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Abstract

Because physical phenomena on Earth’s surface occur on many different length
scales, it makes sense when seeking an efficient approximation to start with a crude
global approximation, and then make a sequence of corrections on finer and finer
scales. It also makes sense eventually to seek fine scale features locally, rather
than globally. In the present work, we start with a global multiscale radial basis
function (RBF) approximation, based on a sequence of point sets with decreasing
mesh norm, and a sequence of (spherical) radial basis functions with proportionally
decreasing scale centered at the points. We then prove that we can “zoom in” on a
region of particular interest, by carrying out further stages of multiscale refinement
on a local region. The proof combines multiscale techniques for the sphere from Le
Gia, Sloan and Wendland, SIAM J. Numer. Anal. 48 (2010) and Applied Comp.
Harm. Anal. 32 (2012), with those for a bounded region in Rd from Wendland,
Numer. Math. 116 (2012). The zooming in process can be continued indefinitely,
since the condition numbers of matrices at the different scales remain bounded. A
numerical example illustrates the process.

1 Introduction

In many modern areas of geosciences, such as geomagnetic or gravitational field mod-
eling, the problem of interpolation from scattered data on the sphere arises naturally.
Such problems are often of multiscale nature, so one would like models that can be
used to draw conclusions globally as well as locally. For example, in modeling the
global gravitational field one should be able to see the general nature of the global field
as well as local gravitational anomalies.

Multiscale interpolation and approximation for functions on the unit sphere has
been considered by a number of authors using different techniques. Some authors
used wavelets defined on spheres [2, 24], but these are not suitable for scattered data.
Other authors have proposed kernel methods based on truncations of the expansions
of some special kernels into spherical harmonics [5, 18, 15]; these methods require a
quadrature scheme on the sphere which can integrate spherical polynomials exactly,
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but the construction of a good quadrature based on scattered data is itself a non-trivial
problem [6, 8, 11, 4, 16].

In recent articles [12, 13], we proposed a multiscale interpolation framework using
radial basis functions for functions that lie in Sobolev spaces defined on the unit sphere.
The theory underlying our multiscale method will work for scattered data. In this
paper we introduce a “zooming-in” framework, which allows the multiscale algorithm
to model the data from the global scale and then zoom in to local regions. We do
this by combining multiscale techniques for the sphere with those for a bounded region
established in [27].

The paper is organised as follows. In Section 2 we review necessary materials
about Sobolev spaces on spheres and positive definite kernels defined via radial basis
functions (RBFs). The global and local multiscale algorithm using spherical RBFs is
then introduced in Section 3. A convergence results for functions in the native space in
given there. The next section, Section 4, deals with convergence results for function in
Sobolev spaces with lesser smoothness. Finally we conclude the paper with numerical
experiments given in Section 5.

2 Preliminaries

In this section, we will introduce necessary materials for the main results presented in
the paper.

2.1 Sobolev spaces on the unit sphere

Let Sd be the unit sphere in Rd+1. Denote the inner product in L2(Sd) by

〈v, w〉 :=

∫
Sd
vwdS,

where dS is the surface measure on the unit sphere, and denote the measure of the
whole sphere by ωd (so, for example, ω2 = 4π). Recall [17] that a spherical harmonic is
the restriction to Sd of a homogeneous harmonic polynomial Y (x) in Rd+1. The space
of all spherical harmonics of degree ` on Sd, denoted by H`, has an L2 orthonormal
basis

{Y`,k : k = 1, . . . , N(d, `)},

where

N(d, 0) = 1 and N(d, `) =
(2`+ d− 1)Γ(`+ d− 1)

Γ(`+ 1)Γ(d)
for ` ≥ 1.

The space of spherical harmonics of degree ≤ L will be denoted by PL := ⊕L`=0H`; it
has dimension N(d+ 1, L).

Every function f ∈ L2(Sd) can be expanded in terms of spherical harmonics,

f =

∞∑
`=0

N(d,`)∑
k=1

f̂`,kY`,k, f̂`,k = 〈f, Y`,k〉 .
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For a non-negative parameter σ, the Sobolev space Hσ(Sd) may be defined by

Hσ(Sd) :=

f ∈ L2(Sd) : ‖f‖2Hσ(Sd) :=
∞∑
`=0

N(d,`)∑
k=1

(1 + `)2σ|f̂`,k|2 <∞

 . (1)

Note that H0(Sd) = L2(Sd).
Sobolev spaces on Sd can also be defined using local charts (see [14]). Here we use

a specific atlas of charts, as in [9].
Let z be a given point on Sd. The spherical cap centered at z of radius θ is defined

by

G(z, θ) := {y ∈ Sd : cos−1(z · y) < θ}, θ ∈ (0, π),

where z · y denotes the Euclidean inner product of z and y in Rd+1.
Let n̂ and ŝ denote the north and south poles of Sd, respectively. Then a simple

cover for the sphere is provided by

U1 = G(n̂, θ0) and U2 = G(ŝ, θ0), where θ0 ∈ (π/2, 2π/3). (2)

The stereographic projection σn̂ of the punctured sphere Sd\{n̂} onto Rd is defined as a
mapping that maps x ∈ Sd\{n̂} to the intersection of the equatorial hyperplane {z = 0}
and the extended line that passes through x and n̂. The stereographic projection σŝ
based on ŝ can be defined analogously. We set

ψ1 =
1

tan(θ0/2)
σŝ|U1 and ψ2 =

1

tan(θ0/2)
σn̂|U2 , (3)

so that ψk, k = 1, 2, maps Uk onto B(0, 1), the unit ball in Rd. We conclude that
A = {Uk, ψk}k=1,2 is a C∞ atlas of covering coordinate charts for the sphere. It is
known (see [21]) that the stereographic coordinate charts {ψk}k=1,2 as defined in (3)
map spherical caps to Euclidean balls, but in general concentric spherical caps are not
mapped to concentric Euclidean balls. The projection ψk, for k = 1, 2, does not distort
too much the geodesic distance between two points x,y ∈ Sd, as shown in [10].

With the atlas so defined, we define the map πk which takes a real-valued function
g with compact support in Uk into a real-valued function on Rd by

πk(g)(x) =

{
g ◦ ψ−1

k (x), if x ∈ B(0, 1),
0, otherwise .

Let {χk : Sd → R}k=1,2 be a partition of unity subordinated to the atlas, i.e., a pair of
non-negative infinitely differentiable functions χk on Sd with compact support in Uk,
such that

∑
k χk = 1. For any function f : Sd → R, we can use the partition of unity

to write

f =
2∑

k=1

χkf, where (χkf)(x) = χk(x)f(x), x ∈ Sd.

The Sobolev space Hσ(Sd) is then the set{
f ∈ L2(Sd) : πk(χkf) ∈ Hσ(Rd) for k = 1, 2

}
,
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which is equipped with the norm

|||f |||Hσ(Sd) :=

(
2∑

k=1

‖πk(χkf)‖2Hσ(Rd)

)1/2

. (4)

This norm is equivalent to the Hσ(Sd) norm given in (1) (see [14]). From now on we
will use only the ‖ · ‖ notation for the equivalent norms.

We recall that [1] the Sobolev space Hσ(Rd) is the set{
f ∈ L2(Rd) :

∫
Rd
|F(f)(ω)|2(1 + ‖ω‖22)σdω <∞

}
,

where F(f) is the usual Fourier transform

F(f)(ω) = (2π)−d/2
∫
Rd
f(x)e−ix

Tωdx.

Before introducing local Sobolev spaces on subdomains of the unit sphere, let us
recall a few key definitions on Sobolev spaces defined on a given bounded domain D in
Rd. For a given non-negative integer m, the Sobolev space Hm(D) consist of all f with
weak derivatives Dαf ∈ L2(D), |α| ≤ m. The semi-norms and norms are defined by

|f |Hm(D) =

 ∑
|α|=m

‖Dαf‖2L2(D)

1/2

and ‖f‖Hm(D) =

 ∑
|α|≤m

‖Dαf‖2L2(D)

1/2

.

For m ∈ N0, 0 < s < 1, the fractional Sobolev spaces Hm+s(D) is defined to be the set
of all f for which the following semi-norm and norm

|f |Hm+s(D) :=

 ∑
|α|=m

∫
D

∫
D

|Dαf(x)−Dαf(y)|2

‖x− y‖d+2s
2

1/2

‖f‖Hm+s(D) := (‖f‖2Hm(D) + |f |Hm+s(D))
1/2

are finite.
Let Ω ⊂ Sd be an open connected set with sufficiently smooth boundary. In order

to define the spaces on Ω, let Dk = ψk(Ω ∩ Uk) for k = 1, 2. The local Sobolev space
Hσ(Ω) is defined to be the set

{f ∈ L2(Ω) : πk(χkf)|Dk ∈ H
σ(Dk) for k = 1, 2, Dk 6= ∅} ,

which is equipped with the norm

‖f‖Hσ(Ω) =

(
2∑

k=1

‖πk(χkf)|Dk‖
2
Hσ(Dk)

)1/2

(5)

where, if Ω = ∅, then we adopt the convention that ‖ · ‖Hσ(Dk) = 0.
We observe, following [9], that there exists a positive constant CA, depending on

A and the partition of unity {χ1, χ2}, such that the geodesic distance of supp χk from
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the boundary of Uk is strictly greater than CA. A spherical cap G(z, θ) with θ < CA/3
will have its closure being a subset of at least one of the open subsets U1 or U2, defined
by (2), and if the cap G(z, θ) is not a subset of one of these subsets, say U2, then its
intersection with supp χ2 must be empty.

Now we state an extension theorem for a spherical cap on the sphere.

Theorem 2.1 (Extension operator) Let Ω = G(z, θ) be a spherical cap for some
z ∈ Sd and θ < CA/3. There is an extension operator E : Hν(Ω) → Hν(Sd) for all
ν ≥ 0, with E independent of ν, such that

1. Ef |Ω = f for all f ∈ Hν(Ω),

2. ‖Ef‖Hν(Sd) ≤ Cν‖f‖Hν(Ω).

Proof: The case of ν being an integer was proved in [9, Theorem 4.3]. The framework
for the case of fractional order ν is also available in [9] even if the explicit statement is
not given there. For the sake of completeness, we give the proof here.

When ν is not an integer, let k be the non-negative integer for which ν = k+s, with
s ∈ (0, 1). By [9, Theorem 4.3], there is an extension operator which maps Hk+i(Ω) to
Hk+i(Sd) and there are constants Ck,i for i = 0, 1 so that

‖Ef‖Hk+i(Sd) ≤ Ck,i‖f‖Hk+i(Ω), i = 0, 1.

Using the operator interpolation property (see [25]) we conclude that E is a bounded
linear map from Hν(Ω) to Hν(Sd) and

‖Ef‖Hν(Sd) ≤ C1−s
k,0 C

s
k,1‖f‖Hν(Ω).

Property 1) follows from the fact that Hν(Sd) ⊂ Hk(Sd) and Hν(Ω) ⊂ Hk(Ω). 2

2.2 Positive definite kernels on the unit sphere

A continuous function Φ : Sd × Sd → R we call a positive semi-definite kernel [23, 28]
on Sd if it satisfies the following conditions:

(i) Φ is continuous,

(ii) Φ(x,y) = Φ(y,x) for all x,y ∈ Sd,

(iii) For any set of distinct scattered points X = {x1, . . . ,xK} ⊂ Sd, the symmetric
K ×K-matrix [Φ(xp,xq)] is positive semi-definite.

We call Φ positive definite if the matrix is positive definite.
We will work with a zonal kernel Φ defined in terms of a univariate function φ :

[−1, 1]→ R by
Φ(x,y) = φ(x · y) for all x, y ∈ Sd. (6)

Following Müller [17], let P`(t) denote the Legendre polynomial of degree ` for Rd+1,
and expand φ(t) in a Fourier–Legendre series
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φ(t) =
1

ωd

∞∑
`=0

N(d, `) φ̂(`)P`(t). (7)

Due to the addition formula for spherical harmonics [17, page 10]

N(n,`)∑
k=1

Y`,k(x)Y`,k(y) =
N(d, `)

ωd
P`(x · y), (8)

the kernel Φ can be represented as

Φ(x,y) =

∞∑
`=0

N(d,`)∑
k=0

φ̂(`)Y`,k(x)Y`,k(y), x,y ∈ Sd.

and since P`(1) = 1 we find that

‖Φ(x, ·)‖2Hσ(Sd) =
1

ωd

∞∑
`=0

(1 + `)2σ(φ̂(`))2N(d, `), for all x ∈ Sd. (9)

Chen et al. [3] proved that the kernel Φ is positive definite if and only if φ̂(`) ≥ 0
for all ` ≥ 0 and φ̂(`) > 0 for infinitely many even values of ` and infinitely many odd
values of `; see also Schoenberg [23] and Xu and Cheney [28]. Here, we assume there is
a σ > d/2 and there are positive constants c1 and c2 such that

c2
1(1 + `)−2σ ≤ φ̂(`) ≤ c2

2(1 + `)−2σ, for all ` ≥ 0, (10)

hence, Φ is positive definite. Also, since N(d, `) = O(`d−1) as ` → ∞, the sum (9)
is finite for each fixed x ∈ Sd. Thus the function y 7→ Φ(x,y) belongs to Hσ(Sd).
Moreover, this function is continuous by the Sobolev imbedding theorem.

The reproducing kernel Hilbert space (RKHS) (also called the native space) induced
by Φ is defined to be

NΦ =

f ∈ L2(S2) : ‖f‖2Φ :=
∞∑
`=0

N(d,`)∑
k=1

|f̂`,k|2

φ̂(`)
<∞

 . (11)

Alternatively, NΦ is the completion of span{Φ(·,x) : x ∈ Sd} with respect to the norm
‖ · ‖Φ. The norm is associated with the following inner product

(f, g)Φ =
∞∑
`=0

N(d,`)∑
k=1

f̂`,kĝ`,k

φ̂(`)
, f, g ∈ NΦ.

The kernel Φ has the reproducing property with respect to this inner product, that is

f(x) = (f,Φ(·,x))Φ, x ∈ Sd, f ∈ NΦ. (12)

It follows from (10) that the norms in Hσ(Sd) and NΦ are equivalent.
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2.3 Kernels defined from radial basis functions

Let Π : Rd+1 → R be a compactly supported radial basis function (RBF) with associated
RKHS Hτ (Rd+1) with τ > (d + 1)/2. Examples of such RBFs are the Wendland
functions (see [26]).

By restricting the function Π to the unit sphere Sd ⊂ Rd+1, we have a positive
definite, zonal kernel on the unit sphere

Φ(x,y) = Π(x− y), x,y ∈ Sd.

Lemma 2.2 (Native spaces) Let Π : Rd+1 → R be a positive definite function with
native space NΠ(Rd+1) = Hτ (Rd+1) with τ > (d + 1)/2. Then NΦ(Sd) = Hσ(Sd) with
σ = τ − 1

2 .

Proof: Using [19, Proposition 4.2], we deduce that

c(1 + `)−2σ ≤ φ̂(`) ≤ C(1 + `)−2σ.

So the result follows from the definition of the Sobolev spaces (1) and the native spaces
(11) on Sd. 2

For a given δ > 0, we define the scaled version Φδ of the kernel Φ by

Φδ(x,y) = δ−dΠ((x− y)/δ). (13)

We can expand Φδ into a series of spherical harmonics

Φδ(x,y) =

∞∑
`=0

N(d,`)∑
k=1

φ̂δ(`)Y`,k(x)Y`,k(y),

in which the Fourier coefficients satisfy the following condition (see [12, Theorem 6.2])

c2
1(1 + δ`)−2σ ≤ φ̂δ(`) ≤ c2

2(1 + δ`)−2σ, (14)

with the coefficients c1 and c2 from (10) possibly relaxed so that (14) holds for all
0 < δ ≤ 1.

For a function f ∈ Hσ(Sd), we define the norm corresponding to the scaled kernel
Φδ by

‖f‖Φδ =

 ∞∑
`=0

N(d,`)∑
k=1

|f̂`,k|2

φ̂δ(`)

1/2

, (15)

and the corresponding inner product is

(f, g)Φδ =
∞∑
`=0

N(d,`)∑
k=1

f̂`,kĝ`,k

φ̂δ(`)
, f, g ∈ NΦ. (16)

Clearly the norms ‖ · ‖Φδ for different δ are all equivalent, as given in the following
lemma.
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Lemma 2.3 (Norm-equivalence) Let Π : Rd+1 → R be a reproducing kernel of
Hτ (Rd+1) with τ > (d + 1)/2. Let Φδ(x,y) = δ−dΠ((x − y)/δ) with x,y ∈ Sd. Then
with σ = τ − 1/2,

c1‖u‖Φδ ≤ ‖u‖Hσ(Sd) ≤ c2δ
−σ‖u‖Φδ

for all u ∈ Hσ(Sd).

Proof: See [12, Lemma 3.1]. 2

From (16) it follows that the reproducing property (12) extends to general δ, that
is

f(x) = (f,Φδ(x, ·))Φδ , x ∈ Sd, f ∈ Hσ(Sd). (17)

3 From global to local multiscale RBF interpolation

In this section we first consider RBF interpolation with a single scale, then turn to
multiscale interpolation, both global and local.

3.1 Interpolation using spherical RBFs

Let X = {x1, . . . ,xN} ⊂ Ω ⊆ Sd be a finite set of distinct points on Ω. We define the
mesh norm hX,Ω and the separation radius qX of this point set by

hX,Ω = sup
x∈Ω

min
xj∈X

θ(x,xj), qX =
1

2
min
i 6=j

θ(xi,xj),

where θ(x,y) = cos−1(x ·y) is the geodesic distance on Sd. If Ω is a proper subset of Sd
then we say that hX,Ω is a local mesh norm. If Ω = Sd then the mesh norm is global,
and we simply write hX .

We define the interpolation operator IX,δ associated with the set X and the kernel
Φδ by

IX,δf(x) =

N∑
j=1

bjΦδ(x,xj), IX,δf(xj) = f(xj) for all xj ∈ X. (18)

If δ = 1 then we simply write IXf instead of IX,1f . From the interpolation condition
and (17) we deduce that

(f − IX,δf,Φδ(·,xj))Φδ = f(xj)− IX,δf(xj) = 0, for all xj ∈ X.

Hence IX,δf is the orthogonal projection of f into span{Φδ(·,xj) : xj ∈ X}, from which
it follows that

‖f − IX,δf‖Φδ ≤ ‖f‖Φδ . (19)

From Lemma 2.3 we then have

‖f − IX,δf‖Hσ(Sd) ≤ c2δ
−σ‖f‖Φδ . (20)

8



Lemma 3.1 (Zeros Theorem) Let Ω ⊆ Sd be either an open connected region with
Lipschitz boundary or Ω = Sd. Assume that a finite set X ⊂ Ω has a sufficiently small
(local) mesh norm hX,Ω. Then, for any function u ∈ Hσ(Ω), σ > d/2, with u|X = 0,
for all 0 ≤ ν ≤ σ we have

‖u‖Hν(Ω) ≤ Chσ−νX,Ω‖u‖Hσ(Ω).

Proof: For Ω ⊂ Sd an open and connected set with Lipschitz boundary, the proof
follows from the zeros lemma for Lipschitz domains on a Riemannian manifold in [7,
Theorem A.11]. The case Ω = Sd was proved earlier in [10]. 2

Theorem 3.2 Let Ω ⊆ Sd be either a spherical cap that satisfies the conditions of
Theorem 2.1 or Ω = Sd. Assume that a finite set X ⊂ Ω has a sufficiently small (local)
mesh norm hX,Ω. Then,

‖f − IX,δf‖L2(Ω) ≤ Cδ−σhσX,Ω‖f‖Hσ(Ω).

In particular, when δ = 1, we have

‖f − IXf‖L2(Ω) ≤ ChσX,Ω‖f‖Hσ(Ω).

Proof: Let u := f − IX,δf , then u|X = 0. Using Lemma 3.1, we have

‖f − IX,δf‖L2(Ω) ≤ ChσX,Ω‖f − IX,δf‖Hσ(Ω).

If Ω is a spherical cap our assumptions on Ω allow us to extend the function f ∈ Hσ(Ω)
to a function Ef ∈ Hσ(Sd). Moreover, since X ⊂ Ω and Ef |Ω = f |Ω, the interpolant
IX,δf coincides with the interpolant IX,δ(Ef) on Ω. Therefore,

‖f − IX,δf‖Hσ(Ω) = ‖Ef − IX,δ(Ef)‖Hσ(Ω) ≤ C‖Ef − IX,δ(Ef)‖Hσ(Sd)

≤ Cδ−σ‖Ef‖Φδ by (20)

≤ Cδ−σ‖Ef‖Hσ(Sd) by Lemma 2.3

≤ Cδ−σ‖f‖Hσ(Ω) by Theorem 2.1.

The case Ω = Sd was proved in [12, Theorem 3.2]. 2

3.2 The global and local multiscale algorithm

Suppose X1, X2, . . . , Xm ⊂ Sd is a sequence of finite point sets with mesh norms
h1, h2, . . . , hm respectively. The mesh norms are assumed to satisfy hj+1 ≈ µhj for
some fixed µ ∈ (0, 1). After that, suppose Xm+1, Xm+2, . . . , Xn ⊂ Ω is a sequence
of point sets with local mesh norms hm+1,Ω, . . . , hn,Ω, where Ω ⊂ Sd is some open
connected subset. In future we will write hj for hXj ,Ω for all j = 1, . . . , n.

Let δ1, δ2, . . . be a decreasing sequence of positive real numbers defined by δj = νhj
for some ν > 0. Taking the scale proportional to the mesh norm in this way is desirable
for both numerical stability and efficiency, since the sparsity of the interpolation matrix
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is maintained. For every j = 1, 2, . . . we define the scaled SBF Φj := Φδj , and also define
the scaled approximation space Wj = span{Φj(·,x) : x ∈ Xj}.

We start with a widely spread set of points on the global scale and use a basis
function with scale δ1 to recover the global behavior of the function f by computing
f1 = s1 := IX1,δ1f . The error, or residual, at the first step is e1 = f − f1. To reduce
the error, at the next step we use a finer set of points X2 and a finer scale δ2, and
compute a correction s2 = IX2,δ2e1 and a new approximation f2 = f1 + s2, so that
the new residual is e2 = f − f2 = e1 − IX2,δ2e1; and so on. After m global steps we
switch to local refinement, i.e. from step (m+ 1) onwards the set Xm+1 is localized to
a small region Ω on the sphere, and the new correction sm+1 is constructed from the
local space Wm+1 and the new approximation is fm+1 = fm + sm+1. The multiscale
algorithm then is continued for a further local n−m steps.

Algorithm 1: Multiscale global/local algorithm

Data: Right hand side f , number of levels n
begin

Set f0 = 0, e0 = f .
for j = 1, 2, . . . , n do

Determine the (global or local) interpolant sj ∈Wj to ej−1

Set fj = fj−1 + sj .
Set ej = ej−1 − sj .

Result: Approximation solution fn ∈W1 + · · ·+Wn

Remark Clearly, we could continue the algorithm by choosing an even smaller region
Ω′ ⊂ Ω and a sequence of point sets Xn+1, Xn+2, . . . ⊂ Ω′, and so on, until a desired
resolution is reached. For simplicity of presentation, we restrict ourselves to the situ-
ation of one zooming-in region Ω in the subsequent error analysis (though not in the
numerical example). Extension of the convergence theory to the general case is trivial.

We will show convergence for the scheme within a spherical cap Ω.

Theorem 3.3 (Convergence for functions in Hσ(Sd)) Let X1, . . . , Xm be a sequence
of point sets in Sd and let Xm+1, . . . , Xn be a sequence of point sets in Ω ⊂ Sd, where
Ω satisfies the requirements in Theorem 2.1. Assume that we are performing m steps
of the global multilevel algorithm on Sd and then n − m steps of the local multilevel
algorithm, localised to Ω. Let h1, . . . , hm be the global mesh norms and hm+1, . . . , hn
be the local mesh norms of the sets X1, . . . , Xm and Xm+1, . . . , Xn, respectively, and
assume that, for some µ ∈ (0, 1), hj+1 = µhj, for each j = 1, . . . , n− 1.

Let Φ be a kernel generating Hσ(Sd) and let Φj := Φδj be defined by (13) with scale
factor δj = νhj where 1/h1 ≥ ν ≥ γ/µ ≥ 1 with a fixed γ > 0. Assume that the target
function f belongs to Hσ(Sd).

Then the algorithm converges in the L2(Ω) sense linearly in the number of levels.
To be more precise, there is a constant C > 0 and a constant α > 0, where α < 1 for
µ sufficiently small, such that

‖f − fn‖L2(Ω) ≤ Cαn‖f‖Hσ(Sd)

for all f ∈ Hσ(Sd).
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The theorem is a generalisation of the main result in [12].
In preparation for the proof of the theorem we first prove the following technical

lemma.

Lemma 3.4 Let ej for j = 0, . . . , n be as in Algorithm 1, and let E be the extension
operator from Ω to Sd as defined in Theorem 2.1. Then

(i) ‖ej‖Hσ(Sd) ≤ Cδ−σj ‖ej−1‖Φj for j = 1, . . . ,m,

(ii) ‖em+1‖Hσ(Ω) ≤ Cδ−σm+1‖em‖Φm+1 ,

(iii) ‖ej‖Hσ(Ω) ≤ Cδ−σj ‖Eej−1‖Φj for j = m+ 2, . . . , n.

Proof: For j = 1, . . . ,m we have, using (20),

‖ej‖Hσ(Sd) = ‖ej−1 − IXj ,δjej−1‖Hσ(Sd) ≤ Cδ−σj ‖ej−1‖Φj .

For j = m+ 2, . . . , n we have, by using the property of the extension operator and (20)

‖ej‖Hσ(Ω) = ‖ej−1 − IXj ,δjej−1‖Hσ(Ω) = ‖Eej−1 − IXj ,δjEej−1‖Hσ(Ω)

≤ C‖Eej−1 − IXj ,δjEej−1‖Hσ(Sd)

≤ Cδ−σj ‖Eej−1‖Φj .

For the intermediate case, when j = m+ 1, we avoid the extension operator by arguing
as follows

‖em+1‖Hσ(Ω) = ‖em − IXm+1,δm+1em‖Hσ(Ω) ≤ C‖em − IXm+1,δm+1em‖Hσ(Sd)

≤ Cδ−σm+1‖em‖Φm+1 .

2

Proof of Theorem 3.3. In the proof we use repeatedly the fact that ej |Xj = 0,
allowing us to use the zeros theorem (Lemma 3.1), and we also make essential use of
the extension theorem (Theorem 2.1) and Lemma 3.4.

We start by noting that

‖f − fn‖L2(Ω) = ‖en‖L2(Ω) ≤ Chσn‖en‖Hσ(Ω) = Chσn‖Een‖Hσ(Ω)

≤ Chσn‖Een‖Hσ(Sd)

≤ Chσnδ
−σ
n+1‖Een‖Φn+1

= C‖Een‖Φn+1 , (21)

where in the second-last step we use Lemma 2.3 with δ = δn+1, and in the last step
hn/δn+1 = 1/(µν) ≤ 1/γ.

The result will then follow by establishing the recursions

‖ej‖Φj+1 ≤ α‖ej−1‖Φj , j = 1, . . . ,m (22)

‖Eem+1‖Φm+2 ≤ α‖em‖Φm+1 , (23)

‖Eej‖Φj+1 ≤ α‖Eej−1‖Φj , j = m+ 2, . . . , n, (24)
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where α is some real number satisfying 0 < α < 1.
The first of these is exactly as in [12]. We shall prove the third recursion (24),

noting that (22) can then be recovered by replacing Ω by Sd and omitting the extension
operator E.

For j = m+ 2, . . . , n we have by definition of the norm (15) together with (14)

‖Eej‖2Φj+1
=

∞∑
`=0

N(d,`)∑
k=1

|(Êej)`,k|2

φ̂δj+1
(`)

≤ C
∞∑
`=0

N(d,`)∑
k=1

|(Êej)`,k|2 (1 + δj+1`)
2σ

=: I1 + I2,

where

I1 = C
∑

`≤1/δj+1

N(d,`)∑
k=1

|(Êej)`,k|2 (1 + δj+1`)
2σ

≤ C22σ
∞∑
`=0

N(d,`)∑
k=1

|(Êej)`,k|2 = C‖Eej‖2L2(Sd)

≤ C‖ej‖2L2(Ω) by Theorem 2.1

≤ Ch2σ
j ‖ej‖2Hσ(Ω) by Lemma 3.1

≤ C
(
hj
δj

)2σ

‖Eej−1‖2Φj by Lemma 3.4 iii)

= Cν−2σ‖Eej−1‖2Φj ≤ Cµ
2σ‖Eej−1‖2Φj ,

and

I2 = C
∑

`>1/δj+1

N(d,`)∑
k=1

|(Êej)`,k|2 (1 + δj+1`)
2σ

≤ C(2δj+1)2σ
∞∑
`=0

N(d,`)∑
k=1

|(Êej)`,k|2 `2σ

≤ Cδ2σ
j+1‖Eej‖2Hσ(Sd) ≤ Cδ

2σ
j+1‖ej‖2Hσ(Ω) by Theorem 2.1

≤ C
(
δj+1

δj

)2σ

‖Eej−1‖2Φj by Lemma 3.4 iii)

= Cµ2σ‖Eej−1‖2Φj .

Thus we have proved ‖Eej‖Φj+1 ≤ Cµ−σ‖Eej−1‖Φj . With µ small enough, we can
choose α = Cµσ < 1, so proving the recursion (24).

Next, we discuss the switch over from global to local. We have

em+1 = em − IXm+1,δm+1em, with Xm ⊂ Sd, Xm+1 ⊂ Ω.

12



As before, we decompose
‖Eem+1‖2Φm+2

= I1 + I2.

Now we have

I1 ≤ C‖Eem+1‖2L2(Sd)

≤ C‖em+1‖2L2(Ω)

≤ Ch2σ
m+1‖em+1‖2Hσ(Ω) by Lemma 3.1

≤ C

(
hm+1

δm+1

)2σ

‖em‖2Φm+1
by Lemma 3.4 ii).

The second term can be bounded by

I2 ≤ Cδ2σ
m+2‖Eem+1‖2Hσ(Sd) ≤ Cδ

2σ
m+2‖em+1‖2Hσ(Ω)

≤ C

(
δm+2

δm+1

)2σ

‖em‖2Φm+1
by Lemma 3.4 ii).

Hence we find
‖Eem+1‖2Φm+2

≤ Cµ2σ‖em‖2Φm+1
,

and this can be no larger than α2‖em‖2Φm+1
for µ sufficiently small.

The first recursion (22) follows by the same proof if E is omitted and Ω is replaced
by Sd.

Taken in the reverse order, the recursive steps (24), (23) and (22) give

‖Een‖Φn+1 ≤ αn−m−1‖Eem+1‖Φm+2

≤ αn−m‖em‖Φm+1

≤ αn‖e0‖Φ1 = αn‖f‖Hσ(Sd),

which together with (21) proves the desired result. 2

The following result on the condition numbers of the matrices is adapted from [12,
Theorem 7.3].

Theorem 3.5 Assume that the conditions in Theorem 3.3 hold, together with

qj ≤ hj ≤ cqqj for j = 1, 2, . . . , n with cq > 1.

There exists C > 0 such that the condition number of the interpolation matrices at each
level of the multiscale approximation in Algorithm 1 are bounded by

κ ≤ C, j = 1, . . . , n.

13



4 Escaping the native space

In this section, our target function f will be assumed to be in Hβ(Sd) for some β ∈
(d/2, σ). The extension of an approximation result to spaces rougher than the native
space is often referred as “escaping the native space”.

Let K be the reproducing kernel of the Sobolev space Hβ+1/2(Rd+1). We define the
kernel Ψ by restricting K to the sphere,

Ψ(x,y) = K(x− y), x,y ∈ Sd.

For 0 < δ ≤ 1, the scaled version of Ψ is defined by

Ψδ(x,y) = δ−dK((x− y)/δ), x,y ∈ Sd.

It can be expanded into a series of spherical harmonics as

Ψδ(x,y) =

∞∑
`=0

N(d,`)∑
k=0

ψ̂δ(`)Y`,k(x)Y`,k(y). (25)

It is known [13, Lemma 2.1] that there are positive constants c3, c4 independent of δ
and ` so that

c2
3(1 + δ`)−2β ≤ ψ̂δ(`) ≤ c2

4(1 + δ`)−2β, ` ≥ 0. (26)

We can define the RKHS with the reproducing kernel Ψδ and its norm ‖ · ‖Ψδ as
in (11) and (15). By Lemma 2.3, the norm ‖ · ‖Ψδ defined on NΨδ is equivalent to
‖ · ‖Hβ(Sd).

For the multiscale convergence theory, the sole thing that prevents us from using the
proof of Theorem 3.3 with Φδ replaced by Ψδ is that a key stability property is missing:
the orthogonal projection property (20) no longer holds. We therefore approximate a
function in Ψδ by a polynomial (which of course lies in all Sobolev spaces), and apply
the orthogonal projection property to that polynomial.

For a given smooth function f , the following lemma [13, Lemma 4.3] asserts the
existence of a spherical polynomial that interpolates f on a set of scattered points X
and, simultaneously, has a Ψδ norm comparable to that of f .

Lemma 4.1 Let f ∈ Hβ(Sd), β > d/2 and let X be a finite subset of Sd with separation
radius qX . Let δ ∈ (0, 1] be given. There exists a constant κ, which depends only on d
and β, such that if L ≥ κmax{δ/qX , 1/δ}, then there is a spherical polynomial p ∈ PL
such that pX = f |X and

‖f − p‖Ψδ ≤ 5‖f‖Ψδ .

Remark The dependence of the lower bound for L on the mesh radius qX in the last
lemma makes it necessary to impose a weak condition on qX in the following theorem.

Theorem 4.2 (Convergence outside the native space) Let X1, . . . , Xm be a se-
quence of point sets in Sd and let Xm+1, . . . , Xn be a sequence of point sets in Ω ⊂ Sd
where Ω satisfies the requirements in Theorem 2.1. Assume that we are performing m
steps of the global multilevel algorithm on Sd and then n−m steps of the local multilevel
algorithm, localised to Ω.

Let the (global or local) mesh norms h1, . . . , hn and the separation radii q1, . . . , qn
satisfy

14



(i) hj+1 = µhj for j = 1, . . . , n with µ ∈ (0, 1),

(ii) qj ≤ hj ≤ cq
√
qj for j = 1, 2, . . . , n.

Let Φ be a kernel generating Hσ(Sd) and let Φj := Φδj be defined by (13) with scale
factor δj = νhj where 1/h1 ≥ ν ≥ γ/µ ≥ 1 with a fixed γ > 0. Let Ψ be a kernel
generating Hβ(Sd) with σ > β > d/2 and let Ψj := Ψδj be the scaled version (25)using

the scale factor δj. Assume that the target function f belongs to Hβ(Sd).
Then, Algorithm 1 converges in the L2(Ω) sense linearly in the number of levels. To

be more precise, there is a constant C > 0 and a constant α > 0, which for µ sufficiently
small is < 1, such that

‖f − fn‖L2(Ω) ≤ Cαn‖f‖Hβ(Sd)

for all f ∈ Hβ(Sd).

Similarly to the case of Theorem 3.3, the proof of the theorem rests upon the
following technical lemma. But in this case the proof is necessarily different, because
the orthogonal projection property (20) is not available.

Lemma 4.3 Let ej for j = 0, . . . , n be as in Algorithm 1, and let E be the extension
operator from Ω to Sd as defined in Theorem 2.1. Let the assumptions on hj and qj be
satisfied as in Theorem 4.2. Then

(i) ‖ej‖Hβ(Sd) ≤ Cδ
−β
j ‖ej−1‖Ψj for j = 1, . . . ,m,

(ii) ‖em+1‖Hβ(Ω) ≤ Cδ
−β
m+1‖em‖Ψm+1,

(iii) ‖ej‖Hβ(Ω) ≤ Cδ
−β
j ‖Eej−1‖Ψj for j = m+ 2, . . . , n.

Proof:
We prove part iii) since part i) follows easily by replacing Ω by Sd and omitting the

extension operator, and part (ii) is in an obvious sense intermediate. See also the proof
of [13, Lemma 4.4].

We use the extension operator to extend ej−1 to Eej−1 defined on the whole sphere,
for j = m+ 2, . . . , n. Then, with Lj := dκmax{δj/qj , 1/δj}e, by Lemma 4.1, there is a
polynomial p ∈ PLj that interpolates and approximates Eej−1, in the sense that

p|Xj = Eej−1|Xj and ‖p− Eej−1‖Ψj ≤ 5‖Eej−1‖Ψj . (27)

We note that the RBF interpolant for ej−1 coincides with the RBF interpolant for
Eej−1 on Xj . Therefore,

‖ej‖Hβ(Ω) = ‖ej−1 − IXj ,δjej−1‖Hβ(Ω)

= ‖Eej−1 − IXj ,δjEej−1‖Hβ(Ω)

≤ C‖Eej−1 − IXj ,δjEej−1‖Hβ(Sd)

≤ C
(
‖Eej−1 − p‖Hβ(Sd) + ‖p− IXj ,δjEej−1‖Hβ(Sd)

)
. (28)

The first term of (28) can be bounded using Lemmas 2.3 and 4.1,

‖Eej−1 − p‖Hβ(Sd) ≤ c4δ
−β
j ‖Eej−1 − p‖Ψj ≤ 5c4δ

−β
j ‖Eej−1‖Ψj . (29)
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For the second term, since p|Xj = Eej−1|Xj the interpolant IXj ,δjEej−1 is identical to
IXj ,δjp, hence by using Lemma 3.1 and (20), we have

‖p− IXj ,δjEej−1‖Hβ(Sd) = ‖p− IXj ,δjp‖Hβ(Sd) ≤ Ch
σ−β
j ‖p− IXj ,δp‖Hσ(Sd)

≤ Chσ−βj δ−σj ‖p‖Φj ≤ Cδ
−β
j ‖p‖Φj .

For the polynomial p of degree Lj , using the definition (15), condition (14) and the fact
that β < σ, we have

‖p‖2Φj ≤ C
Lj∑
`=0

N(d,`)∑
k=1

(1 + δj`)
2σ|p̂`k|2

≤ C(1 + δjLj)
2(σ−β)

Lj∑
`=0

N(d,`)∑
k=1

(1 + δj`)
2β|p̂`k|2

≤ C‖p‖2Ψj ,

where in the last step we used Lj ≤ C/δj . (Since hj ≤ cq
√
qj and since δj = νhj , we

see that δj/qj ≤ c/δj and hence Lj ≤ C/δj).Thus, combining these above estimates
together with the fact that ‖p‖Ψj ≤ 6‖Eej−1‖Ψj we obtain

‖p− IXj ,δjEej−1‖Hβ(Sd) ≤ Cδ
−β
j ‖Eej−1‖Ψj . (30)

Combining (28), (29) and (30), we obtain the desired result. 2

Proof of Theorem 4.2. The proof is identical to that for Theorem 3.3 once we have
established Lemma 4.3: the only difference is that σ is replaced by β and Φj by Ψj .
We leave the details to the reader. 2

5 Numerical experiment

In this section, we describe a numerical experiment that illustrates the multiscale algo-
rithm described in previous sections.

Let p = (1/
√

3, 1/
√

3, 1/
√

3)T and q = (−0.7476, 0.5069, 0.4289)T be two given
points on S2, and let α := π/12 and ρ := π/96. Let Ω1 = G(q, α) and Ω2 = G(q, ρ) be
concentric spherical caps centered at q, with geodesic radii α and ρ respectively. Note
that the successive areas of S2, Ω1 and Ω2 are decreasing by a factor of roughly 60.

A point on S2 is parametrized by polar coordinates θ, φ, with

x = (sin θ cosφ, sin θ sinφ, cos θ) for θ ∈ [0, π] and φ ∈ [0, 2π).

Let t = cos−1(p · x) and let s = cos−1(q · x).
The target function f is given by

f(x) = 2 +
[
sin t cos(100t) + (1− 3s/2ρ)2

+ cos(2000θ)
]
S(θ),
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Figure 1: Exact function from a global view

where S(θ) is a cubic spline which takes the values of 1 for θ ∈ [0, π/2] and 0 for
θ ∈ [2π/3, π]. The function f , shown in Figure 1, is designed to have both global
features and finer features. On the global scale, the effect of the spline multiplying
the second term is that f has the constant value 2 below a latitude of 30o south.
This feature was chosen because we want to be sure that the approximation scheme
approximates a constant satisfactorily. (We remind the reader that approximating a
constant with compactly supported radial basis functions is non-trivial, specially if the
scale is comparable to the mesh norm.) The function f also contains a slow oscillation
(seen in Figure 1) and a localized fast oscillation inside the spherical cap Ω2, as shown
in left panel of Figure 5. Note that the period of the oscillation, given by the last
term in the expression for f , corresponds to approximately 20 km if mapped to Earth’s
surface. This finer oscillation is too localized to be seen in Figure 1.

In the experiment we use 9 multiscale levels, zooming in to the cap Ω1 after three
global levels, and zooming in again to the smaller cap Ω2 after a further three levels.
In the first three (global) levels, the sets of points X1, X2, and X3 are each centers of
equal area regions generated by a partitioning algorithm [22]. The number of points in
each set X1, X2, X3 is increasing by a factor of 4 (see Table 1 below); the sets are not
nested. The sets X4, X5 and X6 are also centers of equal area regions, but the regions
are partitioned from Ω1 rather than the whole sphere. For simplicity of language we call
levels 4 to 6 the “local” levels. Similarly, X7, X8 and X9 are the results of partitioning
Ω2 into equal area regions. We call levels 7 to 9 the “superlocal” levels. At every stage
the scale is halved exactly and the mesh norm halved approximately. The parameter
details for the successive levels are given in Table 1.

The RBF used in the experiment is the Wendland function

Π(‖x‖) = (1− ‖x‖)4
+(4‖x‖+ 1)

and its scaled version is

Πδ(‖x‖) = δ−2(1− ‖x‖/δ)4
+(4‖x‖/δ + 1),

17



Level N δj hj ‖ej‖L2(Ω2) κj
1 500 1/4 0.1129 4.24e-02 1.68
2 2000 1/8 0.0569 4.07e-02 1.68
3 8000 1/16 0.0281 3.45e-02 1.69
4 500 1/32 0.0186 1.56e-02 3.25
5 2000 1/64 0.0089 9.83e-03 3.39
6 8000 1/128 0.0041 8.94e-03 3.30
7 500 1/256 0.0018 7.87e-03 3.24
8 2000 1/512 0.0009 2.87e-03 3.37
9 8000 1/1024 0.0005 7.97e-04 3.28

Table 1: Parameters and local errors using 9 levels of global and local interpolation

where at level j, we set δ = δj . It is known that Π generates H3(R3) (see [26]) and
hence the kernel Φ(x,y) = Π(x− y) for x,y ∈ S2 generates H5/2(S2) (see [20]).

In Figure 2, we show the approximation after the three global levels, using the
point sets X1, X2 and X3. We also show on this figure the spherical cap Ω1, to show
the first region where we intend to zoom in. At this stage it is clear visually that the
approximation scheme not yet resolved the slower oscillations, but the broad features,
including the constant value in southern latitudes, are already apparent.

Figure 2: The global view after three global levels, with the cap Ω1 shown

In Figure 3, we show the approximation on the spherical cap Ω1 after 6 levels (3
global and 3 local). We also show the smaller spherical cap Ω2, inside which it is clear
that after 6 multiscale levels the slow oscillations have largely been resolved but fine
scale features have not.

Finally, in Figure 4, we show the approximation on the small spherical cap Ω2 after
9 levels (3 global, 3 local and 3 superlocal). By this stage even the fine scale features
are well resolved.

For comparison, we carry out a more modest multiscale approximation in which we
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Figure 3: The local view after 3 global and 3 local levels, showing both the large cap
Ω1 and the small (“superlocal”) cap Ω2

use just the last three (superlocal) levels, and separately also a single scale (‘one-shot’)
approximation, in the second case using the final scale δ = 2−10 and the 8000 sampling
points inside the cap Ω2. Poorer approximation quality of the one-shot interpolation
can be seen by eye in the right panel of Figure 6. For the multiscale result in the left
panel of Figure 6 that uses just the last three levels the visual result is of intermediate
quality: not as good as the full multiscale result, but certainly better than the one-shot
result.

Level N δj hj ‖ej‖L2(Ω2) κj
1 500 1/256 0.0018 2.75e-02 3.24
2 2000 1/512 0.0009 1.49e-02 3.37
3 8000 1/1024 0.0005 9.18e-03 3.28

Table 2: Local errors table when using multiscale approximation only at the last 3
superlocal levels

In Tables 1 and 2 approximate L2(Ω2) errors are given, in the first case for the full
9-level multiscale approximation, in the second case for the 3-level superlocal version.
These were computed over a rectangular grid G of size 1/64 degree times 1/64 degree
restricted to the spherical cap Ω2,

‖ej‖L2(Ω2) :=

 |Ω2|
|G ∩ Ω2|

∑
x(θ,φ)∈G∩Ω2

|f(θ, φ)− fj(θ, φ)|2
1/2

,

where the area |Ω2| of the cap Ω2 is included so that the computed quantity is an
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Figure 4: Superlocal view of multiscale RBF approximation after 9 levels, showing
small cap Ω2

approximation to the L2(S2) norm of the error. With the grid G as above the number
of points in the cap Ω2 is |G ∩Ω2| = 50063. The condition number of the interpolation
matrix at level j is denoted by κj .

The ‖e‖L2(Ω2) error for the one-shot approximation is 2.00e − 02, which is much
larger than errors from the level 9-level multiscale approach, and also larger than the
error from the 3-level multiscale approach in Table 2. Indeed, it is even an order of
magnitude larger than the approximate L2(Ω2) norm of the function f itself, which is
7.20e− 03. The reason for this bad result is that the one-shot approximation, with its
relatively small scale compared to the mesh norm, fails to resolve well even the slowly
varying background features – witness the “pepper and salt” nature of the image on
the slowly varying part of the right-hand image in Figure 6. Even the 3-level multiscale
approximation is struggling to resolve the slowly varying background.

A final conclusion might be that the “zooming in” multiscale approximation is
successful at all levels. It could be continued indefinitely to smaller and smaller regions,
giving a consistent approximation scheme at all levels if the data is available.

Acknowledgement The authors gratefully acknowledge the support of the Aus-
tralian Research Council.
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