Skip to main content
Log in

Fixed point algorithm based on adapted metric method for convex minimization problem with application to image deblurring

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Recently, optimization algorithms for solving a minimization problem whose objective function is a sum of two convex functions have been widely investigated in the field of image processing. In particular, the scenario when a non-differentiable convex function such as the total variation (TV) norm is included in the objective function has received considerable interests since many variational models encountered in image processing have this nature. In this paper, we propose a fast fixed point algorithm based on the adapted metric method, and apply it in the field of TV-based image deblurring. The novel method is derived from the idea of establishing a general fixed point algorithm framework based on an adequate quadratic approximation of one convex function in the objective function, in a way reminiscent of Quasi-Newton methods. Utilizing the non-expansion property of the proximity operator we further investigate the global convergence of the proposed algorithm. Numerical experiments on image deblurring problem demonstrate that the proposed algorithm is very competitive with the current state-of-the-art algorithms in terms of computational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ma, S., Yin, W., Zhang, Y., Chakraborty, A.: An efficient algorithm for compressed MR imaging using total variation and wavelets. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)

  2. Cands, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Figueiredo, M.A.T, Nowak, R.D.: An EM algorithm for wavelet-based image restoration. IEEE Trans. Image Process. 12(8), 906–916 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Moreau, J.-J.: Proximité et dualité dans un espace hilbertien. Bulletin de la Societé Mathématique de France 93, 273–299 (1965)

    MathSciNet  MATH  Google Scholar 

  6. Daubechies, I., Defrise, M., Mol, C.D.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hale, E.T., Yin, W., Zhang, Y.: A fixed-point continuation method for l1-regularized minimization with applications to compressed sensing. CAAM TR07-07, Rice University (2007)

  9. Wright, S.J., Nowak, R.D., Figueiredo, M.A.T.: Sparse reconstruction by separable approximation. IEEE Trans. Signal Process. 57(7), 2479–2493 (2009)

    Article  MathSciNet  Google Scholar 

  10. Bioucas-Dias, J.M., Figueiredo, M.A.T.: A new twIST: two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image Process. 16(12), 2992–3004 (2007)

    Article  MathSciNet  Google Scholar 

  11. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imag. Sci. 2(2), 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Combettes, P.L., Pesquet, J.-C.: A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery. IEEE J. Sel. Top. Sign. Proces. 1(4), 564–574 (2007)

    Article  Google Scholar 

  14. Setzer, S.: Operator splittings, Bregman methods and frame shrinkage in image processing. Int. J. Comput. Vis. 92(3), 265–280 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Esser, E.: Applications of Lagrangian-based alternating direction methods and connections to split Bregman. UCLA CAM Report, 9–31 (2009)

  16. Chen, D.-Q., Cheng, L.-Z., Fang, S.: A new TV-stokes model with augmented Lagrangian method for image denoising and deconvolution. J. Sci. Comput. 51(3), 505–526 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, D.-Q., Zhou, Y.: Multiplicative denoising based on linearized alternating direction method using discrepancy function constraint. J. Sci. Comput. 60(3), 483–504 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, D.-Q.: Regularized generalized inverse accelerating linearized alternating minimization algorithm for Frame-Based poissonian image deblurring. SIAM J. Imag. Sci. 7(2), 716–739 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vision 20(1–2), 89–97 (2004)

    MathSciNet  Google Scholar 

  20. Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration. UCLA CAM Report, 08–34 (2008)

  21. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vision 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pock, T., Chambolle, A.: Diagonal preconditioning for first order primal-dual algorithms in convex optimization. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 1762–1769. IEEE (2011)

  23. Esser, E., Zhang, X., Chan, T.F.: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM J. Imag. Sci. 3(4), 1015–1046 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. He, B., Yuan, X.: Convergence analysis of primal-dual algorithms for a saddle-point problem: From contraction perspective. SIAM J. Imag. Sci. 5(1), 119–149 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jia, R.-Q., Zhao, H.: A fast algorithm for the total variation model of image denoising. Adv. Comput. Math. 33(2), 231–241 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Micchelli, C.A., Shen, L., Xu, Y.: Proximity algorithms for image models: denoising. Inverse Prob. 27(4), 045009 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Micchelli, C.A., Shen, L., Xu, Y., Zeng, X.: Proximity algorithms for the l1/TV image denoising model. Adv. Comput. Math. 38(2), 401–426 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, Q., Micchelli, C.A., Shen, L., Xu, Y.: A proximity algorithm accelerated by GaussCSeidel iterations for L1/TV denoising models. Inverse Prob. 28(9), 095003 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Chen, F., Shen, L., Xu, Y., Zeng, X.: The moreau envelope approach for the l1/TV image denoising model. Inverse Problems and Imaging 8(1), 53–77 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Chen, F., Shen, L., Suter, B.W., Xu, Y.: A Proximity Algorithm Solving Indicator Functions Based l1-Norm Minimization Problems in Compressive Sampling. UCLA CAM Report, 12–63 (2012)

  31. Krol, A., Li, S., Shen, L., Xu, Y.: Preconditioned alternating projection algorithms for maximum a posteriori ECT reconstruction. Inverse Prob. 28(11), 115005 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Argyriou, A., Micchelli, C.A., Pontil, M., Shen, L., Xu, Y.: Efficient first order methods for linear composite regularizers. arXiv:1104.1436(2011)

  33. Chen, D.-Q., Zhang, H., Cheng, L.-Z.: A fast fixed point algorithm for total variation deblurring and segmentation. J. Math. Imaging Vision 43(3), 167–179 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Chen, P., Huang, J., Zhang, X.: A primal-dual fixed point algorithm for convex separable minimization with applications to image restoration. Inverse Prob. 29(2), 025011 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73(4), 591–597 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  36. Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16(5), 1190–1208 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  37. Bauschke, H.H., Combettes, P.L.: The Baillon-Haddad theorem revisited. Journal of Convex Analysis 17(3–4), 781–787 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dai-Qiang Chen.

Additional information

Communicated by: Helmut Pottmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, DQ., Zhou, Y. & Song, LJ. Fixed point algorithm based on adapted metric method for convex minimization problem with application to image deblurring. Adv Comput Math 42, 1287–1310 (2016). https://doi.org/10.1007/s10444-016-9462-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-016-9462-3

Keywords

Mathematics Subject Classification (2010)

Navigation