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Abstract

Minimal Polynomial Extrapolation (MPE) and Reduced Rank Extrapolation
(RRE) are two polynomial methods used for accelerating the convergence of se-
quences of vectors {xm}. They are applied successfully in conjunction with fixed-
point iterative schemes in the solution of large and sparse systems of linear and
nonlinear equations in different disciplines of science and engineering. Both meth-
ods produce approximations sk to the limit or antilimit of {xm} that are of the

form sk =
∑k

i=0
γixi with

∑k

i=0
γi = 1, for some scalars γi. The way the two

methods are derived suggests that they might, somehow, be related to each other;
this has not been explored so far, however. In this work, we tackle this issue and
show that the vectors sMPE

k
and sRRE

k
produced by the two methods are related in

more than one way, and independently of the way the xm are generated. One of
our results states that RRE stagnates, in the sense that sRRE

k
= sRRE

k−1
, if and only

if sMPE

k
does not exist. Another result states that, when sMPE

k
exists, there holds

µks
RRE

k = µk−1s
RRE

k−1
+ νks

MPE

k with µk = µk−1 + νk,

for some positive scalars µk, µk−1, and νk that depend only on sRRE

k
, sRRE

k−1
, and

sMPE

k
, respectively. Our results are valid when MPE and RRE are defined in

any weighted inner product and the norm induced by it. They also contain as
special cases the known results pertaining to the connection between the method
of Arnoldi and the method of generalized minimal residuals, two important Krylov
subspace methods for solving nonsingular linear systems.

Mathematics Subject Classification 2000: 65B05, 65F10, 65F50, 65H10.

Keywords and expressions: Vector extrapolation methods, minimal polynomial
extrapolation (MPE), reduced rank extrapolation (RRE), Krylov subspace methods,
method of Arnoldi, method of generalized minimal residuals, GMRES.



1 Introduction

Minimal Polynomial Extrapolation (MPE) of Cabay and Jackson [5] and Reduced Rank
Extrapolation (RRE) of Kaniel and Stein [18], Eddy [7], and Mes̆ina [19] are two poly-
nomial methods of convergence acceleration or extrapolation for sequences of vectors.1

They have been used successfully in different areas of science and engineering in ac-
celerating the convergence of sequences that arise, for example, from application of
fixed-point iterative schemes to large and sparse linear or nonlinear systems of equa-
tions.

These methods and others were reviewed by Smith, Ford, and Sidi [32], Sidi, Ford,
and Smith [29] and, more recently, by Sidi [27]. Their convergence and stability prop-
erties were analyzed in the papers by Sidi [23], [26], Sidi and Bridger [28], and Sidi
and Shapira [30], [31]. Their connection with known Krylov subspace methods for the
solution of linear systems of equations was explored in Sidi [24]. In Ford and Sidi [11],
they were shown to satisfy certain interesting recursion relations. Efficient algorithms
for their implementation that are stable numerically and economical computationally
and storagewise were designed in Sidi [25]. Finally, Chapter 4 of the book by Brezinski
and Redivo Zaglia [3] is devoted completely to vector extrapolation methods (including
MPE and RRE) and their various properties.

From the way they are derived, one might suspect that MPE and RRE are somehow
related. Despite being intriguing and of interest in itself, this subject has not been
investigated until now, however. In this work, we undertake precisely this investigation
and show that the two methods are indeed very closely related in more than one way.
A partial description of the results of this investigation are given in the next paragraph.

Let {xm} be an arbitrary sequence of vectors in C
N endowed with a general weighted

(not necessarily standard Euclidean) inner product and the norm induced by it, and
let sMPE

k and sRRE

k be the vectors (approximations to limm→∞ xm when this limit exists,
for example) produced by MPE and RRE from the k + 2 vectors x0,x1, . . . ,xk+1. It
is known that sRRE

k always exists, but sMPE

k may not always exist. One of our results
states that, RRE stagnates, in the sense that

sRRE

k = sRRE

k−1 ⇔ sMPE

k does not exist. (1.1)

Another result states that, when sMPE

k exists, there holds

µks
RRE

k = µk−1s
RRE

k−1 + νks
MPE

k with µk = µk−1 + νk, (1.2)

for some positive scalars µk, µk−1, and νk that depend only on sRRE

k , sRRE

k−1, and sMPE

k ,
respectively. The precise results and the conditions under which they hold will be
given in the next sections.2

When the sequence {xm} is generated from a linear singular system of equations
x = Tx + d via the fixed-point iterative scheme xm+1 = Txm + d, m = 0, 1, . . . ,

1The formulations of RRE given in Kaniel and Stein [18] and Mes̆ina [19] are essentially the same,
but they are entirely different from that in Eddy [7]. The mathematical equivalence of the different
formulations is shown in Smith, Ford, and Sidi in [32].

2Throughout this work, we will use boldface lowercase letters to denote column vectors. In partic-
ular, we will denote the zero column vector by 0. Similarly, we will use boldface upper case letters to
denote matrices.
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starting with some initial vector x0, the vectors sMPE

k and sRRE

k are precisely those
generated by, respectively, the Full Orthogonalization Method (FOM) and the method
of Generalized Minimal Residuals (GMR)—two important Krylov subspace methods
for solving linear systems—as these are being applied to the linear system (I−T )x = d,
starting with x0 as the initial approximation to the solution. This is so provided all
four methods are defined using the same weighted inner product and the norm induced
by it.3

FOM was developed by Arnoldi [1], who also presented a very elegant algorithm,
which employs an interesting process called the Arnoldi–Gram–Schmidt process, for
computing an orthonormal basis for a Krylov subspace. For a discussion of FOM and
more, see also Saad [20]. Different algorithms were given for GMR by Axelsson [2], by
Young and Jea [37], by Eisenstat, Elman, and Schultz [9], known as Generalized Con-
jugate Residuals (GCR), and by Saad and Schultz [22], known as GMRES. GMRES
also uses the Arnoldi–Gram–Schmidt process, and is known to be the best implemen-
tation of GMR. For Krylov subspace methods in general, see the books by Greenbaum
[12], Saad [21], and van der Vorst [33]. The methods FOM and GMRES were also
formulated in Essai [10] in terms of weighted inner products and norms induced by
them; see also Güttel and Pestana [17].

Now, there are interesting connections between the vectors generated by FOM and
GMR, and by further Krylov subspace methods, and these connections have been
explored in Brown [4] and Weiss [35] originally. This topic has been analyzed further
in the papers by Gutknecht [15], [16], Weiss [36], Zhou and Walker [38], Walker [34],
Cullum and Greenbaum [6], and Eiermann and Ernst [8], by using weighted inner
products and norms induced by them.

In view of the mathematical equivalence of MPE to FOM and of RRE to GMR
when {xm} is generated from linear systems, the results of the present work for MPE
and RRE [in particular, (1.1) and (1.2)] are precisely those of [4] and [35] in the
presence of such {xm}. Clearly, our results pertaining to the relation between MPE
and RRE have a larger scope than those pertaining to FOM and GMR because they
apply to sequences obtained from nonlinear systems, as well as linear ones, while
FOM and GMR apply to linear systems only. Actually, our results apply to arbitrary
sequences {xm}, independently of how these sequences are generated. In this sense,
the connection between MPE and RRE can be viewed as being of a universal nature.
We wish to emphasize that (i) a priori, it cannot be assumed that MPE and RRE are
related when applied to vector sequences {xm} arising from nonlinear systems, and
(ii) in case there is a relationship, it cannot be concluded, a priori, what form it will
assume. In view of this, the fact that MPE and RRE are related as in (1.1) and (1.2)
in the presence of arbitrary sequences {xm}, whether generated linearly or nonlinearly
or otherwise, is quite surprising.

The purpose of this work is twofold:

1. In the next section, we (i) redefine MPE and RRE using a weighted inner product
and the norm induced by it, and (ii) develop a unified algorithm for their imple-
mentation, thus also providing the theoretical background necessary for the rest

3MPE and RRE were originally defined in C
N with the standard Euclidean inner product and

the norm induced by it. In subsequent work by the author and his co-authors, their definitions were
generalized by allowing general inner products and norms. The algorithms for implementing MPE and
RRE given in [25] still use the standard Euclidean inner product and the norm induced by it, however.
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of this work. We note that these developments are completely new and have
not been given before. They form an essential part of the proofs of the main
results of Section 3. Sometimes, we will refer to the redefined MPE and RRE as
weighted MPE and RRE.

2. In Section 3, we state and prove our main results showing that MPE and RRE,
as redefined in Section 2, are closely related. Following this, in Section 4, we
discuss the application of our results to sequences {xm} generated from a linear
nonsingular system of equations via fixed-point iterative schemes, and show that
our main results reduce to the known analogous results of [4] and [35] that per-
tain to FOM and GMR, also when all four methods are defined using the same
weighted inner product and the norm induced by it.

The weighted inner product 〈· , ·〉 and the norm [[·]] induced by it (both in C
N ) are

defined as in
〈y,z〉 = y∗Mz and [[z]] =

√

〈z,z〉 =
√
z∗Mz, (1.3)

where M ∈ C
N×N is a hermitian positive definite matrix.4 The matrix M is fixed

throughout this work.

For the standard l2 (Euclidean) inner product and the vector norm induced by it,
we will use the notation

(y,z) = y∗z and ‖z‖ =
√
z∗z. (1.4)

A most useful theoretical tool that makes our study of the weighted versions of
MPE and RRE run smoothly is a generalization of the QR factorization of matrices,
which we call the weighted QR factorization. This version of the QR factorization
seems to have been defined and studied in detail originally in the papers by Gulliksson
and Wedin [14] and Gulliksson [13]. It turns out to be the most natural extension
of the ordinary QR factorization when orthogonality of two vectors y,z ∈ C

N is in
the sense 〈y,z〉 = 0. For convenience, we state the following theorem concerning the
weighted QR factorization:

Theorem 1.1 Let

A = [a1 |a2 | · · · |as ] ∈ C
m×s, m ≥ s, rank(A) = s.

Let also G ∈ Cm×m be hermitian positive definite and define the weighted inner product
〈· , ·〉 via 〈y,z〉 = y∗Gz. Then there exist a matrix Q ∈ C

m×s, unitary in the sense
that Q∗GQ = Is, and an upper triangular matrix R ∈ C

s×s with positive diagonal
elements, such that

A = QR.

Specifically,

Q = [ q1 | q2 | · · · | qs ], R =











r11 r12 · · · r1s
r22 · · · r2s

. . .
...
rss











,

4Recall that the most general inner product in C
N is the weighted inner product that is of the

form 〈y, z〉 = y∗Mz, M being a hermitian positive definite matrix. Of course, in the simplest case,
M = diag(α1, . . . , αN ) with αi > 0 ∀ i, so that 〈y,z〉 =

∑N
i=1

αiyi zi and [[z]] = (
∑N

i=1
αi|zi|

2)1/2.
Finally, when M = I, we recover the standard Euclidean inner product and the norm induced by it.
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〈qi, qj〉 = q∗iGqj = δij ∀ i, j,

rij = 〈qi,aj〉 = q∗
iGaj ∀ i ≤ j; rii > 0 ∀ i.

In addition, the matrices Q and R are unique.

Concerning the computation of Q and R via the Gram–Schmidt and modified
Gram–Schmidt orthogonalization, see the works mentioned above.

2 MPE and RRE redefined using a weighted inner

product

2.1 General preliminaries

Let {xm} be a vector sequence in C
N . For the sake of argument, we may assume that

this sequence results from the fixed-point iterative solution of the linear or nonlinear
system of equations

x = f(x), solution s; x ∈ C
N and f : CN → C

N , (2.1)

that is, from
xm+1 = f(xm), m = 0, 1, . . . , (2.2)

x0 being an initial vector chosen by the user. Normally, N is large and f(x) is a
sparse vector-valued function. Now, when the sequence {xm} converges, it does so to
the solution s, that is, limm→∞ xm = s. In case {xm} diverges, we call s the antilimit
of {xm}; vector extrapolation methods in general, and MPE and RRE in particular,
may produce sequences of approximations that converge to s, the antilimit of {xm},
in such a case.

Let us define the vectors ui via

ui = xi+1 − xi, i = 0, 1, . . . , (2.3)

and the N × (k + 1) matrices Uk via

Uk = [u0 |u1 | · · · |uk ], k = 0, 1, . . . . (2.4)

Of course, there is an integer k0 ≤ N , such that the matrices Uk, k = 0, 1, . . . , k0 − 1,
are of full rank, but Uk0 is not; that is,

rank (U k) = k + 1, k = 0, 1, . . . , k0 − 1; rank (Uk0) = k0. (2.5)

(Of course, this is the same as saying that {u0,u1, . . . ,uk0−1} is a linearly independent
set, but {u0,u1, . . . ,uk0} is not.)

Then, both MPE and RRE produce approximations sk (with k ≤ k0) to the solution
s of (2.1) that are of the form

sk =

k
∑

i=0

γixi;

k
∑

i=0

γi = 1, (2.6)
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for some scalars γi. On account of the condition
∑k

i=0 γi = 1, and because xi =
x0 +

∑i−1
j=0uj , we can rewrite (2.6) in the form

sk = x0 +

k−1
∑

j=0

ξjuj; ξj =

k
∑

i=j+1

γi, j = 0, 1, . . . , k − 1, (2.7)

which can also be expressed in matrix terms as in

sk = x0 +Uk−1ξ, ξ = [ξ0, ξ1, . . . , ξk−1]
T . (2.8)

We will make use of both representations of sk, namely, (2.6) and (2.7)–(2.8), later.
The γi and ξj for MPE are, of course, different from those for RRE, in general.

In the sequel, where confusion may arise, we will denote the vectors sk resulting
from MPE and RRE by sMPE

k and sRRE

k , respectively. Similarly, to avoid confusion, we
will denote the vectors γ = [γ0, γ1, . . . , γk]

T and ξ = [ξ0, ξ1, . . . , ξk−1]
T corresponding

to sk by γk (or γMPE

k or γRRE

k ) and ξk (or ξMPE

k or ξRRE

k ), respectively, depending on
the context. When necessary, we will also denote (i) the γi associated with γk by γki
and (ii) the ξj associated with ξk by ξkj. That is,

γk = [γk0, γk1, . . . , γkk]
T and ξk = [ξk0, ξk1, . . . , ξk,k−1]

T .

We now describe how the γi for MPE and RRE are determined when these methods
are defined within the context of CN endowed with a weighted inner product and the
norm induced by it.

2.2 Definition of the γi for MPE and RRE

2.2.1 The γi for MPE

Solve by least squares the linear overdetermined system of equations

k−1
∑

i=0

ciui = −uk (2.9)

for c0, c1, . . . , ck−1. Clearly, this system can be expressed in matrix form as in

Uk−1c
′ = −uk; c′ = [c0, c1, . . . , ck−1]

T , (2.10)

and the least squares problem becomes

min
c′

[[U k−1c
′ + uk]]. (2.11)

Since Uk−1 has full column rank, this problem has a unique solution for c′. Next, set
ck = 1, and compute

γi =
ci

∑k
i=0 ci

, i = 0, 1, . . . , k, provided

k
∑

i=0

ci 6= 0. (2.12)

From this, we see that sk for MPE exists and is unique if and only if
∑k

i=0 ci 6= 0.
(Of course, this means that sk for MPE may fail to exist for some k in some cases.)
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2.2.2 The γi for RRE

Solve by least squares the linear overdetermined system of equations

k
∑

i=0

γiui = 0, (2.13)

subject to the constraint
∑k

i=0 γi = 1, for γ0, γ1, . . . , γk. Clearly, this system too can
be expressed in matrix form as in

Ukγ = 0, γ = [γ0, γ1, . . . , γk]
T , (2.14)

and the constrained least squares problem becomes

min
γ

[[U kγ]], subject to êTk γ = 1; êk = [1, 1, . . . , 1]T ∈ C
k+1. (2.15)

(Here êk should not be confused with the kth standard basis vector.) Since Uk is of
full column rank, this problem has a unique solution for γ. From this, it is clear that
sk for RRE exists and is unique unconditionally.

2.3 The special case k = k0

With sk for MPE and RRE already defined, we start with a discussion of the case in
which k = k0.

Theorem 2.1 Let {xm} be an arbitrary sequence, and let MPE and RRE be as defined
above.

1. Provided sMPE

k0
exists, we have sMPE

k0
= sRRE

k0
.

2. Assume the sequence {xm} is generated via (2.1) and (2.2) with a linear f(x),
namely, with f(x) = Tx + d, where T ∈ C

N×N is some constant matrix and
d ∈ C

N is some constant vector, and (I − T ) is nonsingular. Then sMPE

k0
exists,

and there holds sMPE

k0
= sRRE

k0
= s, s being the (unique) solution to x = Tx+ d.

In this case, k0 is the degree of the minimal polynomial of T with respect to the
vector u0.

Proof. We start by observing that the matrix Uk0−1 has full rank and that the vector
uk0 is a linear combination of u0,u1, . . . ,uk0−1. As a result, the linear system in (2.10)
is consistent, hence has a unique solution for c′ in the regular sense, this solution being
also the solution to the minimization problem in (2.11). Letting ck0 = 1 and proceeding
as in (2.12), we obtain the γMPE

k0
. A similar argument based on (2.14) and (2.15) shows

that γRRE

k0
= γMPE

k0
. This proves part 1 of the theorem. Part 2 can be proved as in [32],

for example. �

Since we already know the connection between sMPE

k0
and sRRE

k0
, in the sequel, we

will consider the cases in which k < k0 strictly.
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2.4 Determination of the γi via weighted QR factorization

A numerically stable and computationally economical algorithm for computing the γi
for both MPE and RRE when M = I has been given in Sidi [25]. A nice feature
of this algorithm is that it proceeds via the QR factorization of the matrices Uk

and unifies the treatments of MPE and RRE. Of course, in order to accommodate
the weighted inner product 〈· , ·〉 and the norm [[·]] induced by it, we need a different
algorithm. Interestingly, an algorithm that is very similar (in fact, identical in form)
to the one developed in [25] can be formulated for this case. This can be accomplished
by proceeding via the weighted QR factorization of Uk. Even though this algorithm,
just as that in [25], is designed for computational purposes, it turns out to be very
useful for the theoretical study of this work concerning the relation between MPE and
RRE. For some of the details concerning the developments that follow next, we refer
the reader to [25].

We start with the weighted QR factorization of Uk. Since U k is of full column
rank, by Theorem 1.1, it has a unique weighted QR factorization given as in

Uk = QkRk; Qk ∈ C
N×(k+1), Rk ∈ C

(k+1)×(k+1), (2.16)

where Qk is unitary in the sense that Q∗
kMQk = Ik+1 since k < N , and Rk is upper

triangular with positive diagonal elements; that is,

Qk = [ q0 | q1 | · · · | qk ], Rk =











r00 r01 · · · r0k
r11 · · · r1k

. . .
...

rkk











, (2.17)

q∗iMqj = δij ∀ i, j; rij = q∗
iMuj ∀ i ≤ j; rii > 0 ∀ i. (2.18)

(Note that, having positive diagonal elements and being upper triangular, Rk is also
nonsingular.) Clearly, just as Uk has the partitioning Uk = [Uk−1 |uk ], Qk and Rk

have the partitionings

Qk = [Qk−1 | qk] and Rk =

[

Rk−1 ρk

0T rkk

]

, ρk = [r0k, r1k, . . . , rk−1,k]
T . (2.19)

We will make use of the following easily verifiable lemma in the sequel:

Lemma 2.2 Let
P ∈ C

N×j and P ∗MP = Ij .

Then
〈Py,Pz〉 = y∗z = (y,z) and [[Pz]] =

√
z∗z = ‖z‖.

By this lemma, for arbitrary k, we have

〈Qky,Qkz〉 = y∗z = (y,z) and [[Qkz]] =
√
z∗z = ‖z‖ (2.20)

and
[[U kz]] = ‖Rkz‖. (2.21)

Of these, (2.20) follows from Q∗
kMQk = Ik+1, while (2.21) follows from Uk = QkRk

and (2.20).

7



2.4.1 Determination of γk for MPE

Let us fix ck = 1 and let c = [c0, c1, . . . , ck]
T =

[

c′

1

]

. Then we have

Uk−1c
′ + uk = Ukc ⇒ [[U k−1c

′ + uk]] = [[U kc]] = ‖Rkc‖.

As a result, the minimization problem in (2.11) becomes,

min
c′

‖Rkc‖.

By (2.19),

Rkc =

[

Rk−1 ρk

0T rkk

] [

c′

1

]

=

[

Rk−1c
′ + ρk

rkk

]

, (2.22)

which, upon taking norms, yields

‖Rkc‖2 = ‖Rk−1c
′ + ρk‖2 + r2kk.

Clearly, by the fact that Rk−1 is a nonsingular k × k matrix, the minimum of ‖Rkc‖
with respect to c′ is achieved when c′ satisfies

Rk−1c
′ + ρk = 0 ⇒ Rk−1c

′ = −ρk ⇒ c′ = −R−1
k−1ρk. (2.23)

Note that c′ is unique, and so is c.

With c′ = −R−1
k−1ρk, the vector γk in MPE is obtained as in

γMPE

k =
c

êTk c
, c =

[

c′

1

]

. (2.24)

Of course, this is valid only when êTk c =
∑k

i=0 ci 6= 0, hence only when sMPE

k exists.
The vector c exists uniquely whether sMPE

k exists or not, however.

2.4.2 Determination of γk for RRE

Again by (2.21), the minimization problem in (2.15) becomes

min
γ

‖Rkγ‖, subject to êTk γ = 1,

and equivalently,
min
γ

γ∗(R∗
kRk)γ, subject to êTk γ = 1.

By the lemma in [25, Appendix A], the solution for the vector γk in RRE proceeds
through the following steps:

R∗
kRkh = êk, h = [h0, h1, . . . , hk]

T (solve for h). (2.25)

λ =
1

∑k
i=0 hi

=
1

êTk h
(λ > 0 always). (2.26)

γRRE

k = λh. (2.27)
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Note that h can be determined by solving two (k + 1)-dimensional triangular linear
systems, namely, (i)R∗

ky = êk for y and (ii)Rkh = y for h.

For our theoretical study, we need to have γk in analytical form. This is achieved
as follows: Substituting h = (R∗

kRk)
−1êk from (2.25) in (2.26) and (2.27), we have

λ =
1

êTk (R
∗
kRk)−1êk

=
1

‖R−∗
k êk‖2

(2.28)

and

γRRE

k =
(R∗

kRk)
−1êk

êTk (R
∗
kRk)−1êk

=
R−1

k (R−∗
k êk)

‖R−∗
k êk‖2

. (2.29)

[Here and in the sequel, B−∗ stands for (B∗)−1 = (B−1)∗.]

2.5 Unified algorithm for MPE and RRE

Once the γk have been computed as described above, the computation of sk can be
achieved via (2.7)–(2.8) as follows: First, we compute the vector ξk = [ξ0, ξ1, . . . , ξk]

T

via (2.7), and then, by invoking Uk−1 = Qk−1Rk−1, we compute sk via (2.8), as in

sk = x0 +Qk−1(Rk−1ξk) = x0 +

k−1
∑

i=0

ηiqi;

η = Rk−1ξk, η = [η0, η1, . . . , ηk−1]
T . (2.30)

For convenience, we give a complete description of the unified algorithm in Table 2.1.

2.6 Error assessment

Let us now return to the system of equations in (2.1). If x is an approximation to the
solution s of this system, then one good measure of the accuracy of x is (some norm
of) the residual vector r(x) corresponding to x that is given by

r(x) = f(x)− x. (2.31)

This is natural because limx→s r(x) = r(s) = 0. In case the sequence {xm} is being
generated as in (2.2) for solving (2.1), our measure for the quality of sk will then be
r(sk). The following have been shown in [25]:

• When f(x) is linear [that is, f(x) = Tx+d for some constant matrix T ∈ C
N×N

and constant vector d ∈ C
N ], r(sk) = Ukγk exactly.

• When f(x) is nonlinear, Ukγk serves as an approximation to r(sk), that is,
r(sk) ≈ U kγk, and Ukγk gets closer and closer to r(sk) as convergence is ap-
proached.

In addition, for both MPE and RRE, [[U kγk]], the weighted norm of Ukγk, can be
obtained, without actually computing Ukγk and taking its norm; it can be obtained
very simply in terms of the quantities already provided by the algorithm we have just
described. This is the subject of the next theorem.
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Table 2.1: Unified algorithm for implementing MPE and RRE.

Step 0. Input: The hermitian positive definite matrix M ∈ C
N×N , the integer k,

and the vectors x0,x1, . . . ,xk+1.

Step 1. Compute ui = ∆xi = xi+1 − xi, i = 0, 1, . . . , k.
Set U j = [u0 |u1 | · · · |uj ] ∈ C

N×(j+1), j = 0, 1, . . . .
Compute the weighted QR factorization of U k, namely, Uk = QkRk;
Qk = [q0 | q1 | · · · | qk] unitary in the sense Q∗

kMQk = Ik+1, and
Rk = [rij ]0≤i,j≤k upper triangular, rij = q∗iMuj.
(Uk−1 = Qk−1Rk−1 is contained in Uk = QkRk.)

Step 2. Computation of γk = [γ0, γ1, . . . , γk]
T :

For MPE:
Solve the (upper triangular) linear system

Rk−1c
′ = −ρk; ρk = [r0k, r1k, . . . , rk−1,k]

T , c′ = [c0, c1, . . . , ck−1]
T .

(Note that ρk = Q∗
k−1Muk.)

Set ck = 1 and compute α =
∑k

i=0 ci.
Set γk = c/α; that is, γi = ci/α, i = 0, 1, . . . , k, provided α 6= 0.

For RRE:
Solve the linear system

R∗
kRkh = êk; h = [h0, h1, . . . , hk]

T , êk = [1, 1, . . . , 1]T ∈ C
k+1.

[This amounts to solving two triangular (lower and upper) systems.]

Set λ =
(
∑k

i=0 hi
)−1

. (Note that λ is real and positive.)
Set γk = λh; that is, γi = λhi, i = 0, 1, . . . , k.

Step 3. Compute ξk = [ξ0, ξ1, . . . , ξk−1]
T by

ξ0 = 1− γ0; ξj = ξj−1 − γj, j = 1, . . . , k − 1.

Compute sMPE

k and sRRE

k via

sk = x0 +Qk−1

(

Rk−1ξk
)

= x0 +Qk−1η.

[For this, first compute η = Rk−1ξk, η = [η0, η1, . . . , ηk−1]
T .

Next, set sk = x0 +
∑k−1

i=0 ηiqi.]
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Theorem 2.3 The vectors Ukγ
MPE

k and Ukγ
RRE

k satisfy

[[U kγ
MPE

k ]] = rkk|γk| and [[U kγ
RRE

k ]] =
√
λ. (2.32)

Remarks.

1. Of course, γk in (2.32) is γMPE

kk , namely, the last component of the vector γMPE

k

corresponding to sMPE

k . Similarly, λ in (2.32) is as defined in (2.26) for sRRE

k .

2. Clearly, (2.32) is valid for all sequences {xm}, whether these are generated by a
(linear or nonlinear) fixed-point iterative scheme or otherwise.

Proof. By (2.21), we have that [[U kγk]] = ‖Rkγk‖. Therefore, it is enough to look at
‖Rkγ

MPE

k ‖ and ‖Rkγ
RRE

k ‖.
For MPE, by (2.22), (2.23), and (2.24), with γk = 1/êTk c, we have

Rkγ
MPE

k =
1

êTk c
(Rkc) = γk

[

0

rkk

]

= rkkγk

[

0

1

]

.

Taking norms on both sides, we obtain the result for MPE.

As for RRE, by (2.29), we have

Rkγ
RRE

k =
R−∗

k êk

‖R−∗
k êk‖2

.

Taking norms on both sides, and invoking (2.28), we obtain the result for RRE. �

3 MPE and RRE are related

We now turn to the study of the relation between MPE and RRE. We do this by
analyzing the vectors Ukγk for both methods. We begin by restating that since

U kγk = Qk(Rkγk) and [[Ukγk]] = ‖Rkγk‖, (3.1)

and since Qk and Rk are the same for both MPE and RRE, the vector that is of
relevance for both methods is Rkγk, and we turn to the study of this vector. In
addition, we express everything in terms of the vectors c′ and c and the matrices Qk

and Rk, which do not depend either on sMPE

k or sRRE

k . In the developments that follow,
we will also recall that ‖y‖ =

√
y∗y always.

3.1 Rkγk for MPE and RRE and an identity

Assuming that sMPE

k exists, hence êTk c 6= 0, by (2.24), we first have

Rkγ
MPE

k =
1

êTk c
Rkc,

which, upon invoking (2.22) and (2.23), becomes

Rkγ
MPE

k =
rkk

êTk c

[

0

1

]

. (3.2)
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Of course, this immediately implies that

‖Rkγ
MPE

k ‖ =
rkk

|êTk c|
. (3.3)

As for RRE, by (2.29), we have

Rkγ
RRE

k =
R−∗

k êk

‖R−∗
k êk‖2

. (3.4)

Of course, this immediately implies that

‖Rkγ
RRE

k ‖ =
1

‖R−∗
k êk‖

⇒ R−∗
k êk =

Rkγ
RRE

k

‖Rkγ
RRE

k ‖2 . (3.5)

We now go on to study R−∗
k êk in more detail. First, by (2.19) and (2.23),

R−1
k =

[

R−1
k−1 c′/rkk
0T 1/rkk

]

⇒ R−∗
k =

[

R−∗
k−1 0

c′∗/rkk 1/rkk

]

. (3.6)

Consequently, invoking also êk =

[

êk−1

1

]

, we have

R−∗
k êk =

[

R−∗
k−1 0

c′∗/rkk 1/rkk

] [

êk−1

1

]

=

[

R−∗
k−1êk−1

c′∗êk−1/rkk + 1/rkk

]

=

[

R−∗
k−1êk−1

êTk c/rkk

]

, (3.7)

which, by (3.5), can also be expressed as in

1

‖Rkγ
RRE

k ‖2Rkγ
RRE

k =
1

‖Rk−1γ
RRE

k−1‖2
[

Rk−1γ
RRE

k−1

0

]

+
êTk c

rkk

[

0

1

]

. (3.8)

Clearly, (3.8) is an identity for RRE relating sRRE

k−1 and sRRE

k ; we will make use of it
in the developments of the next subsection. (Here t stands for the complex conjugate
of t.)

Remark. Recall that the vector c exists uniquely for all k < k0. Thus, (3.8) is valid
whether sMPE

k exists or not.

3.2 Main results

The following theorem is our first main result, and concerns the case in which sMPE

k

does not exist and RRE stagnates.

Theorem 3.1 1. In case sMPE

k does not exist, there holds

sRRE

k = sRRE

k−1, (3.9)

which also implies
Ukγ

RRE

k = Uk−1γ
RRE

k−1. (3.10)
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2. Conversely, if (3.9) holds, then sMPE

k does not exist.

Proof. The proof is based on the fact that sMPE

k exists if and only if êTk c 6= 0.

Proof of part 1: Since êTk c = 0 when sMPE

k does not exist, by (3.8),

1

‖Rkγ
RRE

k ‖2Rkγ
RRE

k =
1

‖Rk−1γ
RRE

k−1‖2
[

Rk−1γ
RRE

k−1

0

]

. (3.11)

Taking Euclidean norms in (3.11), we obtain

‖Rkγ
RRE

k ‖ = ‖Rk−1γ
RRE

k−1‖, (3.12)

which, upon substituting back in (3.11), gives

Rkγ
RRE

k =

[

Rk−1γ
RRE

k−1

0

]

= Rk

[

γRRE

k−1

0

]

. (3.13)

By the fact that Rk is nonsingular, it follows that

γRRE

k =

[

γRRE

k−1

0

]

, (3.14)

which, together with (2.6), gives (3.9).

Proof of part 2: By (3.9) and (2.8), we have

sRRE

k = x0 +Uk−1ξ
RRE

k = x0 +Uk−2ξ
RRE

k−1 = sRRE

k−1, (3.15)

from which

Uk−1ξ
RRE

k = Uk−2ξ
RRE

k−1 ⇒ Uk−1ξ
RRE

k = Uk−1

[

ξRRE

k−1

0

]

. (3.16)

By the fact that Uk−1 is of full column rank, (3.16) implies that

ξRRE

k =

[

ξRRE

k−1

0

]

, (3.17)

which, when combined with the relation [ξkj =
∑k

i=j+1 γki, by which, ξk,k−1 = γkk] in
(2.7), gives (3.14). Multiplying both sides of (3.14) on the left by Rk, we obtain

Rkγ
RRE

k =

[

Rk−1γ
RRE

k−1

0

]

⇒ ‖Rkγ
RRE

k ‖ = ‖Rk−1γ
RRE

k−1‖. (3.18)

Substituting (3.18) in (3.8), we obtain êTk c = 0, and this completes the proof. �

Remark. What Theorem 3.1 is saying is that the stagnation of RRE (in the sense
that sRRE

k = sRRE

k−1) and the failure of sMPE

k to exist take place simultaneously. In
addition, this phenomenon is of a universal nature because it is independent of how
the sequence {xm} is generated.

The next theorem is our second main result, and concerns the general case in which
sMPE

k exists.
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Theorem 3.2 In case sMPE

k exists, there hold

1

[[U kγ
RRE

k ]]2
=

1

[[U k−1γ
RRE

k−1]]
2
+

1

[[U kγ
MPE

k ]]2
(3.19)

and
Ukγ

RRE

k

[[U kγ
RRE

k ]]2
=

Uk−1γ
RRE

k−1

[[Uk−1γ
RRE

k−1]]
2
+

Ukγ
MPE

k

[[U kγ
MPE

k ]]2
. (3.20)

Consequently, we also have

sRRE

k

[[U kγ
RRE

k ]]2
=

sRRE

k−1

[[Uk−1γ
RRE

k−1]]
2
+

sMPE

k

[[U kγ
MPE

k ]]2
. (3.21)

In addition,
[[Ukγ

RRE

k ]] < [[Uk−1γ
RRE

k−1]]. (3.22)

Proof. Since sMPE

k exists, we have êTk c 6= 0. Taking the Euclidean norm of both sides
in (3.8), and observing that the two terms on the right-hand side are orthogonal to
each other in the Euclidean inner product, we first obtain

1

‖Rkγ
RRE

k ‖2 =
1

‖Rk−1γ
RRE

k−1‖2
+

( |êTk c|
rkk

)2

, (3.23)

which, upon invoking (3.3), gives

1

‖Rkγ
RRE

k ‖2 =
1

‖Rk−1γ
RRE

k−1‖2
+

1

‖Rkγ
MPE

k ‖2 . (3.24)

The result in (3.19) follows from (3.24) and (3.1).

Next, invoking (3.2) and (3.3) in (3.8), we obtain

1

‖Rkγ
RRE

k ‖2Rkγ
RRE

k =
1

‖Rk−1γ
RRE

k−1‖2
[

Rk−1γ
RRE

k−1

0

]

+
1

‖Rkγ
MPE

k ‖2Rkγ
MPE

k . (3.25)

Multiplying both sides of (3.25) on the left by Qk, and invoking (3.1) and

Qk

[

Rk−1γ
RRE

k−1

0

]

= [Qk−1 | qk ]

[

Rk−1γ
RRE

k−1

0

]

= Qk−1(Rk−1γ
RRE

k−1) = Uk−1γ
RRE

k−1,

(3.26)
we obtain (3.20).

Let us rewrite (3.20) in the form

1

[[U kγ
RRE

k ]]2
Ukγ

RRE

k =
1

[[U k−1γ
RRE

k−1]]
2
Uk

[

γRRE

k−1

0

]

+
1

[[U kγ
MPE

k ]]2
Ukγ

MPE

k . (3.27)

From (3.27) and by the fact that Uk is of full column rank, it follows that

1

[[Ukγ
RRE

k ]]2
γRRE

k =
1

[[U k−1γ
RRE

k−1]]
2

[

γRRE

k−1

0

]

+
1

[[U kγ
MPE

k ]]2
γMPE

k , (3.28)

and this, together with (2.6), gives (3.21).
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Finally, (3.22) follows directly from (3.19). �

The following facts can be deduced directly from (3.19):

[[U kγ
MPE

k ]] =
[[Ukγ

RRE

k ]]
√

1− ([[U kγ
RRE

k ]]/[[U k−1γ
RRE

k−1]])
2

when sMPE

k exists. (3.29)

1

[[U kγ
RRE

k ]]2
=

∑

i∈Sk

1

[[U iγ
MPE

i ]]2
; Sk = {0 ≤ i ≤ k : sMPE

i exists}. (3.30)

3.3 Implications of Theorems 3.1 and 3.2

Let us go back to the case in which {xm} is generated as in xm+1 = f(xm), m =
0, 1, . . . , from the system x = f(x). As we have already noted, with the residual
associated with an arbitrary vector x defined as r(x) = f(x) − x, (i)Ukγk = r(sk)
when f(x) is linear, and (ii)U kγk ≈ r(sk) when f(x) is nonlinear and sk is close
to the solution s of x = f(x). Then, Theorem 3.2 [especially (3.29)] implies that
the convergence behaviors of MPE and RRE are interrelated in the following sense:
MPE and RRE either converge well simultaneously or perform poorly simultaneously.
Letting φMPE

k = [[U kγ
MPE

k ]] and φRRE

k = [[U kγ
RRE

k ]], and recalling that φRRE

k /φRRE

k−1 ≤ 1
for all k, we have the following: (i) When φRRE

k /φRRE

k−1 is significantly smaller than 1,
which means that RRE is performing well, φMPE

k is close to φRRE

k , that is, MPE is
performing well too, and (ii) when φMPE

k is increasing, that is, MPE is performing
poorly, φRRE

k /φRRE

k−1 is approaching 1, that is, RRE is performing poorly too. Thus,

when the graph of φMPE

k has a peak for k̃1 ≤ k ≤ k̃2, then the graph of φRRE

k has a
plateau for k̃1 ≤ k ≤ k̃2. This is known as the peak-plateau phenomenon in the context
of Krylov subspace methods for linear systems.

4 Connection with Krylov subspace methods and con-

cluding remarks

4.1 MPE and RRE on linear systems

Consider again the linear system of equations x = Tx+ d, where the matrix (I − T )
is nonsingular, and generate {xm} via xm+1 = Txm + d, m = 0, 1, . . . , with some
initial vector x0. Apply MPE and RRE to {xm} to obtain the vectors sk as before.
As already stated, Ukγk = rk = r(sk), where r(x) = (Tx + d) − x is the residual
vector for the system (I − T )x = d associated with x. In this case, we have the next
theorem as a corollary of Theorems 3.1 and 3.2:

Theorem 4.1 Let the sequence {xm} be generated recursively via xm+1 = Txm + d,
m = 0, 1, . . . , the matrix (I−T ) being nonsingular. Let also r(x) = Tx+d−x be the
residual vector corresponding to x. Let k0 be the degree of the minimal polynomial of
T with respect to u0 = x1 −x0. Then, for k < k0, the vectors sMPE

k and sRRE

k obtained
by applying MPE and RRE to {xm} and their residual vectors r(sMPE

k ) = rMPE

k and
r(sRRE

k ) = rRRE

k satisfy the following for this special case:
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1. sRRE

k = sRRE

k−1 if and only if sMPE

k fails to exist.

2. In case sMPE

k exists, there hold

1

[[rRRE

k ]]2
=

1

[[rRRE

k−1]]
2
+

1

[[rMPE

k ]]2
. (4.1)

rRRE

k

[[rRRE

k ]]2
=

rRRE

k−1

[[rRRE

k−1]]
2
+

rMPE

k

[[rMPE

k ]]2
. (4.2)

Consequently, we also have

sRRE

k

[[rRRE

k ]]2
=

sRRE

k−1

[[rRRE

k−1]]
2
+

sMPE

k

[[rMPE

k ]]2
. (4.3)

In addition,
[[rRRE

k ]] < [[rRRE

k−1]]. (4.4)

3. sMPE

k0
= sRRE

k0
= s, where s is the solution to (I − T )x = d.

In view of (4.1), the results in (3.29) and (3.30) become

[[rMPE

k ]] =
[[rRRE

k ]]
√

1− ([[rRRE

k ]]/[[rRRE

k−1]])
2

when sMPE

k exists (4.5)

and
1

[[rRRE

k ]]2
=

∑

i∈Sk

1

[[rMPE

i ]]2
; Sk = {0 ≤ i ≤ k : sMPE

i exists}. (4.6)

4.2 Equivalence of redefined MPE and RRE to Krylov subspace

methods for linear systems

Theorem 2.4 in [24] concerns the mathematical equivalence of vector extrapolation
methods to Krylov subspace methods, when all these methods are defined using the
standard Euclidean inner product (· , ·) and the standard norm ‖ · ‖ induced by (· , ·):
This theorem states specifically that MPE and RRE are equivalent to, respectively,
the full orthogonalization method (FOM) of Arnoldi and the method of generalized
minimal residuals (GMR) when

• MPE and RRE are being applied to the sequence {xm} obtained via xm+1 =
Txm + d, m = 0, 1, . . . , with some x0, and

• FOM and GMR are being applied to (I−T )x = d, starting with the same initial
vector x0.

As stated in Theorem 4.2 below, this theorem holds true also when MPE, RRE, FOM,
and GMR are defined using the weighted inner product 〈· , ·〉 and the weighted norm
[[·]] induced by 〈· , ·〉. In the next paragraph, we state these definitions of FOM and
GMR.

16



For a nonsingular linear system Ax = b, whose solution we denote by s, FOM
and GMR construct their approximations wk to s as follows: Define the residual
vector corresponding to x by r(x) = b −Ax and denote r0 = r(x0) for some initial
vector x0. Let Kk(A; r0) = span{r0,Ar0, . . . ,A

k−1r0}. Then, for each method, the
approximation wk to s is of the form wk = x0 + y such that y ∈ Kk(A; r0), and y is
the vector to be determined. Using the weighted inner product 〈· , ·〉 and the norm [[·]]
induced by it, these methods can be redefined as follows:

• For FOM, y is determined by requiring that 〈z, rFOM

k 〉 = 0 for all z ∈ Kk(A; r0),
where rFOM

k = r(wFOM

k ).

• For GMR, y is determined by requiring that [[rGMR

k ]] = miny∈Kk(A;r0)[[r(x0+y)]],
where rGMR

k = r(wGMR

k ).

Then we have the following generalization of Theorem 2.4 in [24]:

Theorem 4.2 Consider the nonsingular linear system (I − T )x = d. Apply FOM
and GMR to this system starting with some initial vector x0. Apply MPE and RRE
to the sequence {xm} obtained from xm+1 = Txm + d, m = 0, 1, . . . , with the same
initial vector x0. Then

wFOM

k = sMPE

k and wGMR

k = sRRE

k , (4.7)

when all four methods are defined using the same weighted inner product 〈· , ·〉 and the
norm [[·]] induced by it. Consequently, all of the results of Theorem 4.1 apply verbatim
to the vectors wFOM

k and wGMR

k .

Proof. The same as that of [24, Theorem 2.4]. �

In view of Theorem 4.2, Theorem 4.1 holds verbatim with sMPE

k , rMPE

k and sRRE

k , rRRE

k

there replaced by wFOM

k , rFOM

k and wGMR

k , rGMR

k , respectively. Of course, these results
for FOM and GMR are not new. As already mentioned, they were given originally
by Weiss [35] and by Brown [4], and developed further in the papers mentioned in
Section 1.

Note that the vectors wFOM

k and wGMR

k can be obtained numerically by modifying
the known algorithms for FOM and GMR such that the Euclidean inner product and
the associated norm are replaced by a weighted inner product and the associated
norm. This is precisely what is done in the paper by Essai [10], which was mentioned
in Section 1.
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