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Abstract

In this paper we consider n-poised planar node sets, as well as
more special ones, called GCn-sets. For these sets all n-fundamental
polynomials are products of n linear factors as it always takes place in
the univariate case. A line ` is called k-node line for a node set X if it
passes through exactly k nodes. An (n+1)-node line is called maximal
line. In 1982 M. Gasca and J. I. Maeztu conjectured that every GCn-
set possesses necessarily a maximal line. Till now the conjecture is
confirmed to be true for n ≤ 5. It is well-known that any maximal
line M of X is used by each node in X \ M, meaning that it is a
factor of the fundamental polynomial of each node. In this paper we
prove, in particular, that if the Gasca-Maeztu conjecture is true then
any n-node line of GCn-set X is used either by exactly

(
n
2

)
nodes or

by exactly
(
n−1
2

)
nodes. We prove also similar statements concerning

n-node or (n − 1)-node lines in more general n-poised sets. This is a
new phenomenon in n-poised and GCn sets. At the end we present a
conjecture concerning any k-node line.
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1 Introduction and background

Let Πn be the space of bivariate polynomials of total degree at most n :

Πn =

 ∑
i+j≤n

aijx
iyj

 .

We have that

N := dim Πn =

(
n+ 2

2

)
. (1.1)
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We say that a polynomial q is of degree k if q ∈ Πk \ Πk−1. Consider a set
of s distinct nodes

Xs = {(x1, y1), (x2, y2), . . . , (xs, ys)}.

The problem of finding a polynomial p ∈ Πn which satisfies the conditions

p(xi, yi) = ci, i = 1, 2, . . . s, (1.2)

is called interpolation problem.
Let us now describe briefly the content of the paper. We consider here n-

poised node sets for which the bivariate interpolation problem is unisolvent.
We pay a special attention to a subclass of these sets called GCn-sets. In
such sets all n-fundamental polynomials, i.e., polynomials of total degree n
vanishing at all nodes but one, are products of n linear factors. Note that
this condition always takes place in the univariate case. A line ` is called
k-node line for X if it passes through exactly k nodes of X . It is easily seen
that at most n+ 1 nodes in an n-posed set (and therefore in a GCn set) can
be collinear. That is why (n + 1)-node line is called maximal line. In 1982
M. Gasca and J. I. Maeztu conjectured [12] that every GCn-set possesses
necessarily a maximal line. Till now the conjecture is confirmed to be true
for n ≤ 5 (see Subsection 1.3). We say that a node of an n-poised or GCn-
set uses a line if the line is a factor in the fundamental polynomial of the
node. It is well-known that any maximal line M of X is used by all nodes in
X \M. Note that this statement, as well as the previous one concerning the
maximal number of collinear nodes, follow readily from a well-known and
simple fact that a bivariate polynomial of total degree at most n vanishes on
a line if it vanishes at n+ 1 points in the line (see forthcoming Proposition
1.7). In Section 3 we prove that the subset of nodes of X using a given
k-node line is (k − 2)-independent, meaning that each node of the subset
possesses a fundamental polynomial of total degree not exceeding k − 2. In
Sections 3.2 and 3.3 we prove a main result of this paper. Namely, if the
Gasca-Maeztu conjecture is true then any n-node line of a GCn-set X is used
either by exactly

(
n
2

)
nodes or by exactly

(
n−1
2

)
nodes. In Sections 2 and

2.2 similar statements are proved concerning n-node or (n − 1)-node lines
in n-poised sets. Let us mention that this is a new phenomenon in n-poised
and GCn sets. At the end we present a conjecture concerning any k-node
line.

Now let us go to exact definitions and formulations.

Definition 1.1. The set of nodes Xs is called n-poised if for any data
{c1, . . . , cs} there exists a unique polynomial p ∈ Πn, satisfying the condi-
tions (1.2).

A polynomial p ∈ Πn is called an n-fundamental polynomial for a node
A = (xk, yk) ∈ Xs if

p(xi, yi) = δik, i = 1, . . . , s,
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where δ is the Kronecker symbol. We denote the n-fundamental polynomial
of A ∈ Xs by p?A = p?A,Xs

. Sometimes we call fundamental also a polynomial
that vanishes at all nodes but one, since it is a nonzero constant times the
fundamental polynomial.
In view of the uniqueness we get readily that for any n-poised set the degree
of each fundamental polynomial equals to n.

A necessary condition of n-poisedness of Xs is: |Xs| = s = N.
The following is a Linear Algebra fact:

Proposition 1.2. The set of nodes XN is n-poised if and only if the follow-
ing implication holds for any polynomial p ∈ Πn :

p(xi, yi) = 0, i = 1, . . . , N ⇒ p = 0.

1.1 n-independent and n-dependent sets

Next we introduce an important concept of n-dependence of node sets:

Definition 1.3. A set of nodes X is called n-independent if all its nodes
have fundamental polynomials. Otherwise, X is called n-dependent.

Clearly fundamental polynomials are linearly independent. Therefore a nec-
essary condition of n-independence is |X | ≤ N.

Suppose a node set Xs is n-independent. Then by using the Lagrange
formula:

p =
∑
A∈Xs

cAp
?
A,Xs

we obtain a polynomial p ∈ Πn satisfying the interpolation conditions (1.2).
Thus we get a simple characterization of n-independence:
A node set Xs is n-independent if and only if the interpolation problem
(1.2) is n-solvable, meaning that for any data {c1, . . . , cs} there exists a (not
necessarily unique) polynomial p ∈ Πn satisfying the conditions (1.2).

Now suppose that Xs is n-dependent. Then some node (xi0 , yi0), does
not possess an n-fundamental polynomial. This means that the following
implication holds for any polynomial p ∈ Πn :

p(xi, yi) = 0, i ∈ {1, . . . , s} \ {i0} ⇒ p(xi0 , yi0) = 0.

In this paper we will deal frequently with a stronger version of n-dependence:

Definition 1.4. A set of nodes X is called essentially n-dependent if none
of its nodes possesses a fundamental polynomial.

Below, and frequently in the sequel, we use same the notation for a
polynomial q ∈ Πk and the curve described by the equation q(x, y) = 0.
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Remark 1.5. Suppose a set of nodes X is essentially n-dependent and
q ∈ Πk, k ≤ n, is a curve. Then we have that the subset X ′ := X \ q is
essentially (n− k)-dependent, provided that X ′ 6= ∅.

Indeed, suppose conversely that a node A ∈ X ′ has an (n− k)-fundamental
polynomial r ∈ Πn−k. Then the polynomial qr ∈ Πn is an n fundamental
polynomial of the node A in X , which contradicts our assumption.

Definition 1.6. Given an n-poised set X , we say that a node A ∈ X uses
a curve q ∈ Πk, if q divides the fundamental polynomial p?A,X :

p?A,X = qr, where r ∈ Πn−k.

The following proposition is well-known (see e.g. [14] Proposition 1.3):

Proposition 1.7. Suppose that ` is a line. Then for any polynomial p ∈ Πn

vanishing at n+ 1 points of ` we have

p = `r, where r ∈ Πn−1.

Evidently, this implies that any set of n+ 2 collinear nodes is essentially
n-dependent. We also obtain from Proposition 1.7

Corollary 1.8. The following hold for any n-poised node set X :

(i) At most n+ 1 nodes of X can be collinear;

(ii) A line ` containing n+ 1 nodes of X is used by all the nodes in X \ `.

In view of this a line ` containing n + 1 nodes of an n-poised set X is
called a maximal line (see [5]).

One can verify readily the following two properties of maximal lines of
n-poised set X :

(i) Any two maximal lines of X intersect necessarily at a node of X ;

(ii) Three maximal lines of X cannot meet in one node.

Thus, in view of (1.1), there are no n-poised sets with more than n+ 2
maximal lines.

1.2 Some results on n-independence

Let us start with the following simple but important result of Severi [24]:

Theorem 1.9 (Severi). Any node set X consisting of at most n + 1 nodes
is n-independent.

Next we consider node sets consisting of at most 2n+ 1 nodes:
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Proposition 1.10 ([11]). Any node set X consisting of at most 2n+1 nodes
is n-dependent if and only if n+ 2 nodes are collinear.

For a generalization of above two results for multiple nodes see [24] and [13],
respectively.
The third result in this series is the following

Proposition 1.11. Any node set X consisting of at most 3n − 1 nodes is
n-dependent if and only if at least one of the following holds.

(i) n+ 2 nodes are collinear,

(ii) 2n+ 2 nodes belong to a conic (possibly reducible).

Let us mention that this result as well as the two previous results are
special cases of the following

Theorem 1.12 ([17], Thm. 5.1). Any node set X consisting of at most 3n
nodes is n-dependent if and only if at least one of the following holds.

(i) n+ 2 nodes are collinear,

(ii) 2n+ 2 nodes belong to a conic,

(iii) |X | = 3n, and there is a cubic γ ∈ Π3 and an algebraic curve σ ∈ Πn

such that X = γ ∩ σ .

1.3 GCn sets and the Gasca-Maeztu conjecture

Let us consider a special type of n-poised sets whose n-fundamental polyno-
mials are products of n linear factors as it always takes place in the univariate
case:

Definition 1.13 (Chung, Yao [10]). An n-poised set X is called GCn-set if
the n-fundamental polynomial of each node A ∈ X is a product of n linear
factors.

In other words, GCn sets are the sets each node of which uses exactly n
lines.

Now we are in a position to present the Gasca-Maeztu conjecture, called
briefly also GM conjecture:

Conjecture 1.14 (Gasca, Maeztu, [12]). Any GCn-set contains n+1 collinear
nodes.

Thus the GM conjecture states that any GCn set possesses a maximal line.
So far, this conjecture has been verified for the degrees n ≤ 5. For n = 2,
the conjecture is evidently true. The case n = 3 is not hard to prove. The
case n = 4 was proved for the first time by J. R. Busch in 1990 [6]. Since
then, four other proofs have appeared for this case: [8, 15, 2], and [25]. In
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our opinion the last one is the simplest and the shortest one. The case n = 5
was proved recently in [16].

Notice that if a line M is maximal then the set X \M is (n− 1)-poised.
Moreover, if X is a GCn-set then X \M is a GCn−1-set.
For a generalization of the Gasca-Maeztu conjecture to maximal curves see
[18].

In the sequel we will make use of the following important result of Car-
nicer and Gasca concerning the GM conjecture:

Theorem 1.15 (Carnicer, Gasca, [9]). If the Gasca-Maeztu conjecture is
true for all k ≤ n, then any GCn-set possesses at least three maximal lines.

In view of this one gets readily that each node of X uses at least one maximal
line.

1.4 Some examples of n-poised and GCn sets

We will consider 3 well-known constructions: The Berzolari-Radon construc-
tion [4, 22], the Chung-Yao construction [10] (called also Chung-Yao natural
lattice), and the principal lattice . The first construction gives examples of
n-poised sets, while the remaining two give examples of GCn-sets. Let us
mention that both the Chung-Yao natural lattice and the principal lattice
are special cases of the Berzolari-Radon construction.
Note that Lagrange and Newton formulas for these constructions can be
found in [12] and [21].

The Berzolari-Radon construction

A set X containing N = 1+2+ · · ·+(n+1) nodes is called Berzolari-Radon
set if there are n + 1 lines: `1, . . . , `n+1 such that the sets `1, `2 \ `1, `3 \
(`1 ∪ `2), . . . , `n+1 \

(⋃n
i=1 `i

)
contain exactly (n+ 1), n, (n− 1), . . . , 1 nodes,

respectively. The Berzolari-Radon set is n-poised.
It is worth noting that the Gasca-Maeztu conjecture is equivalent to the
statement that every GCn-set is a Berzolari-Radon set.

The Chung-Yao construction

Consider n+2 lines: `1, . . . , `n+2, such that no two lines are parallel, and no
three lines intersect in one point. Then the set X of intersection points of
these lines is called Chung-Yao set. Notice that |X | =

(
n+2
2

)
. Each fixed node

here is lying in exactly 2 lines, and does not belong to the remaining n lines.
Moreover, the product of these n lines gives the fundamental polynomial of
the fixed node. Thus X is GCn-set.
Note that this construction can be characterized by the fact that all the
given n + 2 lines are maximal. As it was mentioned earlier, there are no
n-poised sets with more maximal lines.
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The principal lattice

The principal lattice is the following set (or an affine image of it)

X =
{

(i, j) ∈ Z2
+ : i+ j ≤ n

}
.

Notice that the fundamental polynomial of the node (i, j) here uses i vertical
lines: x = k, k = 0, . . . , i− 1, j horizontal lines: y = k, k = 0, . . . , j− 1 and
n − i − j lines with slope −1 : x + y = k, k = i + j + 1, . . . , n. Thus X is
GCn-set.
Note that this lattice possesses just three maximal lines, namely the lines
x = 0, y = 0, and x+y = n. Note that, according to Theorem 1.15, there are
no n-poised sets with less maximal lines, provided that the Gasca-Maeztu
conjecture is true.

1.5 Maximal curves and the sets Nq and X`
Let us start with a generalization of Proposition 1.7 for algebraic curves of
higher degree. First set for k ≤ n

d(n, k) := dim Πn − dim Πn−k = 1
2 k (2n+ 3− k).

Proposition 1.16 (Rafayelyan, [23], Prop. 3.1). Let q be an algebraic curve
of degree k ≤ n without multiple components. Then the following hold.

(i) Any subset of q consisting of more than d(n, k) nodes is n-dependent.

(ii) A subset X ⊂ q consisting of d(n, k) nodes is n-independent if and
only if the following implication holds for any polynomial p ∈ Πn :

p
∣∣
X = 0 =⇒ p = qr for some r ∈ Πn−k. (1.3)

Let us mention that a special case of (i), when q factors into linear factors,
is due to Carnicer and Gasca, [7].

As in the case of lines (see Corollary 1.8) we get readily from here

Corollary 1.17. The following hold for any n-poised node set X :

(i) At most d(n, k) nodes of X can lie in a curve of degree k;

(ii) A curve of degree k ≤ n without multiple components containing d(n, k)
nodes of X is used by all the nodes in X \ q.

Next we bring a generalization of the concept of a maximal line (see
[23]):

Definition 1.18. A curve of degree k ≤ n without multiple components
passing through d(n, k) nodes of an n-poised set X is called a maximal
curve for X .
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Thus maximal line, conic, and cubic pass through n + 1, 2n + 1, and 3n
nodes of X , respectively.

Below, for an n-posed set X , line ` and an algebraic curve q, we define
important sets X` and Nq, which will be used frequently in the sequel.

Definition 1.19. Let X be an n-poised set ` be a line and q be an algebraic
curve without multiple factors. Then

(i) X` is the subset of nodes of X which use the line `;

(ii) Nq is the subset of nodes of X which do not use the curve q and are
not lying in q.

Next let us bring a characterization of maximal curves:

Proposition 1.20 (Rafayelyan, [23], Prop. 3.3). Let X be an n-poised set
and q be an algebraic curve of degree k ≤ n without multiple factors. Then
the following statements are equivalent:

(i) The curve q is maximal for X ;

(ii) All the nodes in Y := X \ q use the curve q, i.e., Nq = ∅;

(iii) The set Y is (n− k)-poised. Moreover, if X is a GCn-set then Y is a
GCn−k-set.

Thus Nq = ∅ means that q is a maximal curve. The following result concerns
the case when Nq 6= ∅.

Proposition 1.21 (Rafayelyan, [23]). Let X be an n-poised set and q be an
algebraic curve of degree k ≤ n without multiple factors. Then the set Nq is
essentially (n− k)-dependent, provided that it is not empty.

It is worth mentioning that the special case k = 1 of above two results,
where q is a line is due to Carnicer and Gasca [8]. Note also that the case
when q is a product of k lines is proved in [15].

Proposition 1.22 ([3]). Let X be an n-poised set. Then there is at most
one algebraic curve of degree n− 1 passing through N − 4 nodes of X .

From here one gets readily for any n-poised set X (see [1]):

|X`| ≤ 1 if ` is a 2-node line. (1.4)

For a generalization of these results for curves of arbitrary degree and 3-node
lines see [19, 20]. Let us mention that the statement (1.4) for GCn sets has
already been shown in [9].

In the sequel we will use frequently the following 2 lemmas from [9]. Let
us mention that the the second lemma is used in a proof there and is not
explicitly formulated. For the sake of completeness we bring proofs here.
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Lemma 1.23 (Carnicer, Gasca, [9]). Let X be an n-poised set and ` be a
line. Suppose also that there is a maximal line M0 such that M0 ∩ ` /∈ X .
Then we have that

X` = (X \M0)`.

If in addition ` is an n-node line then we have that

X` = X \ (` ∪M0) and therefore |X`| =
(
n

2

)
.

Proof. Suppose conversely that a node A ∈M0 uses ` :

p?A = `q, q ∈ Πn−1.

Notice that q vanishes at the n nodes inM0\{A} Thus, in view of Proposition
1.7, we have that q and hence p?A vanishes on M0. In particular p vanishes
at A, which is a contradiction.

Now assume that ` is an n-node line and A /∈ `∪M0. Then we have that

p?A = M0q, q ∈ Πn−1.

Notice that q vanishes at the n nodes of `. Thus, in view of Proposition 1.7,
we have that q = `r, r ∈ Πn−2. Thus we obtain that p?A = M0`r, i.e., A uses
the line `.

Lemma 1.24 (Carnicer, Gasca, [9]). Let X be an n-poised set and ` be
a line. Suppose also that there are two maximal lines M ′,M ′′ such that
M ′ ∩M ′′ ∩ ` ∈ X . Then we have that

X` = (X \ (M ′ ∪M ′′))`.

If in addition ` is an n-node line then we have that

X` = X \ (` ∪M ′ ∪M ′′) and therefore |X`| =
(
n− 1

2

)
.

Proof. Suppose that a node A ∈ (M ′ ∪M ′′) \ ` uses ` :

p?A = `q, q ∈ Πn−1.

Suppose, for example, A ∈M ′. Then notice that q vanishes at the n nodes of
M ′′ \ `. Thus, in view of Proposition 1.7, we have that q = M ′′r, r ∈ Πn−2.
Then r vanishes on n−1 nodes in M ′ \ ` different from A. Thus r and hence
also p?A vanishes on whole line M ′ including A, which is a contradiction.

Now assume that ` is an n-node line and A /∈ ` ∪M ′ ∪M ′′. Then we
have that

p?A = M ′M ′′q, q ∈ Πn−2.

Notice that q vanishes at the n − 1 nodes of ` different from the node of
intersection with the maximal lines. Thus, in view of Proposition 1.7, we
have that q = `r, r ∈ Πn−3. Therefore we obtain that p?A = M ′M ′′`r, i.e.,
A uses the line `.
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2 Lines in n-poised sets

2.1 On n-node lines in n-poised sets

Let us start our results with the following

Proposition 2.1. Let X be an n-poised set and ` be a line passing through
exactly n nodes of X . Then the following hold:

(i) |X`| ≤
(
n
2

)
;

(ii) If |X`| ≥
(
n−1
2

)
+ 1 then there is a maximal line M0 such that M0∩ ` /∈

X . Moreover, we have that X` = X \ (M0 ∪ `). Hence it is an (n− 2)-
poised set. In particular we have that |X`| =

(
n
2

)
;

(iii) If
(
n−1
2

)
≥ |X`| ≥

(
n−2
2

)
+ 2, then |X`| =

(
n−1
2

)
. Moreover, X` is an

(n−3)-poised set and there is a conic β ∈ Π2 such that X` = X \(β∪`).
Furthermore, we have that N` ⊂ β and |(β \ `) ∩ X | = |N`| = 2n.
Besides these 2n nodes the conic may contain at most one extra node,
which necessarily belongs to `. If β is reducible: β = `1`2 then we have
that |`i ∩ (X \ `)| = n, i = 1, 2.

Proof. (i) Assume by way of contradiction that |X`| ≥
(
n
2

)
+ 1. Then we

obtain

|N`| ≤
(
n+ 2

2

)
−
[(
n

2

)
+ 1

]
− n = n.

This is a contradiction, since on one hand, in view of Proposition 1.20,
the nonempty set N` is (n − 1)-dependent and on the other hand, in
view of Theorem 1.9, it is (n− 1)-independent.

(ii) In this case we have that

|N`| ≤
(
n+ 2

2

)
−
[(
n− 1

2

)
+ 1

]
− n = 2n− 1 = 2(n− 1) + 1.

Now let us make use of Proposition 1.10. SinceN` is (n−1)-dependent,
we get that there is a line M0 passing through n+ 1 nodes of N`. The
line M0 is maximal and therefore cannot pass through any more nodes.
Hence we obtain that M0 ∩ ` /∈ X . Thus, in view of Lemma 1.23, we
have that X` is an (n− 2)-poised set.

(iii) In this case we have that

|N`| ≤
(
n+ 2

2

)
−
[(
n− 2

2

)
+ 2

]
− n = 3n− 4 = 3(n− 1)− 1.

Since the set N` is (n − 1)-dependent, we get from Proposition 1.11, that
either
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a) there is a line M0 passing through n+ 1 nodes in N`, or
b) there is a conic β ∈ Π2 passing through 2n = 2(n − 1) + 2 nodes in

N`.
Let us start with the case a). We have for the maximal line M0, in the

same way as in the case ii), that M0 ∩ ` /∈ X and therefore |X | =
(
n
2

)
. This

contradicts our assumption in iii).
In the case b) let us first show that |N`| = 2n. Indeed, in view of

Proposition 1.20, we have that N` is essentially (n − 1)-dependent. Then,
suppose N`, besides the nodes in β, contains t nodes outside of it, where
t ≤ n−4 (= 3n−4−2n). In view of Remark 1.5 these t nodes must be (n−3)-
essentially dependent. Therefore, we get from Theorem 1.9 that t = 0. Now
notice that `β is a maximal cubic since it passes through 3n nodes. The
conic β, besides the 2n nodes, may contain at most 1 extra node, since the
set X is n-independent. But, if the extra node does not belong to `, then
the cubic `β would contain 3n+ 1 nodes, which is a contradiction.

Finally assume that the conic is reducible: β = `1`2. Then, since N` is
(n − 1)-essentially dependent, we readily get that each of the lines passes
through exactly n nodes from the 2n.

2.2 On (n− 1)-node lines in n-poised sets

Proposition 2.2. Let X be an n-poised set and ` be a line passing through
exactly n− 1 nodes of X . Assume also that |X`| ≥

(
n−2
2

)
+ 3.

Then we have that X` is (n− 3)-poised set. Hence |X`| =
(
n−1
2

)
and |N`| =

2n+ 1. Moreover, these 2n+ 1 nodes are located in the following way:

(i) n+ 1 nodes are in a maximal line M0 and

(ii) n nodes are in an n-node line M ′0.

Furthermore, besides these n nodes, the line M ′0 may contain at most one
extra node, which necessarily belongs to M0.

Proof. We have that

|N`| ≤
(
n+ 2

2

)
−
[(
n− 2

2

)
+ 3

]
− (n− 1) = 3n− 4 = 3(n− 1)− 1.

According to Proposition 1.20 the set N` is essentially (n − 1)-dependent.
Therefore, in view of Proposition 1.11, we have that either

(i) there is a line M0 passing through n+ 1 nodes of N`, or

(ii) there is a conic β ∈ Π2 passing through 2n = 2(n−1) + 2 nodes of N`.

Assume that i) holds. Then, suppose there are s nodes in N` outside the
line M0, where s ≤ 2(n− 2)− 1(= 2n− 5 = 3n− 4− n− 1).

11



Let us verify that s 6= 0. Assume conversely that s = 0. Then we have
that any node A ∈ X \ (` ∪M0) uses the line ` and maximal line M0, i.e.,

p∗A = `M0q, q ∈ Πn−2.

This means, in view of Proposition 1.20 (part i) ⇔ ii)), that the conic `M0

is maximal, which is contradiction, since it passes through only 2n nodes
(instead of 2n+ 1 nodes).

Then, in view of Remark 1.5 these s nodes must be (n−2)-essentially de-
pendent. Therefore, by Proposition 1.10, there is a line M ′0 passing through
n nodes of N` \M0. Now, suppose there are t nodes in N` outside the lines
M0 and M ′0, where t :≤ (n− 3)− 2 (= n− 5 = 2n− 5− n). These t nodes,
in view of Remark 1.5, must be essentially (n − 3)-dependent. Thus, we
conclude from Theorem 1.9 that t = 0 and therefore |N`| = 2n+ 1.

Now, it remains to verify that the case ii) is impossible.
Thus assume that ii) holds. Denote the number of nodes in N` outside

the conic β by t. We have that t ≤ (n − 2) − 2 (= n − 4 = 3n − 4 − 2n).
In view of Remark 1.5 these t nodes must be (n− 3)-essentially dependent.
Therefore, by Theorem 1.9, we obtain that t = 0 and therefore |N`| = 2n.

Now we have that any node A ∈ X \ (` ∪ β) uses the line `. This means

p∗A = `q, q ∈ Πn−1.

The curve q passes through all the 2n nodes in β. By the Bezout theorem we
conclude that q divides β. Indeed, this is evident when β is irreducible. Now
assume that β is reducible, i.e., β = `1`2. The set Nβ is (n − 1)-essentially
dependent. Therefore each line `i, i = 1, 2, passes through exactly n nodes
of Nβ and hence divides q. Thus we have that q = βr, q ∈ Πn−3. Finally we
get

p∗A = `βr, r ∈ Πn−3 for any A ∈ X \ (` ∪ β).

This means that each node outside ` and β uses the reducible cubic `β.
Therefore, by Proposition 1.20 (part i) ⇔ ii)), the latter curve is maximal,
which is contradiction, since it passes through only 3n− 1 nodes (instead of
3n nodes).

Corollary 2.3. Let X be an n-poised set and ` be a line passing through
exactly n− 1 nodes of X . Then we have that |X`| ≤

(
n−1
2

)
.

Proof. Assume by way of contradiction that |X`| ≥
(
n−1
2

)
+ 1. Notice that(

n− 1

2

)
+ 1 ≥

(
n− 2

2

)
+ 3 if n ≥ 4.

Now, in view of Proposition 2.2, we get that |X`| ≤
(
n−1
2

)
, which contradicts

our assumption. It remains to note that Corollary in the case n = 3 is a
special case in (1.4).
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3 Lines in GCn sets

3.1 On k-node lines in GCn sets

Proposition 3.1. Assume that Conjecture 1.14 holds for all degrees up to
ν. Let X be a GCn set, n ≤ ν, and ` be a line passing through exactly
k nodes of X . Then the set X` is (k − 2)-independent set. Moreover, for
each node A ∈ X` there is a (k− 2)-fundamental polynomial that divides the
n-fundamental polynomial of A in X .

Proof. First suppose that k = n+1, meaning that ` is a maximal line. Then
we have that X` = X \` and this set is GCn−1-set and hence is (n−1)-poised.

In the case when ` is not maximal we will use induction on n. The case
n = 2 is evident (see Subsection 3.3.2). Suppose Proposition is true for all
degrees less than n and let us prove it for n.

Suppose that there is a maximal line M0 such that M0 ∩ ` /∈ X . Then
we get from Lemma 1.23 that X` = (X0)` where X0 := X \M0. We have
that the set X0 is GCn−1-set and ` passes through exactly k nodes of X0.
Therefore by induction hypothesis for the degree n − 1 we get that X` is
(k − 2)-independent.

Now, in view of Theorem 1.15, consider three maximal lines for X and
denote them by Mi, i = 1, 2, 3. It remains to consider the case when each
of these maximal lines intersects ` at a node of X .

We will prove that X` is (k − 2)-independent by finding a (k − 2)-
fundamental polynomial for each node A ∈ X`. Since 3 maximal lines
intersect each other at 3 distinct nodes there is i0 ∈ {1, 2, 3} such that
A /∈ Mi0 . We have that the set Y := X \Mi0 is GCn−1-set and ` passes
through exactly k− 1 nodes of Y. Therefore by induction hypothesis for the
degree n− 1 we get that the set Y` is (k− 3)-independent. Moreover, there
is a (k − 3)-fundamental polynomial p?A,Y` ∈ Πk−3 which divides p?A,Y .

Now, since X` ⊂ Y ∪Mi0 , we get readily that the polynomial

Mi0p
?
A,Y` ∈ Πk−2

is a fundamental polynomial of A in X`. We get also that it divides the
polynomial p?A,X = Mi0p

?
A,Y .

Below we bring some simple consequences of the fact that the set X` is
(k − 2)-independent:

Corollary 3.2. Assume that the conditions of Proposition 3.1 hold. Then
the following hold.

(i) |X`| ≤
(
k
2

)
;

(ii) X` contains at most k − 1 collinear nodes;

13



(iii) For any curve q of degree m ≤ k − 2 we have that

|X` ∩ q| ≤ d(k − 2,m).

.

Note, that ii) is a special case of iii) when m = 1. Let us mention that
i) and ii) were proved in [9], Theorem 4.5.

3.2 On n-node lines in GCn sets

Next, let us present a main result of this paper:

Theorem 3.3. Assume that Conjecture 1.14 holds for all degrees up to ν.
Let X be a GCn set, n ≤ ν and ` be a line passing through exactly n nodes
of the set X . Then we have that

|X`| =
(
n

2

)
or

(
n− 1

2

)
. (3.1)

Also, the following hold:

(i) If |X`| =
(
n
2

)
then there is a maximal line M0 such that M0 ∩ ` /∈ X .

Moreover, we have that X` = X \ (` ∪M0). Hence it is a GCn−2 set;

(ii) If |X`| =
(
n−1
2

)
then there are two maximal lines M ′,M ′′, such that

M ′ ∩M ′′ ∩ ` ∈ X . Moreover, we have that X` = X \ (` ∪M ′ ∪M ′′).
Hence is a GCn−3 set.

Let us first assume that Theorem is valid and prove the following

Corollary 3.4. Assume that the conditions of Theorem 3.3 take place. Then
the following hold for any maximal line M of X :

(i) |M ∩ X`| = 0 if

a) M ∩ ` /∈ X or if

b) there is another maximal line M ′ such that M ∩M ′ ∩ ` ∈ X ;

(ii) |M ∩ X`| = s− 1 if |X`| =
(
s
2

)
, where s = n, n− 1,

for all the remaining maximal lines.

Proof of Corollary 3.4. The statements of i) concerning a) and b) follow
from Lemma 1.23 and Lemma1.24, respectively.

For the statement ii) assume that M is a maximal line intersecting ` at
a node A and there is no other maximal line passing through that node.
Now suppose that |X`| =

(
n
2

)
. Then, in view of Theorem 3.3, there is a

maximal line M0 such that M0 ∩ ` /∈ X . According to Lemma 1.23 we have
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that X` = X \ (`∪M0). Therefore we get |M ∩X`| = |M ∩ [X \ (`∪M0)]| =
(n+ 1)− 2 = n− 1, since M intersects ` and M0 at two distinct nodes.

Next suppose that |X`| =
(
n−1
2

)
. Then there are two maximal lines M ′

and M ′′ such that M ′ ∩M ′′ ∩ ` ∈ X . Now, according to Lemma 1.24, we
have that X` = X \ (` ∪M ′ ∪M ′′). Therefore we get |M ∩ X`| = |M ∩ [X \
(` ∪M ′ ∪M ′′)]| = (n+ 1)− 3 = n− 2, since M intersects `,M ′ and M ′′ at
three distinct nodes.

Remark 3.5. Assume that the conditions of Theorem 3.3 take place and
X` 6= ∅. Assume also that M is a maximal line of X such that M intersects
` at a node and no node from M uses `. Then there is another maximal line
M ′ such that M ∩M ′ ∩ ` ∈ X and therefore no node from M ′ uses ` either.

3.3 The proof of Theorem 3.3

Let us start with

3.3.1 The case n = 1

GC1 sets consist of 3 non-collinear nodes. Consider a such set X = {A,B,C}
and an 1-node line ` that passes, say, through A. We have that no 1-node
line is used in GCn sets. Thus X` = ∅. Therefore we may assume that both
equalities in (3.1) take place. Note also that both implications i) and ii) of
Theorem 3.3 take place. Indeed, the maximal line through B and C does
not intersect ` at a node. And at the same time the other two maximal lines,
i.e., 2-node lines through A,B and A,C intersect the line ` at the node A.

3.3.2 The case n = 2

We divide this case into 2 parts.

1. GC2 sets with 3 maximal lines:

Consider a GC2 set X with exactly 3 maximal lines. These lines intersect
each other at 3 non-collinear nodes, called vertices. Except these 3 nodes,
there are 3 more (non-collinear) nodes in X , one in each maximal line, called
”free” nodes. Here the 2-node lines are of 2 types:

a) 2-node line ` that does not pass through a vertex. Notice that ` is
used only by one node and the implication i) of Theorem holds. Namely,
there is a maximal line that does not intersect ` at a node.

b) 2-node line that passes through a vertex. Notice that no node uses a
such line and the implication ii) holds.

2. GC2 sets with 4 maximal lines:

In this case we have the Chung-Yao lattice (see Subsection 1.4). Here all
6 nodes of X are intersection nodes of the maximal lines and the only used
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lines are the maximal lines. Thus in this case any 2-node line is not used
and evidently the implication ii) holds.

3.3.3 The case n = 3

We divide this case into 3 parts:

1. The case of GC3 sets with exactly 3 maximal lines:

Consider a GC3 set X with exactly 3 maximal lines. By the properties of
maximal lines we have that they form a triangle and the vertices are nodes
of X . There are 6 (= 3 × 2) more nodes, called ”free”, 2 in each maximal
line. There is also one node outside the maximal lines, denoted by O. We
find readily that the 6 ”free” nodes are located in 3 lines passing through
O, 2 in each line (see Fig. 3.1).

Figure 3.1: Three 3-node lines

These 3 lines are the only 3-node lines in this case. We have that for a
such line ` there is a maximal line M that does not intersect ` at a node,
i.e., the implication i) of Theorem holds. Also we have that ` is used by
exactly 3 nodes. Namely, by the nodes that do not belong to ` ∪M.

2. The case of GC3 sets with exactly 4 maximal lines:

Now consider a GC3 set X with exactly 4 maximal lines. In this case
there are 6

(
=
(
4
2

))
nodes that are intersection points of maximal lines.

Also there are 4 more nodes in maximal lines, called ”free”, 1 in each. The
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4 ”free” nodes are not collinear.
Again we have two types of 3-node lines here.
a) 3-node line ` that passes through an intersection node (see Fig 3.2).

Figure 3.2: 3-node line passing through an intersection node

Note that a 3-node line can pass through at most one such node. Indeed,
if a line passes through two intersection nodes then it cannot pass through
any third node.

Notice that ` is used by only one node A and the implication ii) of
Theorem takes place.

b) 3-node line ` that passes through 3 ”free” nodes (see Fig 3.3).
Notice that the maximal line M whose ”free” node is not lying in ` does

not intersect ` at a node. Thus the implication i) holds. In this case ` is
used by exactly 3 nodes. Namely, by the nodes that do not belong to `∪M.

3. The case of GC3 sets with exactly 5 maximal lines:

In this case we have the Chung-Yao lattice (see Subsection 1.4). Here all
10 nodes of X are intersection nodes of 5 maximal lines and the only used
lines are the maximal lines. Let us verify that in this case there is no 3-node
line. Assume conversely that ` is a such line. Then through each node there
pass two maximal lines and all these maximal lines are distinct. Therefore
we get 6 maximal lines, which is a contradiction.

3.4 The proof of Theorem 3.3 for n ≥ 4

We will prove Theorem by induction on n. The cases n ≤ 3 were verified.
Assume Theorem is true for all degrees less n and let us prove that it is true
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Figure 3.3: 3-node line through 3 ”free” nodes

for the degree n, where n ≥ 4.
Suppose that |X`| ≥

(
n−1
2

)
+ 1. Then by assertion ii) of Proposition 2.1

we get that there is a maximal line M0 such that M0 ∩ ` /∈ X . Thus, in view
of Lemma 1.23, we obtain that |X`| =

(
n
2

)
and the implication i) holds.

Thus to prove Theorem it suffices to assume that

|X`| ≤
(
n− 1

2

)
(3.2)

and to prove that the implication ii) holds, i.e., there are two maximal lines
M ′,M ′′, such that M ′ ∩M ′′ ∩ ` ∈ X . Indeed, this completes the proof in
view of Lemma 1.24.

First suppose that two nodes in some maximal line M use the line `, i.e.,

|M ∩ X`| ≥ 2. (3.3)

We have that X \M is a GCn−1-set. Hence, by making use of (3.3) and
induction hypothesis, we obtain that

|X`| ≥ |(X \M)`|+ 2 ≥
(
n− 2

2

)
+ 2.

Therefore, in view of the condition (3.2) and Proposition 2.1 iii), we conclude
that

|X`| =
(
n− 1

2

)
and N` ⊂ β ∈ Π2, |N`| = 2n. (3.4)
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Let us use the induction hypothesis. By taking into account the first equality
above and condition (3.3), we obtain that

|(X \M)`| =
(
n− 2

2

)
.

Thus the cardinality of the set N` ∩ (X \M) equals to 2n − 2 (= 2(n −
1)). Therefore, in view of the second equality in (3.4), by using induction
hypothesis we get that all the nodes in β except possibly two are located on
two maximal lines of the set X \M, denoted by M ′ and M ′′, which intersect
at a node A ∈ `. Since n ≥ 4 each of these two maximal lines passes through
at least 3 nodes except A, which belong to β. Thus each of them divides β
and we get β = M ′M ′′. Finally, according to Proposition 2.1 iii), each of
these lines passes through exactly n nodes outside ` and therefore they are
maximal also for the set X . Hence the implication ii) holds.

Thus we may suppose that

|M ∩ X`| ≤ 1 for each maximal line M of the set X . (3.5)

Next let us verify that we may suppose that

|M ∩ X`| = 1 for each maximal line M of the set X . (3.6)

Indeed, suppose by way of contradiction that no node, say in a maximal
line M1 uses the line `. Now, in view of Theorem 1.15, consider two other
maximal lines of X and denote them by Mi, i = 2, 3.

In view of the condition (3.2) and Lemma 1.23 we have that there is
no maximal line M0 such that M0 ∩ ` /∈ X , i.e., all the maximal lines of X
intersect the line ` at a node of X . Then as was mentioned above, if there
are two maximal lines intersecting at a node in ` then Theorem follows from
Lemma 1.24.

Thus, we may suppose that the 3 maximal lines Mi, i = 1, 2, 3, intersect
the line ` at 3 distinct nodes, denoted by Ci, i = 1, 2, 3, respectively.

Then consider the GCn−1-set X2 := X\M2. We may assume that (X2)` 6=
∅. Indeed, otherwise by induction hypothesis and (3.1) we would obtain
that n − 1 = 2, i.e, n = 3. In X2 no node of the maximal line M1 uses `.
By induction hypothesis, in view of Remark 3.5, we have that there is a
maximal line M ′1 of this set intersecting ` at C1. In the same way we get
that there is a maximal line M ′′1 in the set X \ M3 intersecting ` at C1.
Now if the maximal line M ′1 coincides with M ′′1 then we get readily that it is
maximal also for X which completes the proof in view of Lemma 1.24. Thus
suppose that the maximal lines M ′1 and M ′′1 are distinct. Then consider the
GCn−2-set X \ (M2 ∪M3). Here we have 3 maximal lines M1,M

′
1 and M ′′1

intersecting at the node C1, which is a contradiction.
Thus we have that (3.6) holds, i.e., there is only one node in each maximal
line Mi, i = 1, 2, 3, using the line `. Notice that at most one node can be
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intersection node of these 3 maximal lines, since otherwise we would have
2 nodes in a maximal line that use `. Consider a node A which lies, say in
M3, uses ` and is not an intersection node, i.e., does not lie in the maximal
lines M1 and M2 (see Fig. 3.4).

Consider the GCn−1 node set Xi := X \Mi for any fixed i = 1, 2. In the
maximal line M3 there is only one node using `. Therefore, in view of the
induction hypothesis and Corollary 3.4, we have that

|(Xi)`| = 1, i = 1, 2. (3.7)

We may conclude from here that there is only one node in M1∪M2, namely
the intersection node B := M1 ∩M2, that uses the line `.

At the same time we get from (3.7) also that (n−1) = 2, or (n−1)−1 = 2.
Therefore n ≤ 4, i.e., we may assume that n = 4.

3.4.1 A special case

Thus it remains to consider the case n = 4 with |X`| = 2. Recall that one of
the nodes: A belongs to only one maximal line M3. While the other node:
B is the intersection node of the maximal lines M1 and M2 (see Fig. 3.4).
We will show that this case is not possible.

Figure 3.4: A special case

Consider the GC3-set X1 := X \M1. The line ` is used by one node here:
A and no node in maximal line M2 uses it. Thus we conclude that there is
a maximal M ′2 passing through C2.
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Now, denote by E, the intersection node of the maximal lines M ′2 and
M3. Let us identify this node among the 5 nodes in M3. Notice that evidently
E is different from C3 - the intersection node with `.

We have that E is different also from the intersection nodes with M1 or
with M2. Indeed, three maximal lines cannot intersect at a node.

Finally note that E is different also from the node A, since it uses ` and
therefore it does not belong to M ′2.

Thus E coincides necessarily with the fifth node in M3 denoted by F.
Now consider the GC3-set X2 := X \M2. Again the line ` is used by one

node here: A and no node in maximal line M1 uses it. Thus we conclude
that there is a maximal M ′1 passing through C1.

Then, exactly in the same way as above, we may conclude that M ′1
intersects M3 at F.

Finally, consider the GC2-set Y := X \ (M1 ∪M2). Notice that the lines
M ′1,M

′
2 and M3 are 3 maximal lines intersecting at the node F, which is a

contradiction. �

Remark 3.6. Let us mention that in the cases n ≤ 5 Theorem 3.3 is valid
without the assumption concerning the Gasca-Maeztu conjecture.

3.5 A conjecture concerning GCn sets

Conjecture 3.7. Assume that Conjecture 1.14 holds for all degrees up to
ν. Let X be a GCn set, n ≤ ν and ` be a line passing through exactly k
nodes of X set. Then we have that

|X`| =
(
s

2

)
, for some 2k − n− 1 ≤ s ≤ k. (3.8)

Moreover, for any maximal line M of X we have:

(i) |M ∩ X`| = 0 if

M ∩ ` /∈ X or if

there is another maximal line M ′ such that M ∩M ′ ∩ ` ∈ X ;

(ii) |M ∩ X`| = s− 1 if
(
s
2

)
= |X`|, where 2k − n− 1 ≤ s ≤ k,

for all the remaining maximal lines.
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