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Abstract

Kernel-based methods in Numerical Analysis have the advantage of
yielding optimal recovery processes in the ”native” Hilbert space H in
which they are reproducing. Continuous kernels on compact domains
have an expansion into eigenfunctions that are both L2-orthonormal
and orthogonal in H (Mercer expansion). This paper examines the
corresponding eigenspaces and proves that they have optimality prop-
erties among all other subspaces of H. These results have strong
connections to n-widths in Approximation Theory, and they establish
that errors of optimal approximations are closely related to the decay
of the eigenvalues.

Though the eigenspaces and eigenvalues are not readily available,
they can be well approximated using the standard n-dimensional sub-
spaces spanned by translates of the kernel with respect to n nodes
or centers. We give error bounds for the numerical approximation of
the eigensystem via such subspaces. A series of examples shows that
our numerical technique via a greedy point selection strategy allows
to calculate the eigensystems with good accuracy.
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1 Introduction

We start with a few background facts about kernel-based methods. Details
can be retrieved from the monographs [2, 27, 7] and the surveys [1, 25]. Let
Ω ⊂ Rd be a nonempty set, and let K : Ω×Ω→ R be a positive definite and
symmetric kernel on Ω. Associated with K there is a unique native space
H(Ω), that is a separable Hilbert space of functions f : Ω → R where K is
the reproducing kernel. This means that K(·, x) is the Riesz representer of
the evaluation functional δx, i.e.,

f(x) = (f,K(·, x)), for all x ∈ Ω, f ∈ H(Ω) (1)

where we use the notation (·, ·), without subscript, to denote here and in the
following the inner product of H(Ω). Also the converse holds: any Hilbert
space on Ω where the evaluation functionals δx are continuous for any x ∈ Ω
is the native space of a unique kernel.

One way to construct the native space is as follows. First one considers
the space H0(Ω) = span{K(·, x), x ∈ Ω} and then equips it with the positive
definite and symmetric bilinear form(∑

j

cjK(·, xj),
∑
i

diK(·, xi)

)
:=
∑
j,i

cjdiK(xj, xi).

The native space H(Ω) then is the closure of H0(Ω) with respect to the inner
product defined by this form.

Given a finite set Xn = {x1, . . . , xn} ⊂ Ω of distinct points, the inter-
polant sf,Xn of a function f ∈ H(Ω) on Xn is uniquely defined, since the
kernel matrix

A = [K(xi, xj)]
n
i,j=1

is positive definite, the kernel being positive definite. Letting V (Xn) ⊂ H(Ω)
be the subspace spanned by the kernel translates K(·, x1), . . . , K(·, xn), the
interpolant sf,Xn is the projection of f into V (Xn) with respect to (·, ·).
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The usual way to study the approximation error is to consider the Power
Function Pn(x) of Xn at x, that is theH(Ω)-norm of the pointwise error func-
tional f 7→ f(x)−sf,Xn(x) at x, but we will consider also other measurements
of the interpolation error, and other projectors.

We make the additional assumptions that Ω is a compact set in Rd and
the kernel is continuous on Ω × Ω. This ensures that the native space has
a continuous embedding into L2(Ω). Indeed, using the reproducing property
(1) we have

‖f‖L2 ≤
(∫

Ω

K(x, x)dx

)1/2

‖f‖ for all f ∈ H(Ω)

where the integral of the kernel is finite. This allows to define a compact
and self-adjoint integral operator T : L2(Ω) → L2(Ω) which will be crucial
for our goals. For f ∈ L2(Ω) we define

Tf(x) =

∫
Ω

K(x, y)f(y)dy, x ∈ Ω. (2)

It can be shown that the range T (L2(Ω)) of T is dense in H(Ω), and

(f, g)L2 = (f, Tg) for all f ∈ H(Ω), g ∈ L2(Ω). (3)

Remark 1. The operator T can be defined using any positive and finite mea-
sure µ with full support on Ω (see [26]) and the same properties still hold,
but we will concentrate here on the Lebesgue measure.

The following theorem (see e.g. [20, Ch. 5]) applies to our situation, and
provides a way to represent the kernel as an expansion (or Hilbert - Schmidt
or Mercer) kernel (see e.g. [23, 22]).

Theorem 2 (Mercer). If K is a continuous and positive definite kernel on
a compact set Ω, the operator T has a countable set of positive eigenvalues
λ1 ≥ λ2 ≥ · · · > 0 and eigenfunctions {ϕj}j∈N with Tϕj = λjϕj. The eigen-
functions are orthonormal in L2(Ω) and orthogonal in H(Ω) with ‖ϕj‖ = λ−1

j .
Moreover, the kernel can be decomposed as

K(x, y) =
∞∑
j=1

λj ϕj(x) ϕj(y) x, y ∈ Ω, (4)

where the sum is absolutely and uniformly convergent.
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From now on we will call {
√
λjϕj}j∈N the eigenbasis, and use the notation

En = span{
√
λjϕj, j = 1, . . . , n}.

We recall that it is also possible to go the other way round and define
a positive definite and continuous kernel starting from a given sequence of
functions {ϕj}j and weights {λj}j, provided some mild conditions of summa-
bility and linear independence. See [23] for a detailed discussion about this
construction, and note that eigenfunction expansions play a central role in
the RBF-QR technique dealt with in various papers [8, 6] recently. Further-
more, eigenexpansion techniques are a central tool when working with kernels
on spheres and Riemannian manifolds [5, 12, 16, 9].

In this paper we shall study the eigenbasis in detail and compare the
eigenspaces to other n-dimensional subspaces of H(Ω). General finite di-
mensional subspaces and their associated L2(Ω)- and H(Ω)- projectors are
treated in Section 2. In particular, the approximation error is bounded in
terms of generalized Power Functions that turn out to be very useful for the
rest of the paper. The determination of error-optimal n-dimensional sub-
spaces is the core of Section 3, and is treated there by n-widths, proving that
eigenspaces are optimal under various circumstances. In addition to the case
of Kolmogorov n-width as treated in [23], we prove that eigenspaces minimize
the L2(Ω) norm of the Power Function.

In Section 4 we move towards numerical calculation of eigenbases by fo-
cusing on (possibly finite-dimensional) closed subspaces. In particular, we
want to use subspaces V (Xn) spanned by kernel translates K(·, x1), . . . ,
K(·, xn) for point sets Xn to calculate approximations to the eigenbasis. By
means of Power Functions we can bound the error committed by working
with finite dimensional subspaces.

Section 5 focuses on the decay of eigenvalues. We recall the fact that
increased smoothness of the kernel leads to faster decay of eigenvalues. We
prove that using point-based subspaces V (Xn) we can approximate the first
n eigenvalues with an error connected to the decay of λn.

Section 6 describes the numerical algorithms used for the examples in
Section 7. In particular, we use a greedy method for selecting sets Xn of n
points out of N given points such that eigenvalue calculations in V (Xn) are
stable and efficient.

Finally, Section 7 shows that our algorithm allows to approximate the
eigenvalues for Sobolev spaces in a way that recovers the true decay rates, and
by results of Section 5 we have bounds on the committed error. For Brownian
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bridge kernels the eigenvalues are known, and our algorithm approximates
them very satisfactorily.

2 Projectors

As mentioned in the introduction, the interpolation problem in H(Ω) is well
defined, and the interpolation operator is a H(Ω)-projector into the spaces
generated by translates of the kernel. But we want to look also at fully general
subspaces Vn of H(Ω), generated by any set of n basis functions, and at other
linear approximation processes defined on such spaces, e.g. approximations
in the L2(Ω) norm.

For instance, we consider the two projectors

ΠL2,Vnf =
∑n

j=1(f, wj)L2wj, f ∈ H(Ω),

ΠH,Vnf =
∑n

j=1(f, vj)vj, f ∈ H(Ω),

where the wj and vj are L2(Ω)- and H(Ω)- orthonormal basis functions of
Vn, respectively. The first projector is defined on all of L2(Ω) and can be
analyzed on all intermediate spaces. We want to see how these projectors
are connected.

The two projectors do not coincide in general, but there is a special case.
For the sake of clarity we present here the proof of the following Lemma,
even if it relies on a result that is proven in Section 4.

Lemma 3. If the projectors coincide on H(Ω) for an n-dimensional space
Vn, then Vn is spanned by n eigenfunctions. The converse also holds.

Proof. We start with the converse. For each fixed ϕj, thanks to (3), we have

(f, ϕj)L2 = λj(f, ϕj) for all f ∈ H(Ω).

Then

ΠL2,Vnf =
n∑
j=1

(f, ϕj)L2ϕj =
n∑
j=1

λj(f, ϕj)ϕj

=
n∑
j=1

(f,
√
λjϕj)

√
λjϕj = ΠH,Vnf.
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Assume now that the projectors coincide on H(Ω). We can choose a basis
{vj}j of Vn which is L2(Ω)-orthonormal and H(Ω)-orthogonal (see Lemma
10), with ‖vj‖2 = 1/σj. Since ΠL2,Vnf = ΠH,Vnf for any f ∈ H(Ω), necessar-
ily

(f, vj)L2 = σj(f, vj) for all f ∈ H(Ω) and j = 1, . . . , n,

and in particular for f = K(·, x), x ∈ Ω. Consequently, {vj}j and {σj}j are
eigenfunctions / eigenvalues of T .

We are now interested in an error analysis of the approximation by func-
tions from these general subspaces, and we want to allow both of the above
projectors.

Definition 4. For a normed linear space H of functions on Ω and a linear
operator Π on H such that all the functionals δx − δx ◦Π are continuous for
some norm ‖ · ‖H , the generalized Power Function in x ∈ Ω is the norm of
the error functional at x, i.e.,

PΠ,‖.‖H (x) := sup
‖f‖H≤1

|f(x)− (Πf)(x)|. (5)

The definition fits our situation, because we are free to take Π = ΠH,Vn
with ‖.‖H = ‖.‖, the normed linear space H being H(Ω).

In the following, when no confusion is possible, we will use the simplified
notation PVn,H or just PVn to denote the Power Function of ΠH,Vn with respect
to ‖ · ‖.

To look at the relation between generalized Power Functions, subspaces
and bases we start with the following lemma.

Lemma 5. If a separable Hilbert space H of functions on Ω has continuous
point evaluation, then each H-orthonormal basis {vj}j satisfies∑

j

v2
j (x) <∞.

Conversely, the above condition ensures that all point evaluation functionals
are continuous.

Proof. The formula

f =
∑
j

(f, vj)Hvj
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holds in the sense of limits in H. If point evaluations are continuous, we can
write

f(x) =
∑
j

(f, vj)Hvj(x) for all x ∈ Ω

in the sense of limits in R. Since the sequence {(f, vj)H}j is in `2 and can
be an arbitrary element of that space, the sequence {vj(x)}j must be in `2,
because the above expression is a continuous linear functional on `2.

For the converse, observe that for any n ∈ N, x ∈ Ω and
∑n

j=1 c
2
j ≤ 1

the term
∑n

j=1 cjvj(x) is bounded above by
∑

j v
2
j (x), which is finite for any

x ∈ Ω. Hence, for any x ∈ Ω, sup‖f‖H≤1 |f(x)| is uniformly bounded for
f ∈ H.

Lemma 6. For projectors ΠVn within separable Hilbert spaces H of functions
on some domain Ω onto finite-dimensional subspaces Vn generated by H-
orthonormal functions v1, . . . , vn that are completed, we have

P 2
ΠVn ,‖.‖H (x) =

∑
k>n

v2
k(x)

provided that all point evaluation functionals are continuous.

Proof. The pointwise error at x is

f(x)− ΠVnf(x) =
∑
k>n

(f, vk)Hvk(x),

and, thanks to the previous Lemma, we can safely bound its norm as

|f(x)− ΠVnf(x)|2 ≤
∑
k>n

(f, vk)
2
H

∑
j>n

v2
j (x)

= ‖f − ΠVnf‖2
H

∑
j>n

v2
j (x) ≤ ‖f‖2

H

∑
j>n

v2
j (x),

with equality if f ∈ V ⊥n .

This framework includes also the usual Power Function.

Lemma 7. Let Xn be a set of n points in a compact domain Ω, and let
V (Xn) be spanned by the Xn-translates of K. Then the above notion of PV (Xn)

coincides with the standard notion of the interpolatory Power Function wrt.
Xn.

The proof follows from the fact that the interpolation operator coincides
with the projector ΠH,V (Xn) and the Power Function is in both cases defined
as the norm of the pointwise error functional.
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3 Minimal error subspaces

In this section we present the main results of this paper. Our goal is to ana-
lyze the behavior of the approximation error, considered from different points
of view, depending on the n-dimensional subspace Vn. Roughly speaking, we
will see that it is possible to exactly characterize the n-dimensional subspaces
of minimal error, both considering the L2(Ω) norm of the error and the the
L2(Ω) norm of the pointwise error.

The way this problem is addressed in Approximation Theory is the study
of widths (see e.g. the comprehensive monograph [19], and in particular
Chapter 4 for the theory in Hilbert spaces).

We will concentrate first on the n-width of Kolmogorov. The Kolmogorov
n-width dn(A;H) of a subset A in an Hilbert space H is defined as

dn(A;H) := inf
Vn⊂H

dim(Vn)=n

sup
f∈A

inf
v∈Vn
‖f − vn‖H .

It measures how n-dimensional subspaces of H can approximate a given
subset A. If the infimum is attained by a subspace, this is called an optimal
subspace. The interest is in characterizing optimal subspaces and to compute
or estimate the asymptotic behavior of the width, usually letting A to be the
unit ball S(H) of H.

The first result that introduces and studies n-widths for native spaces
was presented in [23]. The authors consider the n-width dn(S(H(Ω));L2(Ω)),
simply dn in the following, and prove that

dn = inf
Vn⊂L2

dim(Vn)=n

sup
f∈S(H)

‖f − ΠL2,Vnf‖L2 =
√
λn+1,

and the unique optimal subspace is En.
This result is the first that exactly highlights the importance of analyzing

the expansion of the operator T to better understand the process of approx-
imation in H(Ω). In the following we will try to deepen this connection.
Our main concern will be to replace the L2(Ω) projector ΠL2,Vn by the H(Ω)
projector ΠH,Vn , while still keeping the L2(Ω) norm to measure the error.
The H(Ω) projector is closer to the standard interpolation projector, and
it differs from the L2(Ω) projector unless the space Vn is an eigenspace, see
Lemma 3.
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We consider the L2(Ω) norm of the error functional in H(Ω) for the pro-
jection ΠH,Vn into a subspace Vn ⊂ H(Ω), i.e.,

sup
‖f‖H≤1

‖f − ΠH,Vnf‖L2

and we look for the subspace which minimizes this quantity. In other words,
following the definition of the Kolmogorov n-width, we can define

κn := inf
Vn⊂H

dim(Vn)=n

sup
f∈S(H)

‖f − ΠH,Vnf‖L2 .

We recall in the next Theorem that κn is equivalent to dn, i.e., the best
approximation in L2(Ω) of S(H(Ω)) with respect to ‖ · ‖L2 can be achieved
using H(Ω) itself and the projector ΠH,Vn . The result can be found in [17].

Theorem 8. For any n > 0 we have

κn =
√
λn+1,

and the unique optimal subspace is En.

Proof. SinceH(Ω) ⊂ L2(Ω) and since ΠL2,Vnf is the best approximation from
Vn of f ∈ H(Ω) wrt. ‖ · ‖L2 , we have

dn = inf
Vn⊂L2

dim(Vn)=n

sup
f∈S(H)

‖f − ΠL2,Vnf‖L2

6 inf
Vn⊂H

dim(Vn)=n

sup
f∈S(H)

‖f − ΠL2,Vnf‖L2

6 inf
Vn⊂H

dim(Vn)=n

sup
f∈S(H)

‖f − ΠH,Vnf‖L2 = κn.

On the other hand, since ΠL2,En = ΠH,En on H(Ω) (Lemma 3),

κn 6 sup
f∈S(H)

‖f − ΠH,Enf‖L2

= sup
f∈S(H)

‖f − ΠL2,Enf‖L2 = dn,

since En is optimal for dn. Hence κn = dn =
√
λn+1.
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We now move to another way of studying the approximation error. In-
stead of directly considering the L2(Ω) norm of approximants, we first take
the norm of the pointwise error of the ΠH,En projector and then minimize
its L2(Ω) norm over Ω. This means to find a subspace which minimizes the
L2(Ω) norm ‖PVn‖L2 of the Power Function PVn among all n-dimensional
subspaces Vn ⊂ H(Ω). Using the definition of the generalized Power Func-
tion, we can rephrase the problem in the fashion of the previous results by
defining

pn := inf
Vn⊂H

dim(Vn)=n

∥∥∥∥∥ sup
f∈S(H)

|f(·)− ΠH,Vnf(·)|

∥∥∥∥∥
L2

.

In the following Theorem, mimicking [10, Theorem 1], we prove that, also
in this case, the optimal n-dimensional subset is En, and pn can be expressed
in terms of the eigenvalues.

Theorem 9. For any n > 0 we have

pn =

√∑
j>n

λj,

and the unique optimal subspace is En.

Proof. For a subset Vn we can consider a H(Ω)-orthonormal basis {vk}nk=1

and complete it to an orthonormal basis {vk}k∈N of H(Ω). We can move from
the eigenbasis to this basis using a matrix A = (aij) as

vk =
∞∑
j=1

ajk
√
λjϕj, (6)

where
∑∞

j=1 a
2
jk =

∑∞
k=1 a

2
jk = 1. Hence, the power function of Vn is

PVn(x)2 =
∑
k>n

v(x)2 =
∑
k>n

(
∞∑
j=1

ajk
√
λjϕj(x)

)2

=
∞∑

i,j=1

√
λiϕi(x)

√
λjϕj(x)

∑
k>n

aikajk,
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and, defining qj =
∑n

k=1 a
2
jk, we can compute its norm as

‖PVn‖2
L2

=

∫
Ω

∑
k>n

(
∞∑
j=1

ajk
√
λjϕj(x)

)2

dx

=
∑
k>n

∞∑
j=1

a2
jkλj =

∞∑
j=1

λj −
∞∑
j=1

qjλj.

Now we need to prove that
∑∞

j=1 qjλj 6
∑n

j=1 λj.
Let m = d

∑
j qje ≤ n. We split the cumulative sum over the qj into

integer ranges

i− 1 <

ji∑
j=1

qj 6 i, 1 6 i ≤ m.

Then jm can be infinite, but jm−1 is finite, and since 0 ≤ qj ≤ 1 we get
stepwise

0 <
∑ji

j=ji−1+1 qj 6 1,

ji − ji−1 ≥ 1,
ji ≥ i,

ji ≥ ji−1 + 1 ≥ i

for 1 ≤ i ≤ m, using j0 = 0. Since the sequence of the eigenvalues is non
negative and non increasing, this implies

∞∑
j=1

qjλj ≤
m−1∑
i=1

qji−1+1λji−1+1 + λjm−1+1

jm∑
j=jm−1+1

qj

≤
m∑
i=1

λji−1+1 ≤
m∑
i=1

λi ≤
n∑
i=1

λi.

If we take Vn = En and {
√
λjϕj}nj=1 as its basis, the matrix A in (6) is

the infinite identity matrix. Thus equality holds in the last inequality.

4 Restriction to closed subspaces

The previous results motivate the interest for the knowledge and study of the
eigenbasis. But from a practical point of view there is some limitation: the
eigenbasis cannot be computed in general, and it can not be used for truly

11



scattered data approximation, since there exists at least a set Xn ⊂ Ω such
that the collocation matrix of En on Xn is singular (by the Mairhuber-Curtis
Theorem, see e.g. [27, Theorem 2.3]).

To overcome this problem we consider instead subspaces of H(Ω) of the
form VN = V (XN) = span{K(·, x) : x ∈ XN}, where XN = {x1, . . . , xN} is
a possibly large but finite set of points in Ω. The basic idea is to replace
H(Ω) by V (XN) in order to get a good numerical approximation to the true
eigenbasis with respect to H(Ω).

To this end, we repeat the constructions of the previous section for a
finite-dimensional native space, i.e., the problem of finding, for n < N , an
n-dimensional subset Vn which minimizes the error, in some norm, among
all the subspaces of V (XN) of dimension n, and that can now be exactly
computed.

One could expect that the optimal subset for this restricted problem is
the projection of En into V (Xn). In fact, as we will see, this is not the case,
but the optimal subspace will still approximate the true eigenspaces in a
near-optimal sense.

The analysis of such point-based subspaces can be carried out by looking
at general closed subspaces of the native space. It can be proven (see [14,
Th. 1]) that, if V is a closed subspace of H(Ω), it is the native space on Ω
of the kernel KV (x, y) = Πx

H,V Πy
H,VK(x, y), with inner product given by the

restriction of the one of H(Ω). The restricted operator TV : L2(Ω)→ L2(Ω)
defined as

TV f(x) =

∫
Ω

KV (x, y)f(y)dy, x ∈ Ω, (7)

maps L2(Ω) into V . Then Theorem 2 applied to this operator gives the eigen-
basis for V and TV on Ω and the corresponding eigenvalues, which will be de-
noted as {ϕj,V }j, {λj,V }j. They can be finitely or infinitely many, depending
on the dimension of V . We will use the notation En,V = span{

√
λj,V ϕj,V , j =

1, . . . , n} if n ≤ dim(V ).
This immediately proves the following Lemma that was already used in

Section 2.

Lemma 10. Any closed subspace V of the native space has a unique basis
which is H(Ω)-orthogonal and L2(Ω)-orthonormal.

Uniqueness is understood here like stating uniqueness of the eigenvalue
expansion of the integral operator defined by the kernel, i.e., the eigenspaces
are unique.
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Before analyzing the relation between the approximation in V and in
H(Ω) we establish a connection between the corresponding kernels and Power
Functions.

Lemma 11. If V ⊂ H(Ω) is closed,

PV,H(x)2 = K(x, x)−KV (x, x) for all x ∈ Ω. (8)

Moreover, if U ⊂ V ⊂ H(Ω) are closed, the Power Functions are related as

PU,H(x)2 = PU,V (x)2 + PV,H(x)2 for all x ∈ Ω.

Proof. The Power Function is the norm of the error functional. For f ∈
H(Ω), ‖f‖ ≤ 1, and x ∈ Ω we have

|f(x)− ΠH,V f(x)| = |(f,K(·, x)−KV (·, x)|
≤ ‖f‖‖K(·, x)−KV (·, x)‖ ≤

√
K(x, x)−KV (x, x),

with equality if f is the normalized difference of the kernels. This proves (8),
and the relation between the Power Functions easily follows.

Since V is a native space itself, the results of the previous section hold
also for V . We can then define in V the analogous notions of dn, κn and pn,
and by Theorems 8, 9 we know that they are all minimized by En,V , with

values
√
λn+1,V ,

√
λn+1,V , and

√∑
j>n λj,V , respectively.

These results deal with the best approximation of the unit ball S(V ), but
allow also to face the problem of the constrained optimization in the case
of pn, i.e., the minimization of the error of approximation of S(H(Ω)) using
only subspaces of V . Indeed, thanks to Lemma 8, we know that for any
Vn ⊂ V and for any x ∈ Ω, the squared power functions of H(Ω) and of V
differ by an additive constant. This means that the minimality of En,V does
not change if we consider the standard power function on H(Ω). Moreover,∫

Ω

P 2
En,H(Ω)(x)dx =

∫
Ω

P 2
En,V (x)dx+

∫
Ω

P 2
V,H(Ω)(x)dx

=
m∑
j=1

λj,V −
n∑
j=1

λj,V +
∞∑
j=1

λj −
m∑
j=1

λj,V

=
∞∑
j=1

λj −
n∑
j=1

λj,V .

This proves the following corollary of Theorem 9.
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Corollary 12. Let V ⊂ H(Ω) be a closed subspace of H(Ω), and let n 6
dim(V ). For any n-dimensional subspace Vn ⊆ V we have

‖PVn‖L2 >

√√√√ ∞∑
j=1

λj −
n∑
j=1

λj,V ,

and En,V is the unique optimal subspace. In particular

‖PV ‖L2 =

√√√√ ∞∑
j=1

λj −
dimV∑
j=1

λj,V .

This corollary has two consequences. At one hand, if we want to have
a small Power Function, we need to choose a subspace V which provides a
good approximation of the true eigenvalues. On the other hand, when dealing
with certain point based subspaces, we can control the decay of the Power
Function depending on the number of points we are using, and this bound
will provide a bound also on the convergence of the discrete eigenvalues to
the true one. The last fact will be discussed in more detail in Section 5.

We remark that there is a relation between En and En,V : as mentioned
before, the optimal subspace En,V is not the projection of En into V , but
is near to be its optimal approximation from V . To see this, observe that
the operator TV is the projection of T into V . In fact, given KV (x, y) =∑

j λj,V ϕj,V (x)ϕj,V (y), we have for any f ∈ L2(Ω)

TV f(x) =

∫
Ω

KV (x, y)f(y)dy =
∑
j

√
λj,V ϕj,V (x)(

√
λj,V ϕj,V , f)L2

=
∑
j

√
λj,V ϕj,V (x)(

√
λj,V ϕj,V , T f)L2 = ΠH,V Tf(x).

This means that the couples (λj,V , ϕj,V ) are precisely the Bubnov - Galerkin
approximations (see e.g. [13, Sec. 18.4]) of the solutions (λj, ϕj) of the
eigenvalue problem for the restricted operator T : H(Ω) → H(Ω) (which is
still a compact, positive and self-adjoint operator). We can then use the well
known estimates on the convergence of the Bubnov - Galerkin method to
express the distance between En and En,V .

The following Proposition collects convergence results which follow from
[13, Th. 18.5, Th. 18.6].
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Proposition 13. Let V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ . . . be a sequence of closed
subspaces which become dense in H(Ω). For 1 6 j 6 dimVn we have

(i) λj,Vn 6 λj,Vn+1 6 λj,

(ii) Let r ∈ N be the multiplicity of λj and
Fj,n = {f ∈ Vn : TVnf = λi,Vnf and limn→∞ λi,Vn = λj}. For n suffi-
ciently large, dimFj,n = r and there exists cj,n > 1/λj, cj,n →n 1/λj
s.t.

‖ϕj − ΠH,Fj,nϕj‖ 6 cj,nλj‖ϕj − ΠH,Vnϕj‖. (9)

Equation (9) proves in particular that En,V is an asymptotically optimal
approximation of En. Indeed, under the assumptions of the last Proposition,
we have

‖ϕj − ΠH,Vnϕj‖ ≤ ‖ϕj − ΠH,Fj,nϕj‖ 6 c‖ϕj − ΠH,Vnϕj‖, (10)

with c→ 1 as m→∞.

Remark 14. To conclude this section we point out that, in addition to the
point based sets, there is another remarkable way to produce closed subspaces
of the native space. Namely, if Ω1 ⊂ Ω is any Lipschitz subdomain of Ω,
H(Ω1) is a closed subset of H(Ω). This implies that the eigenvalues are
decreasing with respect to the inclusion of the base domain (as can by proven
also by the min/max characterization of the eigenvalues).

5 Asymptotic decay of the eigenvalues

We established a relation between the approximation error and the eigenval-
ues of T . This allows to use the well known bounds on the approximation
error to give corresponding bounds on the decay of the eigenvalues. These
results were already presented in [23], but we include them here for com-
pleteness and add some extensions.

We consider a set of asymptotically uniformly distributed points Xn, such
that the fill distance hn behaves like

hn := sup
x∈Ω

min
xj∈Xn

‖x− xj‖ ≤ cn−1/d,

where c is independent of n.

15



If the kernel is translational invariant and Fourier transformable on Rd

and Ω is bounded and with a smooth enough boundary, there are standard
error estimates for the error between f ∈ H(Ω) and its interpolant sf,Xn on
the points Xn (see [21]).

For kernels k(x − y) := K(x, y) with finite smoothness, we have that
k̂(ω) ∼ (1 + ‖w‖)−β−d for ‖w‖ → ∞, and

‖f − sf,Xn‖∞ ≤ chβ/2n ‖f‖, for all f ∈ H(Ω), (11)

while for infinitely smooth kernels we have

‖f − sf,Xn‖∞ ≤ c exp(−c/hn)‖f‖, for all f ∈ H(Ω).

Both bounds are in fact bounds on the L∞(Ω) norm of the Power Func-
tion. If instead one considers directly the L2(Ω) error, for kernels with finite
smoothness the estimate can be improved as follows:

‖f − sf,Xn‖L2 ≤ ch(β+d)/2
n ‖f‖, for all f ∈ H(Ω).

This immediately leads to the following theorem.

Theorem 15. Under the above assumptions on K and Ω, the eigenvalues
decay at least like √

λn+1 < c1n
−(β+d)/2d

for a kernel with smoothness β, and at least like√
λn+1 < c2 exp(−c3n

1/d),

for kernels with unlimited smoothness. The constants c1, c2, c3 are indepen-
dent of n, but dependent on K, Ω, and the space dimension.

It is important to notice that the asymptotics of the eigenvalues is known
for the kernels of limited smoothness, and on Rd. If the kernel is of order β,
its native space on Rd is norm equivalent to the Sobolev space H(β+d)/2. In

these spaces the n-width, and hence the eigenvalues, decay like Θ(n−
β+d
2d ) (see

[11]). This means that in Sobolev spaces one can recover (asymptotically)
the best order of approximation using kernel spaces.

This can be done also with point based spaces. The following statement
follows from Corollary 12, applying the same ideas as before. Observe that,
in this case, we need to consider the bound (11).

16



Corollary 16. Under the above assumptions on K and Ω, we have

0 ≤ λj − λj,V (Xn) < c1n
−β/d, 1 ≤ j ≤ n,

for a kernel with smoothness β, and at least like

0 ≤ λj − λj,V (Xn) < c2 exp(−c3n
1/d), 1 ≤ j ≤ n,

for kernels with unlimited smoothness. The constants c1, c2, c3 are indepen-
dent of n, but dependent on K, Ω, and the space dimension.

This Corollary and the previous Theorem proves that, using point based
sets with properly chosen points, one can achieve at the same time a fast
decay of the true eigenvalues and a fast convergence of the discrete ones.

Both results in this section raise some questions about the converse im-
plication. From Theorem 15 we know that the smoothness of the kernel
guarantees a fast decay of the eigenvalues. But we can also start from a
given expansion to construct a kernel. Is it possible to conclude smoothness
of the kernel from fast decay of the eigenvalues?

Corollary 16 tells us that uniformly distributed point based sets provide
a good approximation of the eigenvalues. We will see in Section 6 and 7
that one can numerically construct point based sets whose eigenvalues are
close to the true ones. Is it possible to prove that these sets are necessarily
asymptotically uniformly distributed?

6 Algorithms

If we consider a closed subspace VN = V (XN) spanned by translates of the
kernel on a set XN of N points in Ω, it is possible to explicitly construct
En,VN , n ≤ N .

The number N of points should be large enough to simulate L2(Ω) inner
products by discrete formulas. The first method we present aims at a direct
construction of the eigenspaces and gives some insight on the structure of the
basis, but it is numerically not convenient since it involves the computation
of two Gramians. For stability and computability reasons, we shall then
focus on lower-dimensional subspaces of V (XN). There are various ways to
construct these, and we present two. We will see in Section 7 that these
approximation are very effective.
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From now on we will use the subscript N in place of V (XN) to simplify the
notation, keeping in mind that there is an underlying set of points XN ⊂ Ω
and the corresponding subspace V (XN).

6.1 Direct construction

We use at first the fact that the eigenbasis is the unique set of N functions
in V (XN) which is orthonormal in L2(Ω) and orthogonal in H(Ω), where
uniqueness is understood in the sense of uniqueness of the eigendecomposition
of the integral operator (7).

Given any couple of inner products (·, ·)a and (·, ·)b on V (XN), it is always
possible to build a basis {vj}Nj=1 of V (XN) which is b-orthonormal and a-
orthogonal with norms {σj}Nj=1. Let

A =[(K(·, xi), K(·, xj))a]Ni,j=1,

B =[(K(·, xi), K(·, xj))b]Ni,j=1

be the Gramians with respect to the two inner products of the standard
basis K(·, x1), . . . , K(·, xN) of K translates. Following the notation of [18], to
construct the basis we need to construct an invertible matrix CV of change of
basis to express this new basis with respect to the standard basis. To have the
right orthogonality, we need CT

VACV = Σ and CT
VBCV = I, where Σ is the

diagonal matrix having on the diagonal the a-norms of the new basis. This
means to simultaneously diagonalize the two Gramians, and since they are
symmetric and positive definite this is always possible, e.g. in the following
way:

• B = LLT be a Cholesky decomposition,

• define C = L−1AL−T (which is symmetric and positive definite),

• let C = UΓUT be a SVD decomposition,

• define CV = L−TU .

Observe that, for practical use, it is more convenient to swap the role of A
and B. In this way we construct the basis {

√
λj,Nϕj,N}Nj=1, which is H(Ω)-

orthonormal hence more suitable for approximation purposes, and, moreover,
we obtain directly the eigenvalues of order N as Σ = diag(λj,N , j = 1, . . . , N).
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In both ways we are just computing a generalized diagonalization of the
pencil (A,B), up to a proper scaling of the diagonals. In our case A is
the usual kernel matrix, while Bij = (K(·, xi), K(·, xj))L2 . Thus, provided
we know B, we can explicitly construct the basis. This can be done, for a
general kernel, using a large set of points to approximate the L2(Ω) inner
product.

Numerical experiments (see Section 7) suggest that this construction of
the eigenspaces is highly unstable also in simple cases, since it requires to
solve an high dimensional matrix eigenvalue problem. Another way to face
the problem consists of greedy procedures as considered next.

6.2 Greedy approximation

Instead of directly constructing the subspace En,N via N ×N matrix eigen-
value problems as described before, we can first select n points in XN such
that working on these points is more stable than working with the full orig-
inal matrix, and then solve the problem in V (Xn). The selection of the set
Xn is performed with a greedy construction of the Newton basis (see [15, 4]).

First we show how to construct the eigenspaces via the Newton basis.
Assume that v1, . . . , vn is the Newton basis for V (Xn). Then

Tnf(x) =
n∑
i=1

vi(x)
n∑
j=1

(vi, vj)L2(f, vj)

and if λj,n is an eigenvalue with eigenfunction ϕj,n then Tnϕj,n = λj,nϕj,n
implies

λj,n(ϕj,n, vi) =
n∑
k=1

(vi, vk)L2(ϕj,n, vk).

Thus the coefficients of the eigenbasis with respect to the Newton basis are
the eigenvectors of the L2(Ω) Gramian of the Newton basis. Experimentally,
the Newton basis is nearly L2(Ω) orthogonal. Thus the above procedure
should have a nice Gramian matrix, provided that the L2(Ω) inner products
that are near zero can be calculated without loss of accuracy.

To select the points we use two similar greedy strategies, based on maxi-
mization of L∞(Ω) and L2(Ω) norms of the Power Function. The first point
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is chosen as

x1 = arg max
x∈XN

∥∥∥∥∥ K(·, x)√
K(x, x)

∥∥∥∥∥
L∞

or x1 = arg max
x∈XN

∥∥∥∥∥ K(·, x)√
K(x, x)

∥∥∥∥∥
L2

.

Denoting by Xi the already chosen points, the (i+ 1)-th point is selected as

xi+1 = arg max
x∈XN\Xi

‖vi+1‖2
L∞ or xi+1 = arg max

x∈XN\Xi
‖vi+1‖2

L2
.

The point sets selected by the two strategies are different, but we will see in
the next section that they provide similar results in terms of approximation
of the eigenspaces.

7 Experiments

7.1 Sobolev kernels

In this section we consider the Matérn kernels of order β = 0, 1, 2, 3, whose
native spaces on Rd are norm equivalent to the Sobolev spaces H(β+d)/2.

In these spaces the asymptotic behavior of the Kolmogorov width, hence
of the eigenvalues, is known as recalled in Section 5. We assume here that
the same bounds hold in a bounded domain (the unit disk), and we want
to compare it with the discrete eigevalues of point based sets, which can be
computed with one of the methods of the previous section.

To this aim, we start from a grid of equally spaced points in [−1, 1]2

restricted to the unit disk, so that the number of points inside the disk is
m ≈ 104. We use this grid both for point selection and to approximate the
L2(Ω) inner products as weighted pointwise products, i.e.,

(f, g)L2 ≈
π

m

m∑
j=1

f(xj)g(xj).

We select n = 200 points by the greedy L∞(Ω) maximization of the Power
Function in the unit disk.

The eigenvalues are then computed with the method of Section 6.2, i.e,
as eigenvalues of the L2(Ω) Gramian of the Newton basis.

The results are shown in Figure 1. As expected, for any order under con-
sideration there exist a positive constant c such that the discrete eigenvalues
decay with the same rate of the Sobolev best approximation.
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Moreover, we expect that the discrete eigenvalues converge to the true
ones with a rate that can also be controlled by β. Indeed, according to
Corollary 16, we have

0 ≤ λj − λj,V (Xn) < c1n
−β/d, 1 ≤ j ≤ n.

To verify this, we instead look at the decay of

∞∑
j=0

λj −
n∑
j=0

λj,V (Xn).

since we can exactly compute the first term. Indeed, since the kernels are
radial, we have

∞∑
j=1

λj =

∫
Ω

K(x, x)dx = πK(0, 0).

Results are presented in Figure 2. From the experiments it seems that we
can improve the convergence speed somewhat, and in fact obtain a rate of
order (β + d/2)/d instead of β/d. This may be another instance of the “gap
of d/2” already observed in [24]. Sometimes, observed convergence rates are
by d/2 better than proven ones.

7.2 Brownian bridge kernels

In this section we experiment with the iterated Brownian bridge kernels (see
[3]). This family of kernels is useful for our purposes because the exact eigen-
basis is explicitly known and the smoothness of the kernel can be controlled
using a parameter.

The kernels are defined, for β ∈ N \ {0}, ε > 0 and x, y ∈ [0, 1], as

Kβ,ε(x, y) =
∞∑
j=1

λj(ε, β)ϕj(x)ϕj(y), (12)

where
λj(ε, β) =

(
j2π2 + ε2

)−β
, ϕj(x) = sin(jπx).

The kernel has 2β − 2 smooth derivatives.
For β = 1 and ε = 0, the kernel has the form K1,0(x, y) = min(x, y)−xy,

but a general closed form is not known. In the following tests we will compute

21



it using a truncation of the series (12) at a sufficiently large index. For
simplicity, we will consider for now only ε = 0, 1.

Thanks to the knowledge of the explicit expansion, we can also compute
the L2(Ω) - Gramian of Kβ,ε by squaring the eigenvalues in (12), i.e.,

K
(2)
β,ε(x, y) = (Kβ,ε(x, ·)Kβ,ε(·, y))L2 =

∞∑
j=1

λj(ε, 2β)ϕj(x)ϕj(y), (13)

First, we want to compare the optimal decay of the power function with
the one obtained by starting from a set of points XN , both in the direct and
in the greedy way. We take N = 500 randomly distributed points in (0, 1)
and we construct an approximation of the eigenspace En,Vm for n = 50.

To speed up the algorithm, for the greedy selection we approximate the
L2(Ω) inner product with the discrete one on XN . This step, of course,
introduces an error in the selection of the points. Nevertheless, in order to
evaluate properly the performance of the algorithm, after the construction
the Newton basis we compute the L2(Ω) Gramian exactly, i.e., using (13).

The results for β = 1, . . . , 4 and ε = 0, 1 are shown in Figure 3. Lines not
present in the plots mean that the corresponding power function is negative,
because of numerical instability.

First, notice that the direct method is sufficiently stable only for β = 1,
but in this case it is able to nearly reproduce the optimal rate of decay. The
greedy algorithms, on the other hand, are feasible for all the choices of the
parameters, and they have a convergence between ‖PEn,m‖L2 and ‖PE2n,m‖L2 .
As the kernel becomes smoother their performance is better, but they become
unstable. Observe also that the two greedy selections of the points behave
essentially in the same way, even if the first one is not designed to minimize
any L2(Ω) norm.

Unlike for the smoothness parameter β, the dependence of the perfor-
mance of the algorithm on ε is not clear, except in the case β = 4, where
ε = 1 gives a better stability.

Finally, we test the convergence of the approximate eigencouples to the
exact ones.

Since the method becomes unstable, we use here a smaller set of N = 100
randomly distributed points in (0, 1) and we check the approximation for the
first n = 50 eigenelements. Figure 4 displays the results for β = 1, 2, 3, 4 and
ε = 0. Since the eigenbasis is defined up to a change of sign, we can expect
to approximate |

√
λjϕj|, 1 6 j 6 n.
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As expected from Proposition 13, both for the eigenvalues and the eigen-
functions the convergence is faster for smoother kernels and for the smaller
indices j.

Also in this example the approximation becomes unstable for β = 4.
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[12] K. Jetter, J. Stöckler, and J. Ward. Error estimates for scattered data in-
terpolation on spheres. Mathematics of Computation, 68:733–747, 1999.
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Figure 1: Decay of the discrete eigenvalues of the Matern kernels (solid
line) compared with the theoretical decay rate n−(β+d)/d in the corresponding
Sobolev spaces (circles). The theoretical bounds are scaled with a positive
coefficient. From top left to bottom right: β = 0, 1, 2, 3.
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Figure 2: Difference between the sum of the real eigenalues and the discrete
ones (solid line), for the Matern kernels, compared with the theoretical decay
rate n−β/d in the corresponding Sobolev spaces (circles) and with n−(β+d/2)/d

(triangles). The theoretical bounds are scaled with a positive coefficient.
From top left to bottom right: β = 0, 1, 2, 3.
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Figure 3: Decay of the power functions described in Section 7.2 for different
parameters (from left to right: ε = 0, 1; from top to bottom: β = 1, 2, 3, 4).
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Figure 4: Approximation of the eigenvalues (left) and the eigenbasis (right),
for β = 1, 2, 3 (from top to bottom), ε = 0 and for 1 6 j 6 n, n = 50, as
discussed in Section 7.2
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