. This decomposition, first
introduced in [9], consists essentially in periodic one variable functions in θ which are Fourier
coefficients, in φ, of functions on the sphere.

Given f ∈ L1
loc(R) we denote

(f ⊗ em)(θ, φ) := f(θ)em(φ), m ∈ Z.

For s ≥ 0, we can define the spaces

W s
m := {f ∈ L1

loc(R) : f ⊗ em ∈ Hs},

11



endowed with the image norm

‖f‖W s
m

:= ‖f ⊗ em‖Hs .

Then

f =

∞∑
n=|m|

f̂m(n)Qmn , ‖f‖W s
m

=

( ∞∑
n=|m|

(n+ 1
2)2s|f̂m(n)|2

)1/2

(29)

with convergence in W s
m, where

f̂m(n) :=

∫ π

0
f(θ)Qmn (θ) sin θ dθ =

∫ π

0

∫ 2π

0

(
f ⊗ em

)
(θ, φ)Y m

n (θ, φ) sin θ dφ dθ = ̂(f ⊗ em)n,m.

Clearly, W s
m = W s

−m and for r > s the injection W r
m ⊂W s

m is compact. Moreover, using (29),

‖f‖W s
m
≤ (|m|+ 1

2)s−r‖f‖W r
m
, ∀r ≥ s. (30)

We note that (2) imposes periodicity and parity conditions on the elements of W s
m, namely

f ∈W s
m =⇒ f( · + 2π) = f, f(− · ) = (−1)mf. (31)

If we define the mapping

(FmF
)
(θ) :=

∞∑
n=|m|

F̂n,mQ
m
n (θ) =

∫ 2π

0
F (θ, φ)e−m(φ) dφ,

it is easy to prove that Fm : Hs →W s
m is just a right inverse of f 7−→ f ⊗ em and that

‖FmF‖W s
m
≤ ‖F‖Hs .

In particular, we have

‖F‖2Hs =
∞∑

m=−∞
‖FmF‖2W s

m
. (32)

In other words, {W s
m}m gives rise to an orthogonal sum decomposition of Hs in its Fourier

modes in the azimuthal angle φ. Clearly,

‖f‖2W 0
m

= ‖f‖2L2
sin

:=

∫ π

0
|f(θ)|2 sin θ dθ,

and therefore the space for s = 0 is independent of m, provided that one ignores how f is
extended outside of [0, π] (see (31)). For m = 1, 2 it is possible to derive integral expressions for
these norms, as we show in the proof (in Appendix B.1) of the following technical result.

Theorem 3.1 Let

‖f‖2Z1
0

:=
1

4

∫ π

0
|f(θ)|2 sin θ dθ +

∫ π

0
|f ′(θ)|2sin θ dθ, (33)

‖f‖2Z1
m

:= m2

∫ π

0
|f(θ)|2 dθ

sin θ
+

∫ π

0
|f ′(θ)|2sin θ dθ, (34)

‖f‖2Z2
m

:= m4

∫ π

0
|f(θ)|2 dθ

sin3 θ
+m2

∫ π

0
|f ′(θ)|2 dθ

sin θ
+

∫ π

0
|f ′′(θ)|2sin θ dθ. (35)
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Then, for all m ∈ Z with |m| ≥ 1,

‖f‖W 1
0

= ‖f‖Z1
0
≤ ‖f‖W 1

m
≤
√

5
2 ‖f‖Z1

m
≤
√

5
2 ‖f‖W 1

m
. (36)

Moreover, for all m ∈ Z with |m| ≥ 2,

1√
3
‖f‖W 2

m
≤ ‖f‖Z2

m
≤
√

3‖f‖W 2
m
. (37)

Proof. See Appendix B.1. �

From this result, one can deduce that, for m 6= 0, W 1
m ⊂ C(R). Hence, assume for simplicity

that f is a real valued function in W 1
m = Z1

m, then it is easy to verify that f2, (f2)′ ∈ L1
loc(R).

From the Sobolev embedding theorem one concludes that f2, and therefore f , is a continuous
function. It can be seen next that necessarily, f(0) = f(π) = 0, since otherwise the first integral
in the right hand side of (34) could not be finite. This is no longer true for m = 0 as it can

easily seen by considering the counterexample |log | sin θ||1/2 ∈W 1
0 .

On the other hand, from Theorem 3.1 we obtain

‖f‖W 1
m
≤
√

5
2 ‖f‖W 1

m+2n
, ∀n ∈ N, (38)

and
‖f‖W 2

m
≤ 3‖f‖W 2

m+2n
, ∀n ∈ N, |m| ≥ 2. (39)

We finish analyzing the regularity of W s
m from a classical Sobolev point of view. To this end,

we introduce the 2π-periodic Sobolev spaces

Hr
# :=

{
f ∈ Hr

loc(R) : f = f(·+ 2π)
}

(40)

endowed with the norm

‖f‖2Hr
#

:= |f̂(0)|2 +
∑
m 6=0

|m|2r|f̂(m)|2, f̂(m) =
1

2π

∫ 2π

0
f(θ) exp(−imθ) dθ. (41)

For r = 0, ‖ · ‖H0
#

is, up to the factor
√

2π, the L2(0, 2π) norm. For non-negative integer values

of r, an equivalent norm is given by[ ∫ 2π

0
|f(θ)|2 dθ +

∫ 2π

0
|f (r)(θ)|2 dθ

]1/2

. (42)

Proposition 3.2 For all r > 0 there exists Cr > 0 independent of m and f such that

‖f‖Hr
#
≤ Cr‖f‖W r+1/2

m
, ∀f ∈W r+1/2

m . (43)

Further,

‖f‖W 0
m
≤ ‖f‖H0

#
, ‖f‖W 1

m
≤ C(1 + |m|)‖f‖H1

#
, (44)

with C independent of f and m.

Proof. See Appendix B.2. �
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4 Error estimates for spherical interpolatory approximations

In this section we prove Theorem 2.4 after deriving several associated one dimensional interpolant
properties.

4.1 Fourier analysis

We consider the following even and odd one dimensional interpolation problem, for the data
f(θj), j = 0, . . . N :

Find qe
Nf ∈ De

Nf, such that qe
Nf(θj) = f(θj), j = 0, . . . , N,

Find qo
Nf ∈ Do

N−2, such that qo
Nf(θj) = f(θj), j = 1, . . . , N − 1.

For notational convenience, we introduce

qmN :=

{
qe
N , if m is even,

qo
N , if m is odd.

Then, as proved in [7, Section 4.1, Lemma 3], we have the following Fourier expression connecting
the matrix-free interpolant on the sphere, defined in (10), and the even and odd interpolants,
as a result of an aliasing process in φ: for all F ∈ Hr with r > 1

(
QNF

)
(θ, φ) =

∑
−N+1≤m≤N

(
qmNρ

m
NF
)
(θ)em(φ), with ρmNF :=

∞∑
`=−∞

Fm+2`NF. (45)

Then, error in the spherical interpolatory approximation can be estimated as

‖QNF − F‖2Hs =
∑

−N+1≤m≤N
‖qmNρmNF −FmF‖2W s

m
+

[ ∑
m≥N+1

+
∑

m≤−N

]
‖FmF‖2W s

m

≤
∑

−N+1≤m≤N
‖qmNFmF −FmF‖2W s

m
+

∑
−N+1≤m≤N

‖qmN (ρmNF −FmF )‖2W s
m

+

[ ∑
m≥N+1

+
∑

m≤−N

]
‖FmF‖2W s

m

(46)

Thus, for proving Theorem 2.4, we have to bound three terms which depend on the approxi-
mation properties of qmN , the stability of this interpolant and the error introduced by ignoring
the tail of the Fourier series (in θ). The two first properties concerning for the one-dimensional
interpolant qmN will be explored in the next subsection.

4.2 Error estimates for one dimensional interpolants

Let IN be the trigonometric interpolant for 2π-periodic functions defined by

INf ∈ span〈em : −N < m ≤ N〉, such that INg(θj) = g(θj), j = −N + 1, . . . , N. (47)

Then, if we denote g− = g(− · ), it is easy to show that the average function

qNg := 1
2

[
INg + (INg−)−

]
∈ span〈em : −N ≤ m ≤ N〉
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solves also (47) and preserves the parity of the integrand, i.e., if g is even/odd then so is qNg.
Further,

qNg ∈ De
N ⊕ Do

N−2.

It is now straightforward to check that for fe and fo 2π-periodic even and odd respectively
functions, we have

qe
Nfe = qNfe, qo

Nfo = qNfo.

These relations and the well known Sobolev convergence estimates for IN (cf. [30, Ch. 8]), yield

‖qmNf − f‖Hs
#
≤ CN s−t‖f‖Ht

#
, for any f ∈ Ht

# ∩W 1
m, 0 ≤ s ≤ t, t > 1/2. (48)

In the above inequality and in the reminder of this section, it is convenient to use C to
represent a generic positive constant that is independent of the truncation parameter N .

In this subsection we will derive convergence estimates for qmN very similar to (48) but with
the norms ‖ · ‖W s

m
instead. We prove such results for the interpolant qmN in Theorem 4.11,

after developing ten auxiliary results in this subsection. To this end, we first start with inverse
estimate:

Lemma 4.1 For any s ≥ 0, there exists C > 0 such that, for any rN ∈ De
N , sN ∈ Do

N−2, the
following estimate holds

‖rN‖W s
0
≤ CN s‖rN‖W 0

0
, ‖sN‖W s

1
≤ CN s‖sN‖W 0

1
. (49)

Proof. The above inverse inequality for the case s = 1 was established in [7, Lemma 6] and the
proof is similar for s ≥ 0. �

Proposition 4.2 For all m ∈ Z and N ≥ 2, there exist projections pmN on De
N for even m and

on Do
N−2 for odd m which satisfy the following convergence estimate

‖pmNf − f‖W s
m
≤ Cs,tN s−t‖f‖W t

m
, (50)

where 0 ≤ s ≤ t with t > 1 and Cs,t independent of f . Moreover,

pmNf(0) = f(0), and pmNf(π) = f(π).

Proof. For m 6= 0 we can choose pmN to be the truncated partial sum

Tm
Nf :=

∑
0≤n≤N−1

f̂m(n)Qmn ∈ span〈Qmn : n ≤ N − 1〉 ⊂
{

De
N−1, if m is even,

Do
N−2, if m is odd,

with the choice of Qmn = 0 for n < |m| in (29) so that the sum above is void for n < |m|. The
definition of the norms of W s

m implies

‖Tm
Nf − f‖2W s

m
=
∑
n≥N

∣∣n+ 1
2

∣∣2s |f̂m(n)|2 ≤
(
N + 1

2

)2s−2t ‖f‖2W t
m
. (51)

We observe that (50) holds actually for any t ≥ s and also that for m 6= 0, pmNf(0) = pmNf(π) = 0
and f ∈W 1

m vanishes at {0, π}.
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For m = 0, we cannot ensure that T0
Nf({0, π}) = f({0, π}) which prompts us to consider a

different projection. In this case, we choose p0
N to be the interpolant

p0
N ∈ De

N , such that p0
N (ηj) = f(ηj), j = 0, . . . , N

where {cos ηj}j are the Gauss-Lobatto quadrature points, which includes the endpoints, that is,
η0 = 0, and ηN = π. In [7, Appendix A, Proposition 6] we proved that for all t > 1 there exists
Ct > 0 such that

‖p0
Nf − f‖W 0

0
≤ CtN−t‖f‖W t

0
, ∀f ∈W t

0. (52)

Using (49) and (51), we first obtain

‖p0
Nf − f‖W s

0
≤ ‖p0

N (f − T0
Nf)‖W s

0
+ ‖T0

Nf − f‖W s
0

≤ CN s‖p0
N (f − T0

Nf)‖W 0
0

+
(
N + 1

2

)s−t ‖f‖W t
0

≤ CN s
[
‖p0

Nf − f‖W 0
0

+ ‖T0
Nf − f‖W 0

0

]
+
(
N + 1

2

)s−t ‖f‖W t
0

≤ C
[(
N + 1

2

)s ‖p0
Nf − f‖W 0

0
+ 2

(
N + 1

2

)s−t ‖f‖W t
0

]
and hence the desired result (50) follows by applying (52) �

Lemma 4.3 ([7, Proposition 4]) For f ∈ Z1
0 , there exists C > 0 such that

‖f‖H0
#
≤ C

[
‖f‖L2

sin
+ ‖f‖1/2

L2
sin
‖f ′‖1/2

L2
sin

]
For the next result, we introduce sN , s̃N ∈ De

N , the orthogonal and interpolating approximations
of the sin(·) function on [0, π]. That is,

sN ∈ De
N such that sN (θj) = sin θj , j = 0, . . . , N, (53a)

s̃N ∈ De
N such that

∫ π

0
(s̃N (θ)− sin θ)pN (θ) dθ = 0, ∀pN ∈ De

N . (53b)

Lemma 4.4 For all N ≥ 1

‖s̃N − sin(·)‖L∞(0,π) ≤
2

πN
, ‖sN − s̃N‖L∞(0,π) ≤

2

πN
.

Proof. We prove the result for even N . The odd N case follows similarly. Straightforward
calculations show that for θ ∈ [0, π]

sin θ =
2

π
− 4

π

∞∑
j=1

cos 2jθ

4j2 − 1
.

On the other hand, we have the aliasing effect

qe
N

(
cos((2j + 2`N) · )

)
= cos(2j · ) = qe

N

(
cos((−2j + 2`N) · )

)
, 0 ≤ j ≤ N, ∀ ` ∈ Z.
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These properties imply that

s̃N (θ) =
2

π
− 4

π

N/2∑
j=1

cos 2jθ

4j2 − 1

sN (θ) =
2

π

[
1−

∞∑
`=1

2

(2`N)2 − 1

]

− 4

π

N/2−1∑
j=1

[
1

4j2 − 1
+

∞∑
`=1

(
1

(2j + 2`N)2 − 1
+

1

(−2j + 2`N)2 − 1

)]
cos 2jθ

− 4

π

[
1

N2 − 1
+

∞∑
`=1

1

(N + 2`N)2 − 1

]
cosNθ.

Then, for any θ ∈ [0, π],

|s̃N (θ)− sin θ| ≤ 4

π

∞∑
j=N/2+1

1

4j2 − 1
=

2

π(N + 1)
≤ 2

πN
. (54)

On the other hand,

|s̃N (θ)− sN (θ)| ≤ 4

π

[ ∞∑
`=2

1

(`N)2 − 1

+

N/2−1∑
j=1

∞∑
`=1

(
1

(2j + 2`N)2 − 1
+

1

((N − 2j) + (2`− 1)N)2 − 1

)]

=
4

π

[ ∞∑
`=1

1

(N + `N)2 − 1
+

N/2−1∑
j=1

∞∑
`=1

1

(2j + `N)2 − 1

]

=
4

π

N/2∑
j=1

∞∑
`=1

1

(2j + `N)2 − 1
≤ 2

π

N∑
j=1

∞∑
`=1

1

(j + `N)2 − 1

=
2

π

∞∑
j=N+1

1

j2 − 1
=

2

πN
.

�

In order to prove the next result, it is convenient to consider the quadrature rules

L1
Ng :=

π

N

N∑
k=0

′′g
(
kπ
N

)
, L2

Ng :=
π

N

N∑
j=1

g( (j−1/2)π
N ).

Since

L1
N cos(m·) =

{
π, if m = 2`N,
0, otherwise,

L2
N cos(m·) =

{
(−1)`π, if m = 2`N,
0, otherwise,

we easily deduce the equalities

L1
NgN = L2

NgN =

∫ π

0
gN (θ) dθ, ∀gN ∈ De

2N−1,
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and therefore
L1
N (|gN |2) = L2

N (|gN |2) = ‖gN‖2H0
#
, ∀gN ∈ De

N−1 ∪ Do
N−1. (55)

Moreover,
L1
N (|gN |2) ≤ 2‖gN‖2H0

#
, L2

N (|gN |2) ≤ ‖gN‖2H0
#
, ∀gN ∈ De

N . (56)

Besides, for g sufficiently smooth

L2
Ng − L1

Ng = −4
∞∑
`=0

∫ π

0
g(θ) cos(2N(1 + 2`)θ) dθ. (57)

That is, the difference in the quadrature rules is four times the sum of the Fourier coefficients
in the cosine series of order 2(1 + 2`)N .

The well known estimate for the error of the composite rectangular rule∣∣∣∣L1
Ng −

∫ π

0
g(θ) dθ

∣∣∣∣ ≤ πN−1

∫ π

0
|g′(θ)| dθ (58)

will be used repeatedly in this section. Further it is useful to note the relation

L1
2N = 1

2

(
L1
N + L2

N

)
. (59)

In the proofs below we use the fact that if f ∈ W 1
m, with m 6= 0, then f is continuous with

f(0) = f(π) = 0.

Proposition 4.5 Suppose that Hypothesis 1 holds. Let f ∈W 1
m with m 6= 0. Then

‖qmNf‖L2
sin
≤ C

[
‖f‖L2

sin
+N−1‖f ′‖L2

sin
+N−1/2‖qmNf‖H0

#

]
(60)

with C independent of f and m.

Proof. Since

‖qmNf‖2L2
sin

=

∫ π

0
|qmNf(θ)|2sN (θ) dθ +

∫ π

0
|qmNf(θ)|2(sin θ − sN (θ)) dθ, (61)

using Lemma 4.4,

‖qmNf‖2L2
sin
≤

∫ π

0
gN (θ) dθ + CN−1‖qmNf‖2H0

#
= L1

2NgN + CN−1‖qmNf‖2H0
#

where gN := |qmNf |2sN ∈ De
3N . Applying (59) we deduce the bound

‖qmNf‖2L2
sin
≤ L1

NgN + 1
2

(
L2
NgN − L1

NgN
)

+ CN−1‖qmNf‖H0
#
. (62)

Since f(0) = f(π) = 0 and qmNf(θj) = f(θj), for all j = 0, . . . , N , using Lemma 4.4 we easily
deduce the following bound:

L1
NgN =

π

N

N−1∑
j=1

|f(θj)|2 sin θj +
π

N

N−1∑
j=1

|qmNf(θj)|2(sN (θj)− sin θj)

≤ 1

N

N−1∑
j=1

|f(θj)|2 sin θj + CN−1L1
N (|qmNf |2) =: E1 + CN−1L1

N (|qmNf |2). (63)
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Also, using (56),
L1
N (|qmNf |2) ≤ 2‖qmNf‖2H0

#
. (64)

On the other hand, E1 in (63) can be bounded using the error of the rectangular rule (58):

E1 =

∫ π

0
|f(θ)|2 sin θ dθ +

[
L1
N (|f |2 sin(·))−

∫ π

0
|f(θ)|2 sin θ dθ

]
≤ ‖f‖2L2

sin
+
π

N

∫ π

0
|(|f(θ)|2 sin θ)′| dθ

≤ ‖f‖2L2
sin

+
π

N

∫ π

0
|f(θ)|2 dθ +

π

N

∫ π

0
|2f(θ)f ′(θ)| sin θ dθ

≤ ‖f‖2L2
sin

+ CN−1

[
‖f‖2L2

sin
+ ‖f‖L2

sin
‖f ′‖L2

sin
+

∫ π

0
|f(θ)f ′(θ)| sin θ dθ

]
≤ ‖f‖2L2

sin
+ CN−2‖f ′‖2L2

sin
. (65)

We stress that in (65) we have used Lemma 4.3 and, in the last step, the inequality

‖f‖L2
sin
‖f ′‖L2

sin
+

∫ π

0
|f(θ)f ′(θ)| sin θ ≤ N‖f‖L2

sin
+N−1‖f ′‖L2

sin
.

Finally, using the fact that |qmNf |2sN ∈ De
3N and applying (57) and Hypothesis 1, we deduce the

bound

1

2

(
L2
NgN − L1

NgN
)

= −2

∫ π

0
|qmNf |2(θ)sN (θ) cos(2Nθ) dθ

= −2

∫ π

0
|qmNf |2(θ) sin θ cos(2Nθ) dθ

−2

∫ π

0
|qmNf |2(θ)(sin θ − sN (θ)) cos(2Nθ) dθ

≤ max{c(2)
H , c

(3)
H }

∫ π

0
|qmNf |2(θ) sin θ dθ + CN−1‖qmNf‖2H0

#
, (66)

where we have used again Lemma 4.4. Collecting (63)-(66) in (62) (with cH := max{c(2)
H , c

(3)
H })

we conclude

(1− cH)‖qmNf‖2L2
sin
≤ C

[
‖f‖2L2

sin
+N−2‖f ′‖2L2

sin
+N−1‖qmNf‖2H0

#

]
.

Hence the desired result (60) follows. �

Corollary 4.6 Suppose that Hypothesis 1 holds. For all r > 1 there exists Cr > 0 so that for
all f ∈W r

m [with f(0) = f(π) = 0 for m = 0]

‖qmNf‖W 0
m
≤ C

[
‖f‖W 0

m
+N−1‖f‖W 1

m
+N−r‖f‖W r

m

]
, (67)

with Cr independent of N , m and f .

Proof. In light of Proposition 4.5, we just have to bound

N−1/2‖qmNf‖H0
#
≤ N−1/2‖qmNf − f‖H0

#
+N−1/2‖f‖H0

#
. (68)
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For the second term we can apply Lemma 4.3 and the inequality 2ab ≤ N1/2a+N−1/2b, to show
that

N−1/2‖f‖H0
#
≤ CN−1/2

(
‖f‖L2

sin
+ ‖f‖1/2

L2
sin
‖f ′‖1/2

L2
sin

)
≤ C

[
‖f‖L2

sin
+N−1‖f ′‖L2

sin

]
. (69)

On the other hand, (48) implies that for all r > 1 there exists Cr so that

N−1/2‖qmNf − f‖H0
#
≤ CrN−r‖f‖Hr−1/2

#

≤ C ′rN−r‖f‖W r
m
, (70)

where we have applied in the last step Proposition 3.2. We note that Cr is again independent
of m. Applying (69) and (70) in (68) we deduce the bound

N−1/2‖qmNf‖H0
#
≤ Cr

[
‖f‖H0

#
+N−1‖f‖W 1

m
+N−r‖f‖W r

m

]
and hence the desired results (67) follows. �

To prove stability estimates in W 1
m, it is convenient to introduce the notation

‖f‖2L2
sinr

:=

∫ π

0
|f(θ)|2 sinr θ dθ,

(in particular with r = 1,−1,−2 or −3) and use the equivalence of norms described in Theorem
3.1 involving the two terms

|m|‖qmNf‖L2
sin−1

and ‖(qmNf)′‖L2
sin
. (71)

The second term is easily controlled by using inverse inequality and the results developed so far.

Lemma 4.7 Suppose that Hypothesis 1 holds. There exists C > 0 independent of m, f and N
such that

‖(qmNf)′‖L2
sin
≤ CN−1

[
‖f‖W 0

m
+N−1‖f‖W 1

m
+N−r‖f‖W r

m

]
. (72)

Proof. Lemma 4.1 and the equivalent norms presented in Theorem 3.1 allow us to conclude, as
a byproduct, the inverse inequality

‖(qmNf)′‖L2
sin
≤ CN‖qmNf‖L2

sin
. (73)

Hence applying Corollary 4.6 will lead to the derivation of the bound (72). �

The analysis of the first term in (71) is rather more delicate. Thus, before entering in the
analysis we need to prove some technical results.

Lemma 4.8 There exists C > 0 so that for all rN ∈ De
N−2 with N ≥ 2,

|rN (0)|2 + |rN (π)|2 ≤ CN2 logN L1
N (|rN |2 sin(·)). (74)

Proof. For each j = 1, . . . , N − 1 define

LNj := (−1)j+1 sin2 θj
sinNθ

N sin θ(cos θ − cos θj)
∈ De

N−2.
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It is a simple exercise to verify that

LNj (θi) =

{
1, i = j,
0, otherwise.

Thus, {LNj } is the Lagrange basis for the interpolation problem on De
N−2 with grid points

{θj}N−1
j=1 . Consequently,

rN =

N−1∑
j=1

rN (θj)L
N
j .

Since
LNj (0) = (−1)j+12 cos2(θj/2),

we obtain

|rN (0)|2 ≤
[N−1∑
j=1

2|rN (θj)|
]2

≤ 2N

π

[N−1∑
j=1

sin−1 θj

][
π

N

N−1∑
j=1

|rN (θj)|2 sin θj

]
(75)

≤ 4N2

π

[ ∑
1≤j≤N/2

1

j

]
L1
N (|rN |2 sin(·)), (76)

where we have used the inequality

sin θN−j = sin θj ≥
2θj
π

=
2j

N
, ∀j = 0, . . . , bN/2c.

Hence, for N ≥ 2, the desired result (74) for rN (0) follows from the inequality∑
1≤j≤N/2

1

j
≤ 2 logN.

The bound for rN (π) in (74) can be established analogously. �

Next we establish bounds for qmN , by investigating separately the cases for even m (i.e.,
operator qe

N ) and for odd m (i.e., operator qo
N ).

Proposition 4.9 Suppose that Hypothesis 1 holds. There exists C > 0 such that for any integer
m 6= 0 and f ∈W 2

2m,

|2m| ‖qe
Nf‖L2

sin−1
≤ C

[
‖f‖W 1

2m
+N−1‖f‖W 2

2m

]
. (77)

Proof. We assume throughout this proof that f is a real valued function. We consider the
function g2N (θ) := |(qe

Nf(θ))|2/ sin2(θ)s2N (θ) ∈ De
4N−4. Using the definition of s̃2N in (53) and

Lemma 4.4,

‖qe
Nf‖2L2

sin−1
=

∫ π

0

∣∣∣qe
Nf

sin θ

∣∣∣2s̃2N (θ) dθ =

∫ π

0
g2N (θ) dθ +

∫ π

0

∣∣∣qe
Nf

sin θ

∣∣∣2(s̃2N (θ)− s2N (θ)) dθ

≤ L1
2Ng2N +

1

πN
‖qe

Nf‖2L2
sin−2

= L1
Ng2N + 1

2(L2
Ng2N − L1

Ng2N ) +
1

πN
‖qe

Nf‖2L2
sin−2

. (78)
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Proceeding similarly as in (66), using Hypothesis 1 (for qe
Nf(θ)/sin θ ∈ Do

N−2) and again Lemma
4.4, we obtain

1
2(L2

Ng2N − L1
Ng2N ) = −2

∫ π

0
gN (θ) cos(2Nθ) dθ

= −2

∫ π

0

∣∣∣∣qe
Nf(θ)

sin θ

∣∣∣∣2 sin θ cos 2Nθ dθ − 2

∫ π

0

∣∣∣∣qe
Nf(θ)

sin θ

∣∣∣∣2(s̃2N (θ)− sin θ) cos(2Nθ) dθ

≤ c
(2)
H

∫ π

0

∣∣∣∣qe
Nf(θ)

sin θ

∣∣∣∣2 sin θ dθ +
2

πN
‖qe

Nf‖2L2
sin−2

(79)

Using (79) in (78) and the identity

L1
N

(
|qe
Nf/ sin(·)

∣∣2) = ‖qe
Nf‖2L2

sin−2
,

we easily derive the bound

‖qe
Nf‖2L2

sin−1
≤ 1

1− c(2)
H

[
L1
Ng2N +

3

πN
L1
N

(
|qe
Nf/ sin(·)

∣∣2)]. (80)

The first term in the above bound can be estimated as follows. Using the definition of s2N ,
(58) and the Cauchy-Schwarz inequality (combined with the inequality 2ab ≤ Na2 + N−1b2),
we obtain

L1
Ng2N =

π

N

N−1∑
j=1

|qe
Nf(θj)|2

sin2 θj
s2N (θj) =

π

N

N−1∑
j=1

|qe
Nf(θj)|2

sin θj
=

π

N

N−1∑
j=1

|f(θj)|2

sin θj

≤
∫ π

0
|f(θ)|2 dθ

sin θ
+
π

N

[ ∫ π

0
|f(θ)|2 dθ

sin2 θ
+

∫ π

0
2|f(θ)f ′(θ)| dθ

sin θ

]
≤

(
1 +

3π

2

)
‖f‖2L2

sin−1
+

π

2N2

(
‖f‖2L2

sin−3
+ 2‖f ′‖2L2

sin−1

)
. (81)

On the other hand since (qe
Nf)(0) = f(0) = 0 = f(π) = (qe

Nf)(π) and using the fact that
qe
Nf ∈ De

N , we obtain
(qe
Nf/ sin)(0) = (qe

Nf/ sin)(π) = 0.

Hence

L1
N

(
qe
Nf/ sin(·)

)2
=

π

N

N−1∑
j=1

∣∣∣∣qe
Nf(θj)

sin θj

∣∣∣∣2 =
π

N

N−1∑
j=1

∣∣∣∣f(θj)

sin θj

∣∣∣∣2
≤

∫ π

0

|f(θ)|2

sin2 θ
dθ +

π

N

[
2

∫ π

0
|f(θ)|2 dθ

sin3 θ
+

∫ π

0
2f(θ)f ′(θ)

dθ

sin2 θ

]
≤ N

[(
π + 1

2

)
‖f‖2L2

sin−1
+N−2

{
(3π + 1

2)‖f‖2L2
sin−3

+ π‖f ′‖2L2
sin−1

}]
.

In other words,

N−1L1
N

(
|qe
Nf/ sin(·)

∣∣2) ≤ C[‖f‖2L2
sin−1

+N−2
(
‖f ′‖2L2

sin−1
+ ‖f‖2L2

sin−3

)]
. (82)

Plugging (81) and (82) in (80), and taking into account the definitions of the equivalent norms
‖ · ‖Z1

m
and ‖ · ‖Z2

m
(see Theorem 3.1), we obtain the desired result (77). �

For the next result, we recall that the equivalence norms relation in (37) is valid only for
|m| ≥ 2.
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Proposition 4.10 Suppose that Hypothesis 1 holds. There exists C > 0 such that for any
f ∈W 2

2m+1 with m 6= −1, 0,

|2m+ 1| ‖qo
Nf‖L2

sin−1
≤ (C + C ′

√
logN)

[
‖f‖W 1

2m+1
+N−1‖f‖W 2

2m+1

]
. (83)

Proof. Following the same steps as in the proof of Proposition 4.9, using Hypothesis 1 again
with j = 1 (because qo

Nf(θ)/ sin(θ) ∈ De
N−2), we obtain

‖qo
Nf‖2L2

sin−1
≤ 1

1− c(1)
H

[
L1
Ng2N +

3

πN
L1
N

(
qo
Nf/ sin(·)

)2 ]
. (84)

First term can be treated as in (81) to get

L1
Ng2N ≤ C

[
‖f‖2L2

sin−1
+N−2

(
‖f‖2L2

sin−3
+ ‖f ′‖2L2

sin−1

)]
. (85)

The main difference compared with the even 2m case dealt in the previous Proposition arises in
the second term, since we now have

L1
N

(
qo
Nf/ sin(·)

)2
=

π

2N

[∣∣∣(qo
Nf

sin

)
(0)
∣∣∣2 +

∣∣∣(qo
Nf

sin

)
(π)
∣∣∣2]+

π

N

N−1∑
j=1

|f(θj)|2

sin2 θj

=: S1 + S2.

The first term S1 did not appear in the proof of Proposition 4.9, since qo
Nf ∈ Do

N−2, or, equiva-
lently, qo

Nf/ sin ∈ De
N−2. Thus, we can expect (qo

Nf/ sin
)
(0), (qo

Nf/ sin
)
(π) 6= 0.

Clearly, the second term can be bounded as in (82):

N−1S2 ≤ C
[
‖f‖2L2

sin−1
+N−2

(
‖f ′‖2L2

sin−1
+ ‖f‖2L2

sin−3

) ]
. (86)

For S1 we apply Lemma 4.8 and we follow arguments similar to the derivation of (81) to obtain

N−1S1 ≤ C logN L1
N

(
|qo
Nf |2/ sin(·)

)
= C logN

[
π

N

N−1∑
j=1

|f(θj)|2

sin θj

]
≤ C ′ logN

[
‖f‖2L2

sin−1
+N−2‖f ′‖2L2

sin−1
+N−2‖f‖2L2

sin−3

]
. (87)

Thus we have proved the inequality

‖qo
Nf‖2L2

sin−1
≤ (C1 + C2 logN)

[
‖f‖2L2

sin−1
+N−2‖f ′‖2L2

sin−1
+N−2‖f‖2L2

sin−3

]
.

The desired result (83) now follows from Theorem 3.1. �

Now we are ready to establish convergence estimates for qmN similar to (48) in ‖ · ‖W s
m

norms.

Theorem 4.11 Suppose that Hypothesis 1 holds. There exists C > 0 so that for any f ∈W 2
m,

‖qmNf‖W 0
m
≤ C

[
‖f‖W 0

m
+N−1‖f‖W 1

m
+N−2‖f‖W 2

m

]
, (88a)

‖q2m
N f‖W 1

2m
≤ C

[
N‖f‖W 0

2m
+ ‖f‖W 1

2m
+N−1‖f‖W 2

2m

]
, (88b)

‖q2m+1
N f‖W 1

2m+1
≤ C(1 +

√
logN)

[
N‖f‖W 0

2m+1
+ ‖f‖W 1

2m+1
+N−1‖f‖W 2

2m+1

]
. (88c)
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Moreover, for all r ≥ 2 there exists Cr > 0 so that for all m

‖qmNf − f‖W 0
m
≤ CrN

−r‖f‖W r
m
, (89a)

‖q2m
N f − f‖W 1

2m
≤ CrN

1−r‖f‖W r
2m
, (89b)

‖q2m+1
N f − f‖W 1

2m+1
≤ Cr(1 +

√
logN)N1−r‖f‖W r

2m+1
. (89c)

Proof. We recall that for m 6= 0, if f ∈ W 2
m, then f vanishes at 0, π. We first consider the

case m 6= 0: Corollary 4.6 yields the bounds (88a); the bound (88b) follows from Lemma 4.7
and Proposition 4.9; and (88c) is a consequence of Lemma 4.7 and Proposition 4.10. The latter
conclusion applies also for the case m 6= −1. For m = 0,−1, (88c) can be deduced similarly,
via the inverse inequalities applied to estimate (88a). For m = 0, and under the additional
assumption that f(0) = f(π) = 0, the bound (88a) was also established in Corollary 4.6. The
estimate (88b) follows from combining (88a) and the inverse inequalities stated in Lemma 4.1.

With pmN being the projection introduced in Proposition 4.2, we observe that

‖qmNf − f‖L2
sin
≤ ‖qmN (f − pmNf)‖L2

sin
+ ‖pmNf − f‖L2

sin
.

Further,
(
f − pmNf

)
(0) =

(
f − pmNf

)
(π) = 0 even for m = 0. Thus Corollary 4.6 (or (88) in the

cases proven up to now) can be applied to derive the bound

‖qmNf − f‖L2
sin
≤ C

[
‖f − pmNf‖L2

sin
+N−1‖f − pmNf‖W 1

m
+N−2‖f − pmNf‖W 2

m

]
,

where C is independent of m and f . Now (89a) follows from Proposition 4.2.
To prove (89b), we proceed as before, using Lemma 4.7 and Proposition 4.9, to obtain the

inequality

‖q2m
N f − f‖W 1

2m
≤ C

[
N‖f − p2m

N f‖W 0
2m

+ ‖f − p2m
N f‖W 1

2m
+N−1‖f − p2m

N f‖W 2
m

]
.

Hence Proposition 4.2 yields the estimate (89b).
The procedure for proving estimate (89c) is completely analogous. We note that (88a)-(88b)

for m = 0 in the general case (i.e., for functions not vanishing at {0, π}) can be now deduced
from (89a)-(89b). �

Next we are ready conclude Section 4 by proving the main spectrally accurate convergence
result of this article, namely, Theorem 2.4.

4.3 Proof of Theorem 2.4

The proof starts from (46) where we have derived

‖QNF − F‖2Hs ≤ E1 + E2 + E3

with

E1 :=
∑

−N+1≤m≤N
‖qmNFmF −FmF‖2W s

m
(90)

E2 :=
∑

−N+1≤m≤N
‖qmN (ρmNF −FmF )‖2W s

m
(91)

E3 =

[ ∑
m≥N+1

+
∑

m≤−N

]
‖FmF‖2W s

m
(92)
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For the sake of simplicity we can restrict ourselves to consider only F ∈ span{Y m
n } which makes

the sums above to be finite. The general case can be deduced by a density argument. Moreover,
we can take s ∈ {0, 1} since the result for intermediate values of s follows from the theory of
interpolation of Sobolev spaces [27].

The third term can be estimated with the help of (30) and (32), as follows: For t ≥ s,

E3 ≤
∑
|m|≥N

(
|m|+ 1

2

)2s−2t ‖FmF‖2W t
m
≤
∑
|m|≥N

N2s−2t‖FmF‖2W t
m
≤ N2(s−t)‖F‖2Ht . (93)

For E1, we apply (89) to obtain

E1 ≤ C(1 +
√

logN)sN2s−2t
∑

−N+1≤m≤N
‖FmF‖2W t

m
≤ C(1 +

√
logN)sN2s−2t‖F‖2Ht . (94)

Regarding E2, we apply the definition of ρmN in (45) and estimates (88) of Theorem 4.11 to
obtain first

E2 ≤
∑

−N+1≤m≤N

[∑
6̀=0

‖qmNFm+2`NF‖W s
m

]2

≤ C(1 + logN)sN2s
∑

−N+1≤m≤N

2∑
j=0

N−2j

[∑
` 6=0

‖Fm+2`NF‖W j
m

]2

. (95)

Let us study now the three terms in the last sum above. Cauchy-Schwarz inequality and (38)-(39)
leads to[∑
6̀=0

‖Fm+2`NF‖W j
m

]2

≤ 9

[∑
6̀=0

1

|m+ 2`N |2t−2j

][∑
`6=0

|m+ 2`N |2t−2j‖Fm+2`NF‖2W j
m+2`N

]
(96)

for j = 0, 1, 2. Since ∑
` 6=0

1

|x+ `|r
≤ Cr, ∀x ∈ [−1/2, 1/2]

with Cr depending only r > 1, we can bound (96) (recall that we have assumed that t > 5/2)
as follows[∑

` 6=0

‖Fm+2`NF‖W j
m

]2

≤ CtN
2j−2t

[∑
`6=0

|m+ 2`N |2t−2j‖Fm+2`NF‖2W j
m+2`N

]

≤ CtN
2j−2t

[∑
`6=0

‖Fm+2`NF‖2W t
m+2`N

]
(97)

where in the last step we have applied inequality (30). Plugging (97) in (95), and using (32),
we deduce finally

E2 ≤ C(1 + logN)sN2s−2t
∑

−N+1≤m≤N

∑
6̀=0

‖Fm+2`NF‖2W t
m+2`N

≤ C(1 + logN)sN2s−2t‖F‖2Ht . (98)

Gathering bounds (93), (94) and (98), we obtain the spectrally accurate convergence esti-
mate (23) in Theorem 2.4.
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5 A FFT-based interpolatory cubature on the sphere

As described in the introduction, interpolatory cubature rules on the sphere are important in
several applications, including the radiative transfer and wave propagation models. Using the
FFT-based spherical interpolatory operator, for a (wavenumber) parameter κ, we develop a
cubature rule to approximate the following (non–, mild–, and highly–oscillatory) integral on the
sphere:

IκF :=

∫ π

0

∫ 2π

0
F (θ, φ) exp(iκ cos θ) sin θ dφ dθ =

∫∫
S2
F ◦(x) exp(iκx · [0, 0, 1])dS(x).(99)

In the integral above the parameter κ is a real number. Therefore, (99) includes standard
integrals as well as a class of highly–oscillatory integrals for large values of κ. In wave propagation
applications, the [0, 0, 1] corresponds to the direction of the incident wave. The rotationally
invariant property of the sphere facilitates fixing such an incident direction. The above integral
occurs, for example, in developing efficient computer models to simulate scattered wave (and its
far-field) from an acoustically/electromagnetically small, medium, and large closed obstacles [12,
13, 14, 15] with compact simply connected surface, leading to surface integral reformulations of
the model on the sphere. The integral for the κ = 0 case occurs in potential theory and radiative
transport models.

For the FFT-based efficient cubature approximation of the integral, we first consider a Filon-
type product integration interpolatory approximation

IN,κF :=

∫ π

0

∫ 2π

0

(
QNF

)
(θ, φ) exp(iκ cos θ) sin θ dφ dθ. (100)

Using the representation

(QNF )(θ, φ) = p0(θ) +
∑

−N/2<m≤N/2
odd m 6=0

sin θ pm(θ) exp(imφ) +
∑

−N/2<m≤N/2
even m 6=0

sin2 θ pm(θ) exp(imφ)

(pm ∈ De
N−2 if m 6= 0), we obtain

IN,κF = 2π

∫ π

0
p0(θ) exp(iκ cos θ) sin θ dθ =

√
2π

∫ π

0

(
F0QNF

)
(θ) exp(iκ cos θ) sin θ dθ.

From this property and Proposition 2.1 we see how this cubature rule can efficiently implemented:

• Compute

fj,0 :=
1

2N

2N−1∑
k=0

F (θj , φk)

• Construct (
α0
`

)N
`=0

:= DCTN ((fj,0)j=0,...,N ),

• Return

IN,κF = 2π
N∑
`=0

α`ω`(κ)

where

ω`(κ) := 2π

∫ π

0
cos `θ exp(iκ cos θ) sin θ dθ = 2π

∫ 1

−1
T`(x) exp(iκx)dx. (101)
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The cost of computing (α`)
N
`=0 is about O(N2), and is dominated by the first step of the algo-

rithm. The weights (101) (T` denotes the Chebyshev polynomial of degree `) can be computed
in a stable and fast way in O(N) operations [8].

For the error analysis of the rule, based on (45)-(46), we first arrive at the following formula:

IN,κF − IκF =
√

2π

∫ π

0

[(
F0QNF

)
(θ)−

(
F0F

)
(θ)
]

sin θ dθ (102)

=
√

2π

∫ π

0

[(
qe
Nρ

0
NF
)
(θ)−

(
F0F

)
(θ)
]

sin θ dθ. (103)

Thus, with eN := qe
Nρ

0
NF −F0F , the cubature approximation error is bounded by

√
2π‖eN‖L2

sin
,

so that we first ensure the convergence should be independent of κ. Actually this estimate can
be improved by performing integration by parts, to obtain high-order decay in the error for large
values of κ. Using eN (0) = eN (π) = 0, we obtain

IN,κF − IκF = −
√

2π i

κ

∫ π

0
e′N (θ) exp(iκ cos θ) dθ (104)

=

√
2π

κ2

[
1

sin θ
e′N (θ) exp(iκ cos θ)

∣∣∣∣θ=π
θ=0

−
∫ π

0

( 1

sin θ
e′N (θ)

)′
exp(iκ cos θ) dθ

]
. (105)

We observe that for sufficiently smooth F , e′N (0) = e′N (π) = 0 and therefore the pointwise value
of 1

sin(·)e
′
N (·) at these points as well as the last integral are well defined.

Below we present the error estimate and convergence result for the cubature rule. We omit
a detailed analysis of the estimate since it can be proved using arguments similar to that we
developed (for a similar rule) and analyzed in [7, Section 5].

Theorem 5.1 Let F ∈ Hr. For ` = 0, 1 and r > 3/2 or ` = 2 and r > 4

|Iκ(F )− Iκ,N (F )| ≤ Crκ−`Nη(`)−r‖F‖Hr , (106)

where Cr independent of N and

η(`) :=


0, if ` = 0,
3/2, if ` = 1,
4, if ` = 2.

6 Numerical experiments

In this section we demonstrate the main interpolatory spectrally accurate approximation re-
sult (23) and the high-order cubature approximation result (106) for functions with various
order of smoothness. We also demonstrate that the construction of full FFT-based interpo-
latory approximation developed in this article using the uniform-grid and the QN operator is
faster, even for small to medium sized data locations, than another efficient similarly accurate
interpolation operator Qgl

N . We developed the operator Qgl
N in [7], using Gauss-Lobatto points

in latitudinal angle, that facilitates the use of the standard FFT only in the azimuthal variable.
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For calculation of the Ht norms, for t = 0, 1, used in (23), we apply the following integral
based formulas:

‖F‖2H0 :=

∫ π

0

∫ 2π

0
|F (θ, φ)|2 sin θ dφ dθ (107)

‖F‖2H1 :=
1

4
‖F‖2H0

∫ π

0

∫ 2π

0

∣∣∣∣∂F∂φ (θ, φ)

∣∣∣∣2 1

sin θ
dφdθ +

∫ π

0

∫ 2π

0

∣∣∣∣∂F∂θ (θ, φ)

∣∣∣∣2 sin θ dφ dθ. (108)

Except for some trivial cases, the above norms cannot be evaluated exactly. We computed
the above norms for tabulated results in this section using over 150, 000 quadrature points on
the sphere, taking into account that some of the functions considered in this section have only
limited smoothness properties and hence require fine grids to compute with sufficiently high
accuracy.

Experiment #1 (Approximation of smooth and limited smooth functions)

For the first set of experiments we consider interpolatory approximation of test functions:

F ◦1 (x, y, z) :=
1

4 + x+ y + z
, F ◦j (x, y, z) := (1−x2)5/2−jyz, for j = 2, 3 and (x, y, z) ∈ S2.

Recalling (1)-(2), the corresponding equivalent functions are

F1(θ, φ) :=
1

4 + sin θ cosφ+ sin θ sinφ+ cos θ

Fj(θ, φ) := (1− sin2 θ cos2 φ)5/2−j sin θ sinφ cos θ, j = 2, 3.

Clearly F ◦1 is a smooth function, and hence our theoretical result (23) suggests superalgebraic
convergence QNF ◦1 to F ◦1 in both the H0 and H1 norms. Computational results in Table 1
validate the theoretical result and demonstrate the power of obtaining machine precision accurate
approximation of the smooth function with N = 32.

N ‖QNF1 − F1‖H0 EoC ‖QNF1 − F1‖H1 EoC

008 4.86E-06 4.40E-05
016 2.02E-11 17.9 3.37E-10 17.0
032 5.78E-15 11.8 7.82E-15 15.4

Table 1: Approximation of F1 by QNF1: Errors and estimate order of convergence (EoC)

The functions F ◦2 and F ◦3 have only limited regularity. It can be shown that, for any ε > 0,
F ◦2 ∈ H4−ε and F3 ∈ H2−ε. Indeed, using an atlas with local charts around the singularities
[points (±1, 0, 0) ∈ S2] one can easily see that the Sobolev regularity of F ◦j are the same as

the functions F̃ ◦j (y, z) := (y2 + z2)5/2−jy. Hence according to our theoretical result (23), the

estimated order of convergence (EoC) in approximating F2 by QNF2 in the H0,H1 norms are
respectively almost 4 and 3 and that for F3 by QNF3 are respectively almost 2 and 1. Compu-
tational results in Table 2 validate the theoretical result (23).

Experiment #2 (Accuracy and fast evaluation comparison with a recent work)

For this experiment we compare the performance in construction, in terms of error and computa-
tion time, of the FFT-based interpolant developed in this article with the interpolant considered
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N ‖QNF2 − F2‖H0 EoC ‖QNF2 − F2‖H1 EoC

008 1.43E-03 1.41E-02
016 8.14E-05 4.14 1.55E-03 3.18
032 5.01E-06 4.02 1.90E-04 3.03
064 3.12E-07 4.01 2.36E-05 3.00
128 1.87E-08 4.06 3.07E-06 2.95

N ‖QNF3 − F3‖H0 EoC ‖QNF3 − F3‖H1 EoC

008 2.76E-02 3.21E-01
016 6.92E-03 2.00 1.58E-01 1.02
032 1.73E-03 2.00 7.93E-02 1.00
064 4.33E-04 2.00 3.97E-02 1.00
128 1.08E-04 2.00 1.99E-02 0.99

Table 2: Approximation of F2 and F3 by QNF2 and QNF3: Errors and EoC

in [7] (and first proposed, not analyzed, in [16]). This interpolant shares the same discrete
space, χN , and the nodes in the azimuthal angle {φj}. The difference is on the nodes in the
latitudinal angle which were chosen in [7] to be the non-uniform grid points {θi = arccos ηi}Ni=0

where {ηi}Ni=0 are the Gauss-Lobatto points of the quadrature rule for approximating integrals in
[−1, 1]. In other words, η0 = −1, ηN = 1 and ηi for i = 1, . . . , N−1 are the roots of P ′N (x) where
PN is the Lagrange polynomial of degree N . We recall that this non-uniform Gauss-Lobatto
points based interpolant is denoted as Qgl

N .
In [7] we proved that for F ∈ Ht and s = 0, 1,

‖Qgl
NF − F‖Hs ≤ CN s−t‖F‖Ht ,

which is, up to the (logN)s/2 term, identical to the error estimate in (23) that we proved for
the FFT-based operator QN . For our comparison testing purpose, we have chosen the function

F4(θ, φ) =

[(
1√
3
− sin θ cosφ

)2

+

(
1√
3
− sin θ sinφ

)2

+

(
1√
3
− cos θ

)2
]3/2

∈ H4−ε

which corresponds to the function F ◦4 (x̂) = |x̂− x∗|3 , x̂ ∈ S2 with x∗ = [1/
√

3, 1/
√

3, 1/
√

3].

The error in H0 and H1 norms and associated EoC are depicted in Table 3 for QN and Qgl
N .

Similar to our established theoretical results, we observe from Table 3 that althoughQgl
N performs

slightly better, the difference is not significant and the estimated orders of convergence are
roughly the same.

It is important to observe the difference between the construction and evaluation of the
interpolation operators in the current article and that in [7]. After construction of these two in-
terpolation operators (see Figure 1 for construction CPU time), computing our two interpolatory
approximations at various observation points on S2 requires same basis function evaluations at
the points, as they share the same approximation space χN . Unlike standard spherical harmon-
ics based polynomial approximations, construction and evaluation of our interpolation operators
do not involve Legendre polynomials. Hence we do not require use of techniques such as fast
Legendre transforms for our non-polynomial approximations. Our basis functions are trigono-
metric polynomials and hence for evaluation of both the interpolation operators, standard FFT
or NFFT [25] techniques can be used, depending on whether the observation points are equally
spaced or not.
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N ‖QNF4 − F4‖H0 EoC ‖Qgl
NF4 − F4‖H0 EoC

008 1.48e-03 1.41e-03
016 1.00e-04 3.89 9.03e-05 3.97
032 6.16e-06 4.02 5.68e-06 3.99
064 3.66e-07 4.07 3.61e-07 3.98
128 2.63e-08 3.80 2.47e-08 3.87

N ‖QNF4 − F4‖H1 EoC ‖Qgl
NF4 − F4‖H1 EoC

008 1.43e-02 1.50e-02
016 1.88e-03 2.93 1.90e-03 2.99
032 2.27e-04 3.05 2.20e-04 3.11
064 2.69e-05 3.08 2.83e-05 2.96
128 3.82e-06 2.82 4.26e-06 2.73

Table 3: Approximation of F4 by QNF4 and QglF4: H0 case (top) and H1 case (bottom).

The computational effort required for construction of both the interpolants are however
important. In Figure 1, we show the low computational cost of the spherical interpolant con-
structed in this article compared to even the efficient matrix-free interpolant developed in [7].
The difference in the performance and computational complexity for construction of the inter-
polants can be easily explained just by examining both interpolants. For construction of the QN
based approximation, we proceed as follows (see Proposition 4.5): first, we apply N − 1 FFT
transforms of 2N elements, corresponding to odd node indices and next, for even cases, apply
N + 1 DCT/DST (discrete sine/cosine transform) . Thus the overall computational complexity

for the QN operator approximation is O(N2 logN) operations. For construction of the Qgl
N based

approximation, the first step is similar, with N − 1 FFT transforms of 2N elements, but the
second step (in the non-uniform grid latitudinal angle) is different: two different (polynomial)
interpolation problems of N + 1 (p2m

N ) and N − 1 (p2m−1
N ) have to be solved N times which

amounts about O(N3) operations. Moreover, the interpolant QN developed in this article can
be used in a natural way with nested grids which can be easily exploited to construct error
estimates almost for free, or, if the data node points are doubled, previous function evaluations
can be reused to construct the associated updated interpolatory approximation.
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Figure 1: Performance of the construction of operator QN (*-values) compared to that of Qgl
N

(o–values) for various data parameter N = 2j , [top: j = 7, 8, 9, 10 and bottom: j = 11, 12, 13, 14]
applied to the data obtained using the function F4. The ordinate values are the CPUTIME (in
minutes) obtained using a single core of a Intel Xeon-5570 2.93GHz processor. The QN operator
facilitates application of the standard FFT in both the azimuthal and latitudinal angles while
the Qgl

N with non-uniform Gauss-Lobatto based points in the latitudinal angles provides the
standard FFT evaluation only in the azimuthal variable.
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Experiment #3 (Performance of the FFT-based cubature)

Using the smooth integrand function F2 and for the limited smooth integrand F4, we have tested
the convergence of the cubature rule developed in Section 5 to approximate the integral (99),
for κ = 0, 10, 102, . . . , 106, corresponding to the total non-, mildly-, and highly-oscillatory inte-
grands. The results for all these cases are given in Tables 4 and 5.

Each row of Tables 4 and 5 corresponds to a fixed N . We clearly observe the κ−2 decay
of the error, for fixed N . Reading along the columns corresponds to varying values of N . For
the smooth function F1, based on the column results in Table 4, we see the superalgebraic
convergence in N , as proved in Section 1. For a fixed κ, for the case of the integrand function
F4 with limited regularity, we observe from Table 5 the convergence in general is better than
the estimated theoretical result, suggesting that our estimated error result and analysis could
be improved in some cases.

N \ κ 0 1 10 100 103 104 105 106

004 5.36E-05 1.03E-04 5.01E-05 6.77E-07 4.55E-09 6.93E-11 7.22E-13 6.83E-15
008 1.17E-08 1.28E-08 9.14E-07 4.28E-09 5.04E-11 4.35E-13 4.24E-15 4.38E-17
016 4.44E-16 1.28E-14 2.15E-13 9.89E-14 7.01E-16 2.23E-18 1.79E-19 6.07E-20

Table 4: |Iκ(F1)− Iκ,N (F1)| for various parameters κ and N

N \ κ 0 1 10 100 103 104 105 106

004 1.04E-04 2.67E-03 1.72E-03 2.40E-05 1.64E-07 2.48E-09 2.58E-11 2.44E-13
008 7.92E-05 8.62E-05 5.75E-04 3.15E-06 2.95E-08 3.08E-10 3.10E-12 3.08E-14
016 4.14E-06 4.20E-06 9.47E-06 1.31E-07 1.02E-09 2.01E-11 2.11E-13 1.99E-15
032 2.22E-08 2.33E-08 8.44E-08 2.26E-08 3.67E-11 1.00E-12 1.07E-14 1.01E-16
064 2.51E-09 2.51E-09 2.73E-09 1.83E-08 4.98E-12 3.78E-14 4.02E-16 3.93E-18
128 1.54E-10 1.54E-10 1.56E-10 4.20E-10 2.21E-12 5.97E-15 1.03E-16 9.62E-19
256 3.33E-12 3.31E-12 3.34E-12 4.93E-12 4.26E-13 7.06E-16 1.11E-17 2.58E-19

Table 5: |Iκ(F4)− Iκ,N (F4)| for various parameters κ and N

A Discussion on and verification of Hypothesis 1

In this section, we present details required to computationally verify the inequalities (21) in
Hypothesis 1 and demonstrate that the hypothesis holds for almost all practical values of N . To
this end, we first rewrite Hypothesis 1 in a computationally convenient form. Using the cosine
change of variables x = cos θ and the Chebyshev polynomial T2N , we rewrite inequality (21) as

−2

∫ 1

−1
|pN−2(x)|2(1−x2)αT2N (x) dx ≤ cαH

∫ 1

−1
|pN−2(x)|2(1−x2)α dx, ∀pN−2 ∈ PN−2, (109)

for α = 0, 1, 2 where cαH < 1.

Next we consider a polynomial of degree N − 2 represented using the Chebyshev basis:

pN−2 =

N−2∑
j=0

βj+1Tj .
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Then (109) is equivalent to the coefficient based inequality

− 2
N−1∑
i,j=1

βiβjbij(α,N) ≤ cαH
N−1∑
i,j=1

βiβjaij(α) (110)

where

aij(α) :=

∫ 1

−1
Ti−1(x)Tj−1(x)(1− x2)α dx,

bij(α,N) :=

∫ 1

−1
Ti−1(x)Tj−1(x)T2N (x)(1− x2)α dx.

Observe that these quantities are easily computable using the identities

TiTj =
1

2

(
Ti+j + T|i−j|

)
(111a)

T2N = 2T 2
N − 1 (111b)

(1− x2) = −1

2
T2(x) +

1

2
, (1− x2)2 =

1

4
T 2

2 (x)− 1

2
T2(x) +

1

4
(111c)∫ 1

−1
Ti(x) dx =

{
− 2
i2−1

, for even i,

0, otherwise.
(111d)

Thus, for numerical verification of the Hypothesis 1, we used the follow algorithm:

• Construct an auxiliary matrix C sufficiently large with Ci+1,j+1 =
∫ 1
−1 TiTj using (111a)

and (111d) .

• From C, construct A(α,N) := (aij(α))N−1
i,j=1 and B(α,N) := (bij(α,N))N−1

i,j=1 by applying
(111a)–(111d). Hence

aij(0) = cij

aij(1) = −1

4

[
ci+2,j + c|i−2|+1,j

]
+

1

2
cij

aij(2) =
1

16

[
ci+2,j+2 + c|i−2|+1,j+2 + ci+2,|j−2|+1 + c|i−2|+1,|j−2|+1

]
−1

4

[
ci+2,j + c|i−2|+1,j

]
+

1

4
cij

bij(α,N) =
1

2

[
ai+N,j+N (α) + a|i−N |+1,j(α) + ai,|j−N |+1(α) + a|i−N |+1,|j−N |+1(α)

]
− ai,j(α).

• Compute the minimum of the generalized Rayleigh quotient for A and B

cH(N ;α) := −2 min
b∈RN−1

b>B(α,N)b

b>A(α,N)b
(112)

Both A(α,N) and B(α,N) are symmetric. Moreover, A(α,N) is positive definite. Thus, we
can compute the Cholesky factorization A = R>R so that (112) is equivalent to compute the
smallest algebraic eigenvalue of the matrix R−>B(α,N)R−1.

We have implemented the above algorithm by precomputing C that facilities acceleration of
the algorithm for several values of N . The graphs of cH(·;α) for 2 ≤ N ≤ 214 are depicted in
Figure 2 demonstrating the validity of the hypothesis for most practically useful values of N .
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Figure 2: Plots of computed values of cH(N ;α) defined in (112) for α = 0, 1, 2, respectively
in the first three subplots, for 2 ≤ N ≤ 27; and in the last three subplots for 27 < N ≤ 214.
These plots, demonstrating cH(N ;α) < 1, numerically validate (for almost all practical cases)

that in (21), we have c
(j)
H < 1, for j = 1, 2, 3.
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B Proofs results in Section 3

In this section we provide proofs of Theorem 3.1 and Proposition 3.2.

B.1 Proof of Theorem 3.1

Proof. First we recall that the space

H1 =
{
F : R2 → C : F ∈ H0,∇S2F ∈ H0 ×H0

}
is equipped with the norm

‖F‖2H1 :=
1

4
‖F‖2H0 + ‖∇S2F‖2H0×H0

=
1

4

∫ π

0

∫ 2π

0
|F (θ, φ)|2 sin θ dθ

+

∫ π

0

∫ 2π

0

∣∣∣∣∂F∂φ (θ, φ)

∣∣∣∣2 1

sin θ
dθ dφ+

∫ π

0

∫ 2π

0

∣∣∣∣∂F∂θ (θ, φ)

∣∣∣∣2 sin θ dθ dφ. (113)

Since,

|∇S2(f ⊗ em)(θ, φ)|2 =
1

2π

[ m2

sin2 θ
|f(θ)|2 + |f ′(θ)|2

]
,

we obtain for all m ∈ Z,

‖f‖2W 1
m

=
1

4

∫ π

0
|f(θ)|2 sin θ dθ +m2

∫ π

0
|f(θ)|2 dθ

sin θ
+

∫ π

0
|f ′(θ)|2 sin θ dθ. (114)

For |m| ≥ 1, (36) follows from (114).
Next we prove that if |m| ≥ 2,

‖f‖2W 2
m

=
1

16

∫ π

0
|f(θ)|2 sin θ dθ +

9m2

4

∫ π

0
|f(θ)|2 dθ

sin θ
+ (m4 − 4m2)

∫ π

0
|f(θ)|2 dθ

sin3 θ

+
1

4

∫ π

0
|f ′(θ)|2 sin θ dθ + (1 + 2m2)

∫ π

0
|f ′(θ)|2 dθ

sin θ
+

∫ π

0
|f ′′(θ)|2 sin θ dθ.

(115)

It is convenient to recall that

‖F‖2H2 := ‖∆S2F‖2H0 +
1

2
‖∇S2F‖2H0×H0 +

1

16
‖F‖2H0 ,

Where ∆S2 is the Laplace-Beltrami operator on the sphere [28].
Without loss of generality, we assume f to be a real valued function. The proof of (115)

requires more calculations and application of integration by parts several times to take care of
some cross products appearing in the integral form of the norm. Without loss of generality, for
a fixed m ∈ Z, we can assume f ∈ span {Qmn : n ≥ |m|} because this subspace is dense in W 2

m.
Observe that

f(0) = f ′(0) = f(π) = f ′(π) = 0. (116)

Since

1

4
‖∇S2f ⊗ em‖2H0×H0 +

1

16
‖f ⊗ em‖2H0 =

m2

4

∫ π

0
f2(θ)

dθ

sin θ
+

1

4

∫ π

0
|f ′(θ)|2sin θ dθ

+
1

16

∫ π

0
f2(θ) sin θ dθ,
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it is sufficient to analyze the term containing the Laplace-Beltrami operator:

‖∆S2(f ⊗ em)‖2H0 =

∫ π

0

∫ 2π

0
|∆S2(f ⊗ em)(θ, φ)|2 sin θ dθ dφ

=

∫ π

0

∣∣∣∣− m2

sin2 θ
f(θ) +

1

sin θ

∣∣( sin θf ′(θ)
)′∣∣∣∣2 sin θ dθ

= m4

∫ π

0
f2(θ)

dθ

sin3 θ
+

∫ π

0

1

sin θ

∣∣( sin θf ′(θ)
)′∣∣2 dθ

−2m2

∫ π

0
f(θ)

(
sin θf ′(θ)

)′ dθ

sin2 θ
=: m4I1 + I2 − 2m2I3. (117)

Using (116) and integration by parts, cubature

I2 =

∫ π

0

[cos2 θ

sin θ
|f ′(θ)|2 + sin θ|f ′′(θ)|2 + cos θ

(
|f ′(θ)|2

)′]
dθ

=

∫ π

0

cos2 θ

sin θ
|f ′(θ)|2 dθ +

∫ π

0
sin θ|f ′′(θ)|2 dθ +

∫ π

0
|f ′(θ)|2 sin θ dθ

=

∫ π

0
|f ′(θ)|2 dθ

sin θ
+

∫ π

0
sin θ|f ′′(θ)|2 dθ. (118)

Proceeding similarly, we derive

I3 = −
∫ π

0

( 1

sin2 θ
f(θ)

)′
f ′(θ) sin θ dθ

= −
∫ π

0
|f ′(θ)|2 dθ

sin θ
+

∫ π

0

(
f2(θ)

)′ cos θ

sin2 θ
dθ

= −
∫ π

0
|f ′(θ)|2 dθ

sin θ
+

∫ π

0
f2(θ)

(2 cos2 θ

sin3 θ
+

1

sin θ

)
dθ

= −
∫ π

0
|f ′(θ)|2 dθ

sin θ
−
∫ π

0
f2(θ)

dθ

sin θ
+ 2

∫ π

0
f2(θ)

dθ

sin3 θ
. (119)

Inserting (118)-(119) in (117), we obtain (115).
The inequalities

1

16
+

9m2

4
+ (m4 − 4m2) ≤ m4 < 3m4,

1

4
+ (1 + 2m2) ≤ 3m2, ∀|m| ≥ 2

with (115) imply the first inequality of (37). For |m| ≥ 3 the second inequality of (37) is simply
a consequence of the inequalities

m4 − 4m2 > m4/2 >
m4

6
, 1 + 2m2 > m2 ≥ m2

6
.

The case |m| = 2, has to be analyzed separately since one of the crucial terms, the third term
in (115), vanishes: Using (115), we obtain

‖f‖2W 2
m
≥ 9

∫ π

0
|f(θ)|2 dθ

sin θ
+ 9

∫ π

0
|f ′(θ)|2 dθ

sin θ
+

∫ π

0
|f ′′(θ)|2sin θ dθ. (120)

As before it suffices to consider f to be real valued and that f ∈ span
{
Q2
n : n ≥ 2

}
. Note that∫ π

0
f2(θ)

dθ

sin3 θ
=

∫ π

0
f2(θ)

dθ

sin θ
+

∫ π

0
f2(θ)

cos2 θ

sin3 θ
dθ. (121)

36



Applying integration by parts to the second term and using (116) we obtain∫ π

0
f2(θ)

cos2 θ

sin3 θ
dθ =

∫ π

0

(
f(θ)f ′(θ)

)(
log(tan(θ/2)) +

cos θ

sin2 θ

)
dθ. (122)

Notice that for θ ∈ (0, π/2],

sin θ| log tan(θ/2)| ≤ 2 tan(θ/2)| log tan(θ/2)| ≤ 2e−1 ≤ 1. (123)

By symmetry, we can extend this bound for any θ ∈ (0, π). With the help of (123) and the
inequality 2ab ≤ a2 + b2, from (122) we obtain∫ π

0
f2(θ)

cos2 θ

sin3 θ
dθ ≤

∫ π

0

∣∣f(θ)f ′(θ)
∣∣ dθ

sin θ
+

∫ π

0

∣∣f(θ)f ′(θ)
∣∣ dθ

sin2 θ

≤ 1

2

[ ∫ π

0
f2(θ)

dθ

sin θ
+ 2

∫ π

0
|f ′(θ)|2 dθ

sin θ

]
+

1

2

∫ π

0
f2(θ)

dθ

sin3 θ
. (124)

Inserting (124) in (121) we easily derive∫ π

0
f2(θ)

dθ

sin3 θ
≤ 3

2

∫ π

0
f2(θ)

dθ

sin θ
+

∫ π

0
|f ′(θ)|2 dθ

sin θ
+

1

2

∫ π

0
f2(θ)

dθ

sin3 θ

and therefore ∫ π

0
f2(θ)

dθ

sin3 θ
≤ 3

∫ π

0
f2(θ)

dθ

sin θ
+ 2

∫ π

0
|f ′(θ)|2 dθ

sin θ
. (125)

From (120) and (125), we obtain

6‖f‖2W 2
m
≥ 54

∫ π

0
f2(θ)

dθ

sin θ
+ 54

∫ π

0
|f ′(θ)|2 dθ

sin θ
+ 6

∫ π

0
|f ′′(θ)|2sin θ dθ

≥ 16

(
3

∫ π

0
f2(θ)

dθ

sin θ
+ 2

∫ π

0
|f ′(θ)|2 dθ

sin θ

)
+4

∫ π

0
|f ′(θ)|2 dθ

sin θ
+

∫ π

0
|f ′′(θ)|2sin θ dθ

≥ 16

∫ π

0
|f(θ)|2 dθ

sin3 θ
+ 4

∫ π

0
|f ′(θ)|2 dθ

sin θ
+

∫ π

0
|f ′′(θ)|2sin θ dθ.

Hence the inequalities in (37) hold. �

B.2 Proof of Proposition 3.2

Proof. Denote by Γ the maximum circle in S2, parametrized by

q(θ) := (sin θ, 0, cos θ). (126)

Given f◦ : Γ→ C we denote f = f◦ ◦ q : R→ C. The norm in the Sobolev space Hr(Γ) can be
then defined with the help of q and (41):

‖f◦‖Hr(Γ) := ‖f‖Hr
#
.

37



The second ingredient we will use in this proof is the trace operator γΓ which can be shown
to be continuous from Hr+1/2(S2) onto Hr(Γ) for all r > 0 (see [6, 27] for a proof of this result in
Rn; the proof can be easily extended by using local charts of the unit sphere and the equivalent
definitions of the Sobolev spaces involved).

Given f ∈W r
m, consider the mapping

Pmf :=
√

2π(γΓF
◦) ◦ q, F ◦ := (f ⊗ em) ◦ p−1.

Observe that F ◦ ∈ Hr(S2) and that actually f = Pmf , that is Pm is simply the identity operator.
Moreover,

‖Pmf‖Hr
#
≤
√

2π‖γΓ‖Hr+1/2(S2)→Hr(Γ)‖F
◦‖Hr+1/2(S2) =

√
2π‖γΓ‖Hr+1/2(S2)→Hr(Γ)‖f‖W r+1/2

m
,

where ‖γΓ‖Hr+1/2(S2)→Hr(Γ) is the continuity constant of γΓ as a linear operator from Hr+1/2(S2)
onto Hr(Γ). Hence we obtain (43).

Since W 0
m
∼= L2

sin, the first equation in (44) is clear whereas the second equation in (44) for
m = 0 follows directly from (114) and (42). Finally, if m 6= 0 using f(0) = 0 we observe that∫ π/2

0
|f(θ)|2 dθ

sin θ
=

∫ π/2

0

1

sin θ

∣∣∣∣ ∫ θ

0
f ′(ξ) dξ

∣∣∣∣2dθ ≤
∫ π/2

0

√
θ

sin θ

[ ∫ θ

0
|f ′(ξ)|2 dξ

]
dθ

≤ C

∫ π/2

0
|f ′(ξ)|2 dξ.

Proceeding similarly, but using now that f(π) = 0, we can bound the integral in (π/2, π) and
hence conclude that ∫ π

0
|f(θ)|2 dθ

sin θ
≤ C

∫ π

0
|f ′(ξ)|2 dξ.

Equation (36) now yields that

‖f‖W 1
m
≤
√

5

2
‖f‖Z1

m
≤ C(1 + |m|)‖f‖H1

#
.

�
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