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Abstract In this paper, we investigate the application of radial basis func-
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1 Introduction

In this paper we investigate multiscale symmetric collocation approximation
with Wendland compactly supported radial basis functions (RBFs) to solve
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the Stokes problem

− ν∆u+∇p = f in Ω, (1)

∇ · u = 0 in Ω, (2)

u = g on ∂Ω, (3)

where the region Ω ⊆ Rd, the viscosity ν, f : Ω → Rd and g : Ω → Rd are
given and we seek an approximate solution to the velocity u : Ω → Rd and
the pressure p : Ω → R.

Radial basis functions (RBFs) have been increasingly important in the area
of approximation theory. For solving partial differential equations (PDEs),
RBFs with meshless collocation for PDEs have been investigated in [9,5] and
for the Stokes problem in [23]. Matrix-valued, positive definite kernels have
been studied in [16,7,8,13,14,23]. Two excellent recent books covering practi-
cal and theoretical issues related to RBFs are [5] and [22]. We recall that a func-
tion Ψ : Rd → R is said to be radial if there exists a function ψ : [0,∞) → R

such that Ψ(x) = ψ(‖x‖2) for all x ∈ Rd, where ‖ · ‖2 denoting the usual Eu-
clidean norm in Rd. Then with a scaling factor δ > 0, we can define a scaled
RBF as

Ψδ(x) = δ−dψ

(‖x‖2
δ

)
.

A practical issue that arises is that of which scale to use for the radial basis
functions. A small scale will lead to a sparse and consequently well-conditioned
linear system, but at the price of the approximation power. Conversely, a
large scale will have better approximation power but at the price of a poorly-
conditioned linear system.

Many examples may naturally exhibit multiple scales, for example, mod-
elling fluid dynamics, where many different scales may be required. Of course,
this comes at the price of having to select which scales to use in which regions
but this is not the topic of this paper.

The multiscale algorithm investigated in this paper is constructed over
multiple levels, in which the residual of the current stage is the target function
for the next stage, and in each stage, RBFs with smaller support and with
more closely spaced centres will be used as basis functions.

Such a multiscale algorithm for interpolation was first proposed in [6]
and [19] but without any theoretical grounding. Theoretical convergence was
proven in the case of the data points being located on a sphere [11] and then
extended to interpolation and approximation on bounded domains [24].

In [12] we can find an analysis of multiscale algorithms for RBF collocation
of elliptic PDEs on the sphere.

The extension to considering the Stokes problem on a bounded domain
changes the analysis significantly as matrix-valued kernels need to be con-
sidered with divergence-free approximation spaces. The scaled kernel, conver-
gence and stability analysis are significant new contributions.
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Our approach differs significantly from the literature, where for example
in [15] the authors consider the incompressible Navier-Stokes equations in its
weak formulation, and then decompose the velocity into coarse and fine scales.

In the next section we provide necessary background material regarding
point sets and function spaces. Section 3 describes our (single scale) symmetric
collocation approximation and then Section 4 extends this to a multiscale
algorithm and provides proofs of convergence. Section 5 provides an analysis of
the stability of the approximations. Section 6 provides numerical experiments
to test the theoretical results.

2 Preliminaries

In this paper, we will use (scaled) compactly supported radial basis functions
to construct multiscale approximate solutions to the Stokes problem, that is,
we form the solution over multiple levels. We will work with a given domain
Ω ⊆ Rd. A kernel Φ : Ω ×Ω → R is also given.

At each level, we will have a finite point set X ⊆ Ω. We will define the
mesh norm as

hX,Ω := sup
x∈Ω

min
xj∈X

‖x− xj‖2,

and the separation distance as

qX :=
1

2
min
j 6=k

‖xj − xk‖2,

which are measures of the uniformity of the points in X . Then for example, at
each level i, we denote the mesh norm by hi. The selection of point sets with
mesh norms decreasing in a specific way will form one of the requirements for
convergence of our algorithms and the separation distance will be used for the
stability analysis.

We define the Sobolev spaces in the usual way. For a given domain,Ω ⊆ Rd,
k ∈ N0, and 1 ≤ p <∞, the Sobolev spaces W k

p (Ω) consist of all u with weak
derivatives Dαu ∈ Lp(Ω), |α| ≤ k. The semi-norms and norms are defined as

|u|Wk
p (Ω) =


∑

|α|=k

‖Dαu‖pLp(Ω)




1
p

and ‖u‖Wk
p (Ω) =


∑

|α|≤k

‖Dαu‖pLp(Ω)




1
p

.

For p = ∞, these definitions become

|u|Wk
∞

(Ω) = sup
|α|=k

‖Dαu‖L∞(Ω) and ‖u‖Wk
∞

(Ω) = sup
|α|≤k

‖Dαu‖L∞(Ω).
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Let 1 ≤ p < ∞, k ∈ N0, and 0 < s < 1. Then we can define the fractional
Sobolev spaces W k+s

p (Ω) as all u for which the two norms

|u|Wk+s
p (Ω) :=


∑

|α|=k

∫

Ω

∫

Ω

|Dαu(x)−Dαu(y)|p
‖x− y‖d+ps2

dxdy




1/p

‖u‖Wk+s
p (Ω) :=

(
‖u‖p

Wk
p (Ω)

+ |u|p
Wk+s
p (Ω)

)1/p

are finite. For the case p = 2, we writeW k
2 (Ω) = Hk(Ω) and L2(Ω) =W 0

2 (Ω).

The functions that we will be concerned with are defined on a bounded
domainΩ with a Lipschitz boundary. As a result, there is an extension operator
for functions defined in Sobolev spaces which is presented in the following
lemma. For further details, we refer the reader to [20] and [4].

Lemma 2.1 Suppose Ω ⊆ Rd has a Lipschitz boundary. Then there is an
extension mapping ES : Hτ (Ω) → Hτ (Rd) defined for all non-negative real τ
satisfying ESv|Ω = v for all v ∈ Hτ (Ω) and

‖ESv‖Hτ (Rd) ≤ C‖v‖Hτ (Ω).

C will denote a generic constant. Since we also have ‖v‖Hτ (Ω) ≤ ‖ESv‖Hτ (Rd),
this means that when we need to consider the Hτ (Ω) norms of the errors at
each level, we can carry out our error analysis in the Hτ (Rd)-norm. This is
advantageous, since we then have for g ∈ Hτ (Rd)

‖g‖2Hτ (Rd) =
∫

Rd

|ĝ(ω)|2
(
1 + ‖ω‖22

)τ
dω, (4)

upon defining the Fourier transform as

ĝ(ω) = (2π)
−d/2

∫

Rd

g(x)e−ix
T
ωdx.

At each level, we will also require a kernel Ψ : Ω × Ω → R. We will use
the Wendland compactly supported radial basis functions [22] with a (level-
specific) scaling parameter δ > 0. We recall that for a given spatial dimension
d and smoothness parameter k ∈ N, the Wendland functions are defined as

ψℓ,k(r) :=





1

Γ (k) 2k−1

∫ 1

r

s (1− s)ℓ(s2 − r2)k−1ds for 0 ≤ r ≤ 1,

0 for r > 1,

(5)

with ℓ := ⌊d2⌋ + k + 1. This choice of ℓ ensures the Wendland functions are
positive definite. It is the reproducing kernel of a Hilbert space which is norm
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equivalent to the Sobolev space H
d+1
2 +k(Rd). For the Wendland basis func-

tions, there exist two constants 0 < c1 ≤ c2, which depend on d and k, such
that their Fourier transforms satisfy [22]

c1
(
1 + ‖ω‖22

)− d
2−k−

1
2 ≤ Ψ̂ℓ,k(ω) ≤ c2

(
1 + ‖ω‖22

)− d
2−k−

1
2 , ω ∈ Rd. (6)

With a given kernel Ψ and scaling factor δ > 0, we define the scaled kernel
as

Ψδ(x) := δ−dψ

(‖x‖2
δ

)
. (7)

Appropriate selection of the scaling parameters will also prove to be one
of the important ingredients for convergence of our multiscale algorithm.

We will need norm equivalence as stated in the following lemma from [3].

Lemma 2.2 For every δ ∈ (0, δa] and for all g ∈ Hτ (Rd), there exist con-
stants 0 < c3 ≤ c4 such that

c3‖g‖Φδ ≤ ‖g‖Hτ(Rd) ≤ c4δ
−τ‖g‖Φδ .

As we will be working with vectors, in particular for u, we will need to
define vector-valued Sobolev spaces in the usual way as

Hτ (Ω) := Hτ (Ω) × . . .×Hτ (Ω),

with norm

‖f‖Hτ (Ω) :=




d∑

j=1

‖fj‖2Hτ (Ω)




1/2

. (8)

Now we define divergence-free approximation spaces in Ω and in Rd. With the
divergence of u : Ω → Rd defined as

∇ · u :=

d∑

j=1

∂juj ,

we define

Hτ (Ω; div) := {u ∈ Hτ (Ω) : ∇ · u = 0} ,
and

H̃τ (Rd; div) :=

{
f ∈ Hτ (Rd; div) :

∫

Rd

‖f̂(ω)‖22
‖ω‖22

(
1 + ‖ω‖22

)τ+1
dω <∞

}
,

with norm

‖f‖2
H̃τ (Rd;div)

:= (2π)−d/2
∫

Rd

‖f̂(ω)‖22
‖ω‖22

(
1 + ‖ω‖22

)τ+1
dω.
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We note that H̃τ (Rd; div) is a subspace of Hτ (Rd; div). We will also need that
for Ω ⊆ Rd being a simply connected domain with C⌈τ⌉,1 boundary for d = 2, 3
and with τ ≥ 0, there exists a continuous operator

Ẽdiv : Hτ (Ω; div) → H̃τ (Rd; div),

such that Ẽdivu|Ω = u for all u ∈ Hτ (Ω; div) [23, Proposition 3.8]. For d = 3,
this operator is defined as

Ẽdivu := ∇× ESTu, (9)

where ES is the extension operator defined in Lemma 2.1 and v = Tu is the
unique solution of the boundary value problem

u = ∇× v, ∇ · v = 0 in Ω, v · n = 0 on ∂Ω.

For d = 2, formula (9) is replaced by

Ẽdivu := curl ESTu, (10)

where Tu = ψ with u = curl ψ = (∂yψ,−∂xψ).
Using the idea from [8, Lemma 4] and interpolation of operators (see

[1, Proposition (14.1.5)]) we can show that the operator T : Hτ (Ω; div) →
Hτ+1(Ω), with τ = k + θ for k ∈ N0 and θ ∈ [0, 1], is bounded.

To measure the pressure, which is determined only up to a constant, we
will use the norm

‖p‖Hτ (Ω)/R := inf
c∈R

‖p+ c‖Hτ (Ω).

We follow [9] to define Sobolev norms and the mesh norm on the boundary.
We assume that ∂Ω ⊆ ∪Kj=1Vj , where Vj ⊆ Rd are open sets. The sets Vj are

images of Ck,s−diffeomorphisms

ϕj : B → Vj ,

where B = B(0, 1) denotes the unit ball in Rd−1. If {wj} is a partition of unity
with respect to {Vj}, then the Sobolev norms on ∂Ω can be defined as

‖u‖p
Wµ
p (∂Ω)

:=

K∑

j=1

‖(uwj) ◦ ϕj‖pWµ
p (B)

.

The mesh norm on the boundary can be defined as

hX,∂Ω := max
1≤j≤K

hTj ,B,

with Tj := ϕ−1
j (X ∩ Vj) ⊆ B. Finally, we will need the following “sampling”

inequalities, which are valid for both scalars and vectors [17,18,23].
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Theorem 2.3 Let Ω ⊆ Rd be a bounded domain with Lipschitz boundary. Let
τ > d/2. Let X ⊆ Ω be a discrete set having mesh norm h sufficiently small.
For each w ∈ Hτ (Ω) with w|X = 0 we have for 0 ≤ σ ≤ τ that

‖w‖Hσ(Ω) ≤ Chτ−σ‖w‖Hτ (Ω). (11)

Theorem 2.4 Let τ = k+ s > d/2. Let Ω ⊆ Rd be a bounded domain having
Ck,s smooth boundary. Let X ⊆ ∂Ω be a discrete set with h sufficiently small.
Then there is a positive constant C such that for all w ∈ Hτ (Ω) with w|X = 0
we have for 0 ≤ σ ≤ τ − 1/2 that

‖w‖Hσ(∂Ω) ≤ Chτ−1/2−σ‖w‖Hτ (Ω). (12)

We also define a matrix-valued function Φ : Rd → Rn×n as being positive
definite if it is even, so Φ(−x) = Φ(x), symmetric, so Φ(x) = Φ(x)T , and
satisfies

n∑

j,k=1

α
T
j Φ(xj − xk)αk > 0,

for all pairwise distinct xj ∈ Rd and all αj ∈ Rn such that not all αj are
vanishing.

3 Symmetric collocation approximation

We will first consider a single-scale approximant to the combined velocity and
pressure vector v := (u, p) : Rd → Rd+1, following [16,7,23]. Then (1)-(3)
become

(Lv)i := −ν
d∑

j=1

∂jjvi + ∂ivd+1 = fi in Ω, (13)

d∑

j=1

∂jvj = 0 in Ω, (14)

vi = gi on ∂Ω, (15)

where 1 ≤ i ≤ d. We seek a meshfree, kernel-based collocation method with an
analytically divergence-free approximation space. We use the notation ψτ+1

and ψτ−1 to denote the functions to be used in our matrix-valued kernel. We
will mainly be interested in the case where both ψτ+1 and ψτ−1 are Wendland
functions which, for a given spatial dimension d, have native space norms
equivalent to the Sobolev spaces Hτ+1(Rd) and Hτ−1(Rd) respectively. Their
Fourier transforms satisfy

c1,τ+1(1 + ‖ω‖22)−τ−1 ≤ ψ̂τ+1(‖ω‖2) ≤ c2,τ+1(1 + ‖ω‖22)−τ−1, (16)

and

c1,τ−1(1 + ‖ω‖22)−τ+1 ≤ ψ̂τ−1(‖ω‖2) ≤ c2,τ−1(1 + ‖ω‖22)−τ+1, (17)
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and we define C̄1 := min(c1,τ+1, c1,τ−1) and C̄2 := max(c2,τ+1, c2,τ−1). Then
we define the matrix-valued kernel

Φ :=

(
Ψ τ+1 0
0 ψτ−1

)
: Rd → R(d+1)×(d+1), (18)

where Ψ τ+1 := (−∆I + ∇∇T )ψτ+1 with I denoting the identity matrix. We
note that Ψ τ+1 is also positive definite [16] and hence due to the tensor product
construction of Φ, it is positive definite as well. This choice for Ψ τ+1 is known
to lead to divergence-free interpolants [16]. We also note that

Ψ̂τ+1(ω) =
(
‖ω‖22I− ωω

T
)
ψ̂τ+1(ω). (19)

We will consider the case where the collocation points are the same as the
RBF centres. We denote the interior centres by X1 := {x1, . . . ,xN} and the
boundary centres by X2 := {xN+1, . . . ,xM} and their union by X = X1∪X2,
with mesh norms h1 and h2 respectively. Since (14) is automatically satisfied,
this means that our approximant and collocation conditions will consist of dN
terms from (13) and d(M − N) terms from (15). Then with Ly denoting the
operator L acting as a function of the second argument, applied to rows of Φ,
our approximant takes the form

SXv(x) =

d∑

i=1

N∑

j=1

αi,j (L
y
Φ (x− xj))i +

d∑

i=1

M∑

j=N+1

αi,jΦ (x− xj)i , (20)

where the notationΦi means column i of the matrixΦ and SXv = (SXu, SXp).
The coefficients αi,j , 1 ≤ i ≤ d, 1 ≤ j ≤ M are determined by the collocation
conditions

(LSXv(xj))i = fi(xj), 1 ≤ i ≤ d, j = 1, . . . , N, (21)

(SXv(xj))i = gi(xj), 1 ≤ i ≤ d, j = N + 1, . . . ,M. (22)

From [7,23], we know that if ψτ+1, ψτ−1 are positive definite and if Ψτ+1 ∈
W 2

1 (R
d) ∩ C2(Rd), then the native space of the kernel Φ given by (18) is

NΦ(R
d) = NΨτ+1(R

d)×Nψτ−1(R
d),

with norm

‖f‖2NΦ(Rd) = ‖fu‖2NΨτ+1
(Rd) + ‖fp‖2Nψτ−1

(Rd)

= (2π)−d/2
∫

Rd

[
‖f̂u(ω)‖22

‖ω‖22ψ̂τ+1(ω)
+

|f̂p(ω)|2

ψ̂τ−1(ω)

]
dω, (23)

where f = (fu, fp)
T with fu : Rd → Rd and fp : Rd → R. We recall that the

generalised interpolant satisfies [22, Chapter 16]

‖Ev − SXEv‖NΦ(Rd) ≤ ‖Ev‖NΦ(Rd).
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With (16) and (17), we define the extension operator for the velocity-pressure
vector v as

Ev :=
(
Ẽdivu, ESp

)
, (24)

where ES is the classical Stein extension operator as defined in Lemma 2.1.
Then the native space of our approximant given by (20) is

E : Hτ (Ω; div)×Hτ−1(Ω) → NΦ(R
d) = H̃τ (Rd; div)×Hτ−1(Rd).

Once again we can define interpolants with scaled kernels. In this case, we
define the matrix-valued kernel

Φδ :=

(
Ψ τ+1,δ 0

0 ψτ−1,δ

)
: Rd → R(d+1)×(d+1), (25)

where Ψ τ+1,δ := (−∆I+∇∇T )ψτ+1,δ and the scaled basis functions are defined
as in (7). Then the native space of the kernel Φδ is given by

NΦδ (R
d) = NΨτ+1,δ

(Rd)×Nψτ−1,δ
(Rd),

with norm

‖f‖2NΦδ
(Rd) = ‖fu‖2NΨτ+1,δ

(Rd) + ‖fp‖2Nψτ−1,δ
(Rd)

= (2π)−d/2
∫

Rd

[
‖f̂u(ω)‖22

‖ω‖22ψ̂τ+1,δ(ω)
+

|f̂p(ω)|2

ψ̂τ−1,δ(ω)

]
dω. (26)

We will need norm equivalence as stated in the following lemma.

Lemma 3.1 For every δ ∈ (0, δa] where ψτ+1 and ψτ−1 generate Hτ+1(Rd)
and Hτ−1(Rd) respectively, we have NΦδ (R

d) = NΦ(R
d) and for every f ∈

NΦ(R
d) there exist positive constants c3 and c4 such that

c3‖f‖NΦδ
(Rd) ≤ ‖f‖NΦ(Rd) ≤ c4δ

−τ−1‖f‖NΦδ
(Rd).

Proof With f = (fu, fp)
T , by using arguments similar to [3, Lemma 2.2] we

have

c5‖fp‖Nψτ−1,δ
(Rd) ≤ ‖fp‖Nψτ−1

(Rd) ≤ c6δ
−τ−1‖fp‖Nψτ−1,δ

(Rd),

where c5 := c1,τ−1min(1, δ−τ−1) and c6 := c2,τ−1. Similarly, we can show

c7‖fu‖NΨτ+1,δ
(Rd) ≤ ‖fu‖NΨτ+1

(Rd) ≤ c8δ
−τ−1‖fu‖NΨτ+1,δ

(Rd),

where c7 := c1,τ+1min(1, δ−τ−1
a ) and c8 := c2,τ+1. With (26) and setting

c3 := min(c5, c7) and c4 := max(c6, c8), we get the final result.

We require one further result from [21].
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Theorem 3.2 Let m ∈ N0 and let Ω ⊆ Rd be a Cm+1,1 smooth domain
with outer normal vector n. For each f ∈ Hm(Ω) and g ∈ Hm+3/2(∂Ω) with∫
∂Ω g · n dS = 0, the nonhomogeneous Stokes problem (1)-(3) has a unique
solution u ∈ Hm+2(Ω) and p ∈ Hm+1(Ω) and

‖u‖Hm+2(Ω) + ‖p‖Hm+1(Ω)/R ≤ C
(
‖f‖Hm(Ω) + ‖g‖Hm+3/2(∂Ω)

)
(27)

Theorem 3.3 Let τ > 2 + d/2 with d = 2, 3. Assume that Ω ⊆ Rd is a
bounded, simply connected region with a C⌈τ⌉,1 boundary. Let f ∈ Hτ−2(Ω)
and g ∈ Hτ−1/2(∂Ω) satisfy

∫
∂Ω g · n dS = 0. Suppose the kernel Φ is chosen

such that NΦ(R
d) = H̃τ (Rd; div) ×Hτ−1(Rd). Then the approximation SXv

given by (20) to the Stokes problem (1)-(3) satisfies the error bound

‖v − SXv‖L2(Ω) ≤ C h̄τ−2‖Ev − SXEv‖NΦ(Rd), (28)

where h̄ := max(h1, h2) and the extension operator E is given by (24).

Proof With the definition of the Sobolev space norms in (8) and assuming that
we choose the representer for the pressure p such that ‖p‖H1(Ω)/R = ‖p‖H1(Ω)

gives

‖v − SXv‖L2(Ω) ≤ ‖u− SXu‖L2(Ω) + ‖p− SXp‖L2(Ω)

≤ ‖u− SXu‖H2(Ω) + ‖p− SXp‖H1(Ω)

= ‖u− SXu‖H2(Ω) + ‖p− SXp‖H1(Ω)/R

≤ C‖Lv − LSXv‖L2(Ω) + ‖u− SXu‖H3/2(∂Ω), (29)

where the last line follows from (27) applied to v − SXv with m = 0. We

now extend the function v to Ev ∈ H̃τ (Rd) × Hτ−1(Rd) and note that the
generalised interpolant SXv coincides with SXEv. We now consider the two
terms in the right hand side of (29) separately. From (11) and with [23, p.3173],
we have

‖Lv− LSXv‖L2(Ω) ≤ Chτ−2
1 ‖Ev− SXEv‖NΦ(Rd).

From (12), we have

‖u− SXu‖H3/2(∂Ω) ≤ Chτ−2
2 ‖u− SXu‖Hτ (Ω). (30)

Now we can write

‖u− SXu‖Hτ (Ω) ≤ ‖u− SXu‖Hτ (Ω) + ‖p− SXp‖Hτ−1(Ω)

≤ ‖Ẽdivu− SXẼdivu‖H̃τ (Rd;div) + ‖ESp− SXESp‖Hτ−1(Rd)

≤ C‖Ev− SXEv‖NΦ(Rd),

and the stated result follows.
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4 Multiscale symmetric collocation approximation

We can now formally state our multiscale algorithm for the symmetric collo-
cation solution of (1)-(3) which is stated as Algorithm 1. To simplify notation,
we write Siv = SXiv and Φi = Φδi and denote the mesh norms for the in-
terior and boundary collocation points at level i as h1,i and h2,i respectively.

Algorithm 1: Multiscale symmetric collocation approximation to the
Stokes problem
Data: n: number of levels

Xi := {X1,i, X2,i}ni=1: the interior and boundary collocation
points for each level i, with mesh norms at each level given by
{h1,i, h2,i}

n
i=1 satisfying cµh̄i ≤ h̄i+1 ≤ µh̄i, where

h̄i := max(h1,i, h2,i) with fixed µ ∈ (0, 1), c ∈ (0, 1] and
h̄1 sufficiently small
{δi}ni=1 : the scale parameters to use at each level, satisfying

δi = βh̄
1−3/(τ+1)
i , β is a fixed constant.

begin
Set M0v = 0, f0 = f ,g0 = g
for i = 1, 2, . . . , n do

With the scaled kernel Φi, solve the symmetric collocation linear system

(LSiv(x))j = fi−1,j(x), 1 ≤ j ≤ d, x ∈ X1,i

(Siv(x))j = gi−1,j(x), 1 ≤ j ≤ d, x ∈ X2,i.

Update the solution and residual according to

Miv = Mi−1v+ Siv

fi = fi−1 − LSiv

gi = gi−1 − Siv

Result: Approximate solution at level n, Mnv
The error at level n, en := v−Mnv.

We require a technical lemma regarding the error in the estimation of the
velocity u.

Lemma 4.1 Let d = 2, 3. Assume that u ∈ Hτ (Ω; div) with τ > 0 and let

Ẽdiv be defined by (9) for d = 2, 3. Then we have the following bound

∫

Rd

∥∥∥̂̃Edivu(ω)
∥∥∥
2

2

‖ω‖22
dω ≤ C‖u‖2L2(Ω).
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Proof With the definitions of the Ẽdiv,ES and T operators, we have

∫

Rd

∥∥∥̂̃Edivu(ω)
∥∥∥
2

2

‖ω‖22
dω =

∫

Rd

∥∥∥ω × ÊSTu(ω)
∥∥∥
2

2

‖ω‖22
dω

≤ C

∫

Rd

∥∥∥ÊSTu(ω)
∥∥∥
2

2
dω

= C‖ESTu‖2L2(Rd)

≤ C‖ESTu‖2H1(Rd)

≤ C‖Tu‖2H1(Ω)

≤ C‖u‖2L2(Ω),

where we have also used that the ES and T operators are bounded (Lemma
2.1).

The following theorem and corollary are our main results on the conver-
gence of the multiscale symmetric collocation algorithm for solving the Stokes
problem.

Theorem 4.2 Assume that Ω and f ,g satisfy the smoothness assumptions of
Theorem 3.3 for d = 2, 3. Suppose the kernel Φ is chosen such that NΦ(R

d) =

H̃τ (Rd; div)×Hτ−1(Rd) with τ > 0 and define the scaled kernels by (25) with
scale factor δj. Then for Algorithm 1 there exists a constant α1 such that

‖Eej‖NΦj+1
(Rd) ≤ α1‖Eej−1‖NΦj

(Rd), (31)

where α1 is a constant independent of the point sets X1, X2, . . . and Eej is the
extension operator for v defined in (24) applied to the error at level j defined
in Algorithm 1.

Proof With the notationEej = (Ẽdivu−MjẼdivu, ESp−MjESp)
T = (Ẽdiveu,j, ESep,j)

T

and with (26), we have

‖Eej‖2NΦj+1
(Rd) ≤ C̄1

∫

Rd

[∥∥∥ ̂
Ẽdiveu,j(ω)

∥∥∥
2

2

‖ω‖22
(
1 + δ2j+1‖ω‖22

)τ+1

+
∣∣∣ÊSep,j(ω)

∣∣∣
2 (

1 + δ2j+1‖ω‖22
)τ−1

]
dω

=: I1 + I2,
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with

I1 :=

∫

‖ω‖2≤
1

δj+1

[∥∥∥ ̂
Ẽdiveu,j(ω)

∥∥∥
2

2

‖ω‖22
(
1 + δ2j+1‖ω‖22

)τ+1
+ ÊSep,j(ω)

(
1 + δ2j+1‖ω‖22

)τ−1

]
dω,

I2 :=

∫

‖ω‖2≥
1

δj+1

[∥∥∥ ̂
Ẽdiveu,j(ω)

∥∥∥
2

2

‖ω‖22
(
1 + δ2j+1‖ω‖22

)τ+1
+ ÊSep,j(ω)

(
1 + δ2j+1‖ω‖22

)τ−1

]
dω.

For I1, we can use that δj+1‖ω‖2 ≤ 1, Lemma 4.1, Theorem 3.3 and Lemma
3.1 to yield

I1 ≤ C
(
Ẽdiv‖eu,j‖2L2(Rd)

+ ‖ESep,j‖2L2(Rd)

)

≤ C
(
‖eu,j‖2L2(Ω) + ‖ep,j‖2L2(Ω)

)

≤ Ch̄2τ−4
j ‖Eej‖2NΦ(Rd)

≤ C
h̄2τ−4
j

δ2τ+2
j

‖Eej−1‖2NΦj
(Rd)

= C1β
−2τ−2‖Eej−1‖2NΦj

(Rd),

where in the second last step we have used that since the interpolant at Xj

to ej−1 is the same as the interpolant to Eej−1 (both functions take the same
values on Xj ⊆ Ω), we have

‖ej‖Hτ (Ω) = ‖ej−1 − Sjej−1‖Hτ (Ω)

= ‖Eej−1 − SjEej−1‖Hτ (Ω)

≤ ‖Eej−1 − SjEej−1‖Hτ (Rd)

≤ Cδ−τ−1
j ‖Eej−1 − SjEej−1‖NΦj

(Rd)

≤ Cδ−τ−1
j ‖Eej−1‖NΦj

(Rd).

For I2, since δj+1‖ω‖2 ≥ 1, we have

(
1 + δ2j+1‖ω‖22

)τ−1 ≤
(
2δ2j+1‖ω‖22

)τ−1 ≤ 2τ−1µτ−3
(
1 + δ2j ‖ω‖22

)τ−1
,

since if µ, δ ≤ 1, we have

δ2τ−2
j+1 ≤ µ

(2τ−2)(τ−3)
τ δ2τ−2

j ≤ µτ−3δ2τ−2
j .

Similarly, we have

(
1 + δ2j+1‖ω‖22

)τ+1 ≤ 2τ+1µτ−1
(
1 + δ2j ‖ω‖22

)τ+1
.
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Hence

I2 ≤ Cµτ−3‖Eej‖2NΦj
(Rd)

≤ C2µ
τ−3‖Eej−1‖2NΦj

(Rd),

where the last step follows in the same way as the last part of the derivation
for I1. The result follows with

α1 :=
(
C1β

−2τ−2 + C2µ
τ−3
)1/2

.

Corollary 4.3 There exist positive constants C3 and C4 such that

‖v−Mnv‖L2(Ω) ≤ C3α
n
1

(
‖u‖Hτ (Ω) + ‖p‖Hτ−1(Ω)

)
for n = 1, 2, . . .

and

‖u−Mnu‖L2(∂Ω) ≤ C4α
n
1

(
‖u‖Hτ (Ω) + ‖p‖Hτ−1(Ω)

)
for n = 1, 2, . . .

Thus the multiscale approximation Mnv resulting from Algorithm 1 converges
linearly to v in the L2−norm in Ω and on ∂Ω if α1 < 1.

Proof With Lemma 3.1 and Theorems 3.3 and 4.2 we have

‖v −Mnv‖L2(Ω) = ‖en‖L2(Ω)

≤ Ch̄τ−2
1,n ‖Een‖NΦ(Rd)

≤ C‖Een‖NΦn+1
(Rd)

≤ Cαn1 ‖Ev‖NΦ1(R
d)

≤ Cαn1 ‖Ev‖NΦ(Rd)

≤ Cαn1
(
‖u‖Hτ(Ω) + ‖p‖Hτ−1(Ω)

)
,

which proves the first result. For the second result, with (30) we can see that

‖u−Mnu‖L2(∂Ω) ≤ ‖u−Mnu‖H3/2(∂Ω)

≤ Chτ−2
2,n ‖u−Mnu‖Hτ (Ω)

≤ Ch̄τ−2
n ‖Een‖NΦ(Rd),

and the remainder of the proof is the same as for the first result.

5 Condition number

In this section, we present upper and lower bounds for the eigenvalues of the
multiscale symmetric collocation algorithm for the Stokes problem. At each
step of the multiscale algorithm, we need to solve a linear system resulting
from the collocation conditions (21) and (22) on a set X = {x1, . . . ,xM}:

Aδb = (f g)T .
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Since the collocation matrix Aδ is symmetric and positive definite, we know
that the condition number is given by

κ(Aδ) =
λmax(Aδ)

λmin(Aδ)
, (32)

where λmax(Aδ) and λmin(Aδ) denote the maximum and minimum eigenvalues
of Aδ.

We will first need several technical lemmas concerning derivatives of the
Wendland functions.

Lemma 5.1 With spatial dimension d and smoothness parameter k = 2, 3, . . .
let ψℓ,k be the original Wendland function. Then with x,y ∈ Rd and 1 ≤ i, j ≤
d and i 6= j, we have

∂ijΨℓ,k(x− y)|x=y = 0.

Proof We recall that the Wendland functions are piecewise polynomials with
support [0, 1] and we can write [22]

ψℓ,k(r) =

2k+ℓ∑

i=0

bi r
i, r ∈ [0, 1] (33)

and that the first k odd coefficients {b2i+1}ki=0 vanish. With the chain rule,
where x− y = (x1 − y1, . . . , xd − yd) and r = ‖x− y‖2, we have

∂ijΨℓ,k(x− y) =
(xi − yi)(xj − yj)

r2

(
ψ
(2)
ℓ,k(r) −

1

r
ψ
(1)
ℓ,k(r)

)
.

Using (33), this last expression becomes

∂ijΨℓ,k(x− y) =
(xi − yi)(xj − yj)

r2

(
2k+ℓ∑

i=2

bi (i− 1)2 r
i−2 −

2k+ℓ∑

i=1

i bi r
i−2

)
,

=:
(xi − yi)(xj − yj)

r2

(
2k+ℓ∑

i=1

b̄i r
i−2

)
(34)

where

(c)n :=
Γ (c+ n)

Γ (c)

denotes the Pochhammer symbol. Now the first three coefficients {b̄i}3i=1 are

b̄1 = b1 = 0

b̄2 = (2− 2)b2 = 0

b̄3 = 0,

since the first k odd coefficients of the Wendland polynomial are zero and
k ≥ 2. Hence we can write

∂ijΨℓ,k(x− y) = (xi − yi)(xj − yj)

(
2k+ℓ∑

i=4

b̄i r
i−4

)
,

and the result follows immediately.
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Lemma 5.2 With spatial dimension d and smoothness parameter k = 3, 4, . . .
let ψℓ,k be the original Wendland function. Then with x,y ∈ Rd and 1 ≤ i, j ≤
d and i 6= j, we have

∂ij∆
2Ψℓ,k(x− y)|x=y = 0.

Proof Once again employing the chain rule gives

∂ij∆
2Ψℓ,k(x− y) =

(xi − yi)(xj − yj)

r2

×
(
ψ
(6)
ℓ,k (r) +

1

r
ψ
(5)
ℓ,k(r) −

7

r2
ψ
(4)
ℓ,k(r) +

12

r3
ψ
(3)
ℓ,k(r) −

15

r4
ψ
(2)
ℓ,k(r) +

15

r5
ψ
(1)
ℓ,k(r)

)
.

With (33) we can rewrite this as

∂ij∆
2Ψℓ,k(x− y) =

(xi − yi)(xj − yj)

r2

[
2k+ℓ∑

i=6

bi(i − 5)6r
i−6 +

2k+ℓ∑

i=5

bi(i − 4)5r
i−6

−7

2k+ℓ∑

i=4

bi(i − 3)4r
i−6 + 12

2k+ℓ∑

i=3

bi(i− 2)3r
i−6 − 15

2k+ℓ∑

i=2

bi(i− 1)2r
i−6 + 15

2k+ℓ∑

i=1

i bir
i−6

]

=:

2k+ℓ∑

i=1

b̃ir
i−6.

Since b̃i = C(i)bi, the first k odd coefficients {b̃2i+1}ki=0 are zero. Then we can
determine other coefficients as

b̃2 = 30(b2 − b2) = 0

b̃4 = b4(60− 15(3)2 + 12(2)3 − 7(1)4) = 0

b̃6 = b6(90− 15(5)2 + 12(4)3 − 7(3)4 + (1)6) = 0.

Hence since k = 3, 4, . . ., we can write

∂ij∆
2Ψℓ,k(x − y) = (xi − yi)(xj − yj)

2k+ℓ∑

i=8

b̃ir
i−8,

and the result follows immediately.

Lemma 5.3 With spatial dimension d and smoothness parameter k = 2, 3, . . .
let ψℓ,k be the original Wendland function. Then with x,y ∈ Rd and 1 ≤ j ≤ d
we have

∂jjΨℓ,k(x− y)|x=y < 0,

and is independent of j.
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Proof With the chain rule, where once again x − y = (x1 − y1, . . . , xd − yd)
and r = ‖x− y‖2, we have

∂jjΨℓ,k(x− y) =
(xj − yj)

2

r2

(
ψ
(2)
ℓ,k (r)−

1

r
ψ
(1)
ℓ,k(r)

)
+

1

r
ψ
(1)
ℓ,k (r).

With Lemma 5.1, the term in brackets is equal to zero when x = y. Using (33)
and noting that the first k odd coefficients are zero, this last term becomes

1

r
ψ
(1)
ℓ,k (r) =

2ℓ+k∑

i=2

i bi r
i−2,

which means that the case of x = y, which is equivalent to r = 0, reduces down
to 2b2. Now combining positive terms into a generic constant C, we have from
[2]

b2 = C(−1)k
(1

2

k

)

= C
(−1)k

Γ (12 − (k − 1))

= C(−1)k(−1)k−1 < 0,

where we have also used [10, 8.339.3]

Γ

(
1

2
− n

)
=

√
π
(−4)nn!

(2n)!
.

Lemma 5.4 With spatial dimension d and smoothness parameter k = 3, 4, . . .
let ψℓ,k be the original Wendland function. Then with x,y ∈ Rd and 1 ≤ j ≤ d
we have

∂jj∆
2Ψℓ,k(x− y)|x=y < 0,

and is independent of j.

Proof With the chain rule, where once again x − y = (x1 − y1, . . . , xd − yd)
and r = ‖x− y‖2, we have

∂jj∆
2Ψℓ,k(x− y) =

(xj − yj)
2

r2

×
(
ψ
(6)
ℓ,k(r) +

1

r
ψ
(5)
ℓ,k (r)−

7

r2
ψ
(4)
ℓ,k(r) +

12

r3
ψ
(3)
ℓ,k(r) −

15

r4
ψ
(2)
ℓ,k(r) +

15

r5
ψ
(1)
ℓ,k(r)

)

+
1

r

(
ψ
(5)
ℓ,k (r) +

2

r
ψ
(4)
ℓ,k(r) −

3

r2
ψ
(3)
ℓ,k(r) +

3

r3
ψ
(2)
ℓ,k(r) −

3

r4
ψ
(1)
ℓ,k(r)

)
.

With Lemma 5.1, the first term in the previous expression is equal to zero
when x = y. As before, we can write the second term as a series

2k+ℓ∑

i=1

bi r
i−6.
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Since k ≥ 3, b1 = b3 = b5 = 0 and equating coefficients gives

b2 = b2(−6 + 3(1)2) = 0

b4 = b4(−12 + 3(3)2 − 3(2)3 + 2(1)4) = 0,

which means we are left with

2k+ℓ∑

i=6

bi r
i−6.

Hence the case of x = y, which is equivalent to r = 0, reduces down to b6
which is given by

b6 = ((2)5 + 2(3)4 − 3(4)3 + 3(5)2 − 18)b6 = 1152b6.

As before, combining positive terms into a generic constant C and noting that
k = 3, 4, . . ., we have from [2]

b6 = C(−1)k
(5

2

k

)

= C
(−1)k

Γ (12 − (k − 3))

= C(−1)k(−1)k−3 < 0.

The next theorem gives a lower bound on the minimum eigenvalue of Aδ.

Theorem 5.5 Suppose the kernel Φ is defined by (18) and define the scaled
kernel Φδ by (25) with a positive scaling factor δ. Then the smallest eigenvalue
of the collocation matrix defined by (21) and (22) can be bounded by

λmin(A) ≥ C
(qX
δ

)2τ+2

q−d−2
X ,

where the constant C is independent of the pointset X.

Proof We follow the proof of [9, Theorem 4.1]. We will adopt the functional
notation

ξi,j(v) =

{
(Lv)i (xj) for 1 ≤ j ≤ N, 1 ≤ i ≤ d,

vi(xj) for N + 1 ≤ j ≤M, 1 ≤ i ≤ d.

We will use the superscript y to denote that the functional acts with respect
to its second argument. Then with β ∈ RdM , we need to show that

d∑

i,i′=1

M∑

j,k=1

βi,jβi′,kξi,jξ
y
i′,kΦδ(x− y) ≥ C

(qX
δ

)2τ+2

q−d−2
X ‖β‖22. (35)
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Now with the inverse Fourier transform, the left hand side of (35) becomes

d∑

i,i′=1

M∑

j,k=1

βi,jβi′,kξi,jξ
y
i′,kΦδ(x− y)

= (2π)−d/2
∫

Rd

d∑

i,i′=1

M∑

j,k=1

βi,jβi′,kξi,jξ
y
i′,kΦ̂δ(ω)eI(x−y)·ω, dω

where I2 = −1. Now we define a second scaled kernel Φa by (7) with 0 < a ≤ 1
and a ≤ δ. For δ ≤ 1 we have

(
1 + δ2‖ω‖22

)τ−1 ≥
(
δ2 + δ2‖ω‖22

)τ−1 ≥ δ2τ−2
(
1 + ‖ω‖22

)τ−1
, (36)

and recalling that ψτ−1 satisfies (17) gives

ψ̂τ−1,δ(ω) = ψ̂τ−1(δω) ≥ c1,τ−1

(
1 + ‖δω‖22

)−τ+1

= c1,τ−1

(a
δ

)2τ−2
((a

δ

)2
+ ‖aω‖22

)−τ+1

≥ c1,τ−1

(a
δ

)2τ−2 (
1 + ‖aω‖22

)−τ+1

≥ c1,τ−1

c2,τ−1

(a
δ

)2τ−2

ψ̂τ−1,a(ω).

Since ψτ+1 satisfies (16) and with (19), we proceed similarly to get

Ψ̂τ+1,δ(ω) = =
(
‖ω‖22I− ωω

T
)
ψ̂τ+1(δ‖ω‖2)

= c1,τ+1

(a
δ

)2τ+2 (
‖ω‖22I− ωω

T
)((a

δ

)2
+ ‖aω‖22

)−τ−1

≥ c1,τ+1

(a
δ

)2τ+2 (
‖ω‖22I− ωω

T
) (

1 + ‖aω‖22
)−τ−1

≥ c1,τ+1

c2,τ+1

(a
δ

)2τ+2 (
‖ω‖22I− ωω

T
)
ψ̂τ+1(a‖ω‖2)

=
c1,τ+1

c2,τ+1

(a
δ

)2τ+2

Ψ̂τ+1,a(ω).

Since a/δ < 1, we have the following bound on Φ̂δ

Φ̂δ(ω) ≥ c
(a
δ

)2τ+2

Φ̂a(ω),

and hence we have

d∑

i,i′=1

M∑

j,k=1

βi,jβi′,kξi,jξ
y
i′,kΦδ(x−y) ≥ c

(a
δ

)2τ+2 d∑

i,i′=1

M∑

j,k=1

βi,jβi′,kξi,jξ
y
i′,kΦa(x−y),
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and if we select a = qX ≤ 1 such that we need only consider entries of the
quadratic form corresponding to equal centres, with the definition of the scaled
kernel in (7), this reduces to

d∑

i,i′=1

M∑

j,k=1

βi,jβi′,kξi,jξ
y
i′,kΦδ(x− y)

≥ c
(qX
δ

)2τ+2

q−dX

d∑

i=1





N∑

j=1

β2
i,j


−

∑

j={1:d}\i

q−6
X ∂jj∆

2ψτ+1(0)− q−2
X ∂iiψτ−1(0)


+

M∑

j=N+1

β2
i,j


−

∑

j={1:d}\i

q−2
X ∂jjψτ−1(0)





 ,

since for interior centres we have

ξi,jξ
y
i′,kΦ(x−y)|j=k =

{−ν2∑j=1:d\i ∂jj∆
2ψτ+1(0)− ∂iiψτ−1(0) for i = i′,

ν2∂ii′∆
2ψτ+1(0)− ∂ii′ψτ−1(0) = 0 for i 6= i′,

(37)
with Lemmas 5.1 and 5.2. Similarly for the boundary centres

ξi,jξ
y
i′,kΦ(x− y)|j=k =

{−∑j=1:d\i ∂jjψτ−1(0) for i = i′,

−∂ii′ψτ−1(0) = 0 for i 6= i′,
(38)

and then the result follows as

d∑

i=1

M∑

j,k=1

βi,jβi,kξi,jξ
y
i,kΦδ(x− y) ≥ c c̃

(qX
δ

)2τ+2

q−d−2
X ‖β‖22,

with Lemmas 5.3 and 5.4 which give

c̃ := min
1≤i≤d


−

∑

j={1:d}\i

q−4
X ∂jj∆

2ψτ+1(0)− ∂iiψτ−1(0),−
∑

j={1:d}\i

∂jjψτ−1(0)




≥ min
1≤i≤d


−

∑

j={1:d}\i

∂jj∆
2ψτ+1(0)− ∂iiψτ−1(0),−

∑

j={1:d}\i

∂jjψτ−1(0)




= min


−

d∑

j=2

∂jj∆
2ψτ+1(0)− ∂11ψτ−1(0),−

d∑

j=2

∂jjψτ−1(0)


 ,

since ψτ+1 is a radial function and ∂iiψτ−1(0) is independent of i from Lemma
5.3.

Our next result bounds the maximum eigenvalue λmax(Aδ).
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Theorem 5.6 Suppose the kernel Φδ is defined as in Theorem 5.5. Then if
we assume that

M ≤ Ch̄−d, (39)

where M denotes the number of (interior and boundary) centres, then the
largest eigenvalue of the collocation matrix constructed with Φδ defined by
(21) and (22) can be bounded by

λmax(Aδ) ≤ C δ−d−2 h̄−d,

if δ ≥ 1 and by

λmax(Aδ) ≤ C δ−d−6 h̄−d,

if δ < 1, where the constants C are independent of the pointset X.

Proof Using the notation from Theorem 5.5, together with Gershgorin’s the-
orem, we have

|λmax(Aδ)− ξi,jξ
y
i,jΦδ(x,x)| ≤

d∑

i′=1

M∑

k=1
i′ 6=i,k 6=j

|ξi,jξyi,kΦδ(x,y)|, 1 ≤ i ≤ d

which since Φ is positive definite, using (39), Lemmas 5.3 and 5.4, the defini-
tion of the scaled kernels (7) and (37) and (38), if δ ≥ 1

λmax(Aδ) ≤ dM‖ξi′,·ξyi,·Φδ(·, ·)‖L∞(Ω×Ω)

≤ C d h̄−dmax


−

d∑

j=2

∂jj∆
2ψτ+1,δ(0)− ∂11ψτ−1,δ(0),−

d∑

j=2

∂jjψτ−1,δ(0)




≤ C d h̄−dδ−d−2 max


−

d∑

j=2

∂jj∆
2ψτ+1(0)− ∂11ψτ−1(0),−

d∑

j=2

∂jjψτ−1(0)


 ,

where in the last step we have used that

∂jj∆
2ψτ+1,δ(0) = δ−d∂jj∆

2δ−6ψτ+1(0) ≤ δ−d−2∂jj∆
2ψτ+1(0),

since δ ≥ 1. If δ < 1, we have

λmax(Aδ) ≤ dM‖ξi′,·ξyi,·Φδ(·, ·)‖L∞(Ω×Ω)

≤ C d h̄−dδ−d−6 max


−

d∑

j=2

∂jj∆
2ψτ+1(0)− ∂11ψτ−1(0),−

d∑

j=2

∂jjψτ−1(0)


 ,

where in the last step we have used, for example, that

∂11ψτ−1,δ(0) = δ−d∂11δ
−2ψτ−1(0) ≤ δ−d−6∂11ψτ−1(0),

which completes the proof.
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We note that (39) will hold if, for example, the dataset is quasi-uniform, which
means that hj/qj is bounded above by a constant.

Now with (32) and Theorems 5.5 and 5.6, we obtain the following theorem
where we write qj := qXj .

Theorem 5.7 Suppose the kernel Φδ is defined as in Theorem 5.5. Then the
condition number of the multiscale symmetric collocation matrix in Algorithm
1 is level-dependent and is bounded by

κj ≤ C

(
h̄j
qj

)2τ−d

h̄
− 3
τ+1 (2τ−d)−d

j ,

if δ ≥ 1 and by

κj ≤ C

(
h̄j
qj

)2τ−d

h̄
− 3
τ+1 (2τ−d−4)−d−4

j ,

if δ < 1. In the case of quasi-uniform datasets and hj ≤ 1, these reduce to

κj ≤ C h̄−2τ
j .

Proof The first two results follows with δj = βh̄
1−3/(τ+1)
j and (32) and Theo-

rems 5.5 and 5.6. If the datasets are quasi-uniform, which means that hj/qj is
bounded above by a constant, the final result follows by simplifying the first
two expressions.

6 Numerical experiments

In this section, we present the results from applying the multiscale algorithm
described in Algorithm 1 with Ω = [0, 1]2 and ν = 1 to the Stokes problem
with exact solution given by

u(x1, x2) =

(
2 cos(5x1) cos(2x2)
5 sin(5x1) sin(x2)

)
,

p(x1, x2) = sin(3x1) sin(3x2) + C.

This gives

f(x1, x2) =

(
58 cos(5x1) cos(2x2) + 3 cos(3x1) sin(3x2)
145 sin(5x1) sin(2x2) + 3 sin(3x1) cos(3x2)

)

and g equal to the restriction of u(x) to ∂Ω .
We use the C8 Wendland radial basis function given by

ψ6,4(‖x‖) = (1− ‖x‖)10+
(
429‖x‖4 + 450‖x‖3 + 210‖x‖2 + 50‖x‖+ 5

)
,
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which is positive definite on R2 and generates the Sobolev space H5.5(R2) [22].
We use the same kernel for both ψτ+1 and ψτ−1. Consequently, in this case
τ = 4.5. Since d = 2, our approximate solution takes the form

SXv(x) =
N∑

j=1

α1,j



ν∂22∆ψτ+1(x− xj)
−ν∂12∆ψτ+1(x− xj)
−∂1ψτ−1(x− xj)


+

M∑

j=N+1

α1,j



−∂22ψτ+1(x− xj)
∂12ψτ+1(x− xj)

0




+
N∑

j=1

α2,j



−ν∂12∆ψτ+1(x− xj)
ν∂11∆ψτ+1(x− xj)
−∂2ψτ−1(x− xj)


+

M∑

j=N+1

α2,j



∂12ψτ+1(x − xj)
−∂11ψτ+1(x− xj)

0


 .

We used five levels for the approximation, with N equally spaced points for
the interior point sets and 4(

√
N − 1) equally spaced boundary centres. The

number of interior points, Nj , the number of boundary points, Mj −Nj , and
the maximum mesh norms at each level, h̄j , are given in Table 1. We note that
the (maximum) mesh norms decrease by one half at each level and hence we
select µ = 1

2 . For the scaling parameters, since τ = 4.5, Algorithm 1 specifies

Level 1 2 3 4 5
N 25 81 289 1089 4225

M −N 16 32 64 128 256
h̄ 1/4 1/8 1/16 1/32 1/64

Table 1: The number of interior and boundary points used at each level and
the maximum mesh norm each level for the numerical experiment

that
δj = βh̄

2.5/5.5
j

with β constant. With the given value of h̄1 in Table 1, we select β such that
δ1 = 10. This gives β = 18.779 and we use this to generate the other δ values
which are given along with the L2 and L∞ errors in Table 2. The L2 error was
estimated using Gaussian quadrature with a 300× 300 tensor product grid of
Gauss-Legendre points and the L∞ error was estimated with the same tensor
product grid. We used MATLAB for the calculations and worked with double
precision.

Level 1 2 3 4 5
δj 10 7.29 5.33 3.89 2.84

‖eu,j‖L2(Ω) 1.592e-02 6.498e-04 3.274e-05 1.650e-06 1.028e-07
‖eu,j‖L∞(Ω) 2.740e-02 2.233e-03 1.462e-04 8.268e-06 4.579e-07
‖∇ep,j‖L2(Ω) 1.112e+00 1.222e-01 1.235e-02 2.561e-03 5.612e-04
‖∇ep,j‖L∞(Ω) 4.209e+00 3.338e-01 1.048e-01 3.650e-02 1.211e-02

Table 2: The scaling factors and approximation errors of the collocation ma-
trices for the multiscale symmetric collocation Stokes problem example
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