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Abstract

In this paper we consider n-poised planar node sets, as well as
more special ones, called GC),-sets. For these sets all n-fundamental
polynomials are products of n linear factors as it always takes place in
the univariate case. A line ¢ is called k-node line for a node set X if it
passes through exactly k£ nodes. An (n+1)-node line is called maximal
line. In 1982 M. Gasca and J. I. Maeztu conjectured that every GC,,-
set possesses necessarily a maximal line. Till now the conjecture is
confirmed to be true for n < 5. It is well-known that any maximal
line M of X is used by each node in X \ M, meaning that it is a
factor of the fundamental polynomial of each node. In this paper we
prove, in particular, that if the Gasca-Maeztu conjecture is true then
any n-node line of GC)p-set X' is used either by exactly (g) nodes or
by exactly (";') nodes. We prove also similar statements concerning
n-node or (n — 1)-node lines in more general n-poised sets. This is a
new phenomenon in n-poised and GC,, sets. At the end we present a
conjecture concerning any k-node line.
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1 Introduction and background
Let II,, be the space of bivariate polynomials of total degree at most n :
I, = Z aijxiyj
i+j<n
We have that

N := dimIl, = (”;“2> (1.1)



We say that a polynomial ¢ is of degree k if ¢ € Iy \ IIx_;. Consider a set
of s distinct nodes

XS = {(x17y1)7 (x% yQ), ceey (l’s, ys)}
The problem of finding a polynomial p € II,, which satisfies the conditions

p(zi,yi) = ¢, 1=1,2,...5s, (1.2)

is called interpolation problem.

Let us now describe briefly the content of the paper. We consider here n-
poised node sets for which the bivariate interpolation problem is unisolvent.
We pay a special attention to a subclass of these sets called GC),-sets. In
such sets all n-fundamental polynomials, i.e., polynomials of total degree n
vanishing at all nodes but one, are products of n linear factors. Note that
this condition always takes place in the univariate case. A line £ is called
k-node line for X if it passes through exactly k£ nodes of X. It is easily seen
that at most n+ 1 nodes in an n-posed set (and therefore in a GC), set) can
be collinear. That is why (n + 1)-node line is called maximal line. In 1982
M. Gasca and J. I. Maeztu conjectured [12] that every GC,-set possesses
necessarily a maximal line. Till now the conjecture is confirmed to be true
for n <5 (see Subsection . We say that a node of an n-poised or GC),-
set uses a line if the line is a factor in the fundamental polynomial of the
node. It is well-known that any maximal line M of X is used by all nodes in
X\ M. Note that this statement, as well as the previous one concerning the
maximal number of collinear nodes, follow readily from a well-known and
simple fact that a bivariate polynomial of total degree at most n vanishes on
a line if it vanishes at n + 1 points in the line (see forthcoming Proposition
11.7). In Section |3| we prove that the subset of nodes of X using a given
k-node line is (k — 2)-independent, meaning that each node of the subset
possesses a fundamental polynomial of total degree not exceeding k — 2. In
Sections [3.2] and [3.3] we prove a main result of this paper. Namely, if the
Gasca-Maeztu conjecture is true then any n-node line of a GC),-set X is used
either by exactly (g) nodes or by exactly (”;1) nodes. In Sections [2| and
similar statements are proved concerning n-node or (n — 1)-node lines
in n-poised sets. Let us mention that this is a new phenomenon in n-poised
and GC), sets. At the end we present a conjecture concerning any k-node
line.

Now let us go to exact definitions and formulations.

Definition 1.1. The set of nodes X is called n-poised if for any data
{c1,...,cs} there exists a unique polynomial p € II,,, satisfying the condi-
tions (|1.2)).

A polynomial p € 11, is called an n-fundamental polynomial for a node
A= (xk,yk) e X if

P(l’z:yz) :5ik7 Z‘:17"'787



where ¢ is the Kronecker symbol. We denote the n-fundamental polynomial
of Ae X, by py = pg’ x,- Sometimes we call fundamental also a polynomial
that vanishes at all nodes but one, since it is a nonzero constant times the
fundamental polynomial.
In view of the uniqueness we get readily that for any n-poised set the degree
of each fundamental polynomial equals to n.

A necessary condition of n-poisedness of Xy is: |Xs| = s = N.

The following is a Linear Algebra fact:

Proposition 1.2. The set of nodes Xy is n-poised if and only if the follow-
ing implication holds for any polynomial p € I1,, :

p(zi,y;)) =0, i=1,....,N=p=0.

1.1 n-independent and n-dependent sets

Next we introduce an important concept of n-dependence of node sets:

Definition 1.3. A set of nodes X is called n-independent if all its nodes
have fundamental polynomials. Otherwise, X is called n-dependent.

Clearly fundamental polynomials are linearly independent. Therefore a nec-
essary condition of n-independence is |X| < N.
Suppose a node set Xs is n-independent. Then by using the Lagrange

formula:
*
p= E CAPA,x,
AeXs

we obtain a polynomial p € II,, satisfying the interpolation conditions (|1.2]).
Thus we get a simple characterization of n-independence:
A node set Xs is n-independent if and only if the interpolation problem
(1.2)) is n-solvable, meaning that for any data {c1,...,cs} there exists a (not
necessarily unique) polynomial p € II,, satisfying the conditions .

Now suppose that X is n-dependent. Then some node (x;,,y;,), does
not possess an n-fundamental polynomial. This means that the following
implication holds for any polynomial p € II,, :

p(wzayz):07 (RS {17~-'7$}\{i0}:>p(wio7yio) =0.
In this paper we will deal frequently with a stronger version of n-dependence:

Definition 1.4. A set of nodes X is called essentially n-dependent if none
of its nodes possesses a fundamental polynomial.

Below, and frequently in the sequel, we use same the notation for a
polynomial ¢ € II; and the curve described by the equation ¢(z,y) = 0.



Remark 1.5. Suppose a set of nodes X is essentially n-dependent and
q € Iy, k < mn,is a curve. Then we have that the subset X’ := X'\ ¢ is
essentially (n — k)-dependent, provided that X’ # (.

Indeed, suppose conversely that a node A € X’ has an (n — k)-fundamental
polynomial r € I, ;. Then the polynomial ¢r € I, is an n fundamental
polynomial of the node A in X, which contradicts our assumption.

Definition 1.6. Given an n-poised set X, we say that a node A € X uses
a curve q € Iy, if ¢ divides the fundamental polynomial p% , :

Pax =qr, where r&ll, 4.
The following proposition is well-known (see e.g. [14] Proposition 1.3):

Proposition 1.7. Suppose that ¢ is a line. Then for any polynomial p € 11,
vanishing at n + 1 points of £ we have

p=4{r, where r€ll, 1.

Evidently, this implies that any set of n 4 2 collinear nodes is essentially
n-dependent. We also obtain from Proposition

Corollary 1.8. The following hold for any n-poised node set X :
(i) At most n+ 1 nodes of X can be collinear;
(ii) A line £ containing n+ 1 nodes of X is used by all the nodes in X\ {.

In view of this a line £ containing n + 1 nodes of an n-poised set X is
called a maximal line (see [3]).

One can verify readily the following two properties of maximal lines of
n-poised set X :

(i) Any two maximal lines of A’ intersect necessarily at a node of X’;
(ii) Three maximal lines of X cannot meet in one node.

Thus, in view of (1.1)), there are no n-poised sets with more than n + 2
maximal lines.

1.2 Some results on n-independence

Let us start with the following simple but important result of Severi [24]:

Theorem 1.9 (Severi). Any node set X consisting of at most n + 1 nodes
18 n-independent.

Next we consider node sets consisting of at most 2n + 1 nodes:



Proposition 1.10 ([I1]). Any node set X consisting of at most 2n+1 nodes
is n-dependent if and only if n + 2 nodes are collinear.

For a generalization of above two results for multiple nodes see [24] and [13],
respectively.
The third result in this series is the following

Proposition 1.11. Any node set X consisting of at most 3n — 1 nodes is
n-dependent if and only if at least one of the following holds.

(i) n+ 2 nodes are collinear,

(ii) 2n + 2 nodes belong to a conic (possibly reducible).

Let us mention that this result as well as the two previous results are
special cases of the following

Theorem 1.12 ([17], Thm. 5.1). Any node set X consisting of at most 3n
nodes is n-dependent if and only if at least one of the following holds.

(i) n+ 2 nodes are collinear,
(ii) 2n + 2 nodes belong to a conic,

(iii) |X| = 3n, and there is a cubic v € lI3 and an algebraic curve o € 11,
such that X =~yNo.

1.3 GC, sets and the Gasca-Maeztu conjecture

Let us consider a special type of n-poised sets whose n-fundamental polyno-
mials are products of n linear factors as it always takes place in the univariate
case:

Definition 1.13 (Chung, Yao [10]). An n-poised set X is called GC,,-set if
the n-fundamental polynomial of each node A € X is a product of n linear
factors.

In other words, GC), sets are the sets each node of which uses exactly n
lines.

Now we are in a position to present the Gasca-Maeztu conjecture, called
briefly also GM conjecture:

Conjecture 1.14 (Gasca, Maeztu, [12]). Any GC,,-set contains n+1 collinear
nodes.

Thus the GM conjecture states that any GC), set possesses a maximal line.
So far, this conjecture has been verified for the degrees n < 5. For n = 2,
the conjecture is evidently true. The case n = 3 is not hard to prove. The
case n = 4 was proved for the first time by J. R. Busch in 1990 [6]. Since
then, four other proofs have appeared for this case: [8, [I5] 2], and [25]. In



our opinion the last one is the simplest and the shortest one. The case n =5
was proved recently in [16].

Notice that if a line M is maximal then the set X' \ M is (n — 1)-poised.
Moreover, if X is a GCp-set then X \ M is a GC),_1-set.
For a generalization of the Gasca-Maeztu conjecture to maximal curves see
[18].

In the sequel we will make use of the following important result of Car-
nicer and Gasca concerning the GM conjecture:

Theorem 1.15 (Carnicer, Gasca, [9]). If the Gasca-Maeztu conjecture is
true for all k < n, then any GC,,-set possesses at least three maximal lines.

In view of this one gets readily that each node of X uses at least one maximal
line.

1.4 Some examples of n-poised and GC, sets

We will consider 3 well-known constructions: The Berzolari-Radon construc-
tion [4,22], the Chung-Yao construction [10] (called also Chung-Yao natural
lattice), and the principal lattice . The first construction gives examples of
n-poised sets, while the remaining two give examples of GC),-sets. Let us
mention that both the Chung-Yao natural lattice and the principal lattice
are special cases of the Berzolari-Radon construction.

Note that Lagrange and Newton formulas for these constructions can be
found in [12] and [21].

The Berzolari-Radon construction

A set X containing N = 142+ ---+(n+ 1) nodes is called Berzolari-Radon
set if there are n + 1 lines: £1,...,¢,4+1 such that the sets ¢1, fo\ 1, €3\
(lULa), ... Ly \ (UL &) contain exactly (n+1),n,(n—1),...,1 nodes,
respectively. The Berzolari-Radon set is n-poised.

It is worth noting that the Gasca-Maeztu conjecture is equivalent to the
statement that every GC,-set is a Berzolari-Radon set.

The Chung-Yao construction

Consider n+2 lines: £1,..., ¢, 2, such that no two lines are parallel, and no
three lines intersect in one point. Then the set X of intersection points of
these lines is called Chung-Yao set. Notice that |X| = (”;2) Each fixed node
here is lying in exactly 2 lines, and does not belong to the remaining n lines.
Moreover, the product of these n lines gives the fundamental polynomial of
the fixed node. Thus X is GC,,-set.

Note that this construction can be characterized by the fact that all the
given n + 2 lines are maximal. As it was mentioned earlier, there are no
n-poised sets with more maximal lines.



The principal lattice

The principal lattice is the following set (or an affine image of it)
X ={(i,j) €z :i+j<n}

Notice that the fundamental polynomial of the node (7, j) here uses i vertical
lines: x =k, k=0,...,2—1, j horizontal lines: y =k, k=0,...,7—1 and
n—1— j lines with slope —1:x+y =%k, k=4i+75+1,...,n. Thus X is
GC)-set.

Note that this lattice possesses just three maximal lines, namely the lines
x =0,y =0, and x+y = n. Note that, according to Theorem [L.15] there are
no n-poised sets with less maximal lines, provided that the Gasca-Maeztu
conjecture is true.

1.5 Maximal curves and the sets N, and X,

Let us start with a generalization of Proposition for algebraic curves of
higher degree. First set for k <n

d(n, k) := dimIL, — dimIL,_y = £ k (2n+3 — k).

Proposition 1.16 (Rafayelyan, [23], Prop. 3.1). Let q be an algebraic curve
of degree k < n without multiple components. Then the following hold.

(i) Any subset of q consisting of more than d(n, k) nodes is n-dependent.

(ii) A subset X C q consisting of d(n,k) nodes is n-independent if and
only if the following implication holds for any polynomial p € 11, :

p‘X =0 = p=gqr forsomer €ll,_k. (1.3)
Let us mention that a special case of (i), when ¢ factors into linear factors,

is due to Carnicer and Gasca, [7].
As in the case of lines (see Corollary we get readily from here

Corollary 1.17. The following hold for any n-poised node set X :
(i) At most d(n, k) nodes of X can lie in a curve of degree k;

(ii) A curve of degree k < n without multiple components containing d(n, k)
nodes of X is used by all the nodes in X \ q.

Next we bring a generalization of the concept of a maximal line (see
[23]):

Definition 1.18. A curve of degree k < n without multiple components
passing through d(n, k) nodes of an n-poised set X is called a mazimal
curve for X.



Thus maximal line, conic, and cubic pass through n + 1, 2n + 1, and 3n
nodes of X, respectively.

Below, for an n-posed set X, line ¢ and an algebraic curve ¢, we define
important sets Xy and Ny, which will be used frequently in the sequel.

Definition 1.19. Let X be an n-poised set £ be a line and g be an algebraic
curve without multiple factors. Then

(i) Ay is the subset of nodes of X which use the line /;

(i) N is the subset of nodes of X which do not use the curve ¢ and are
not lying in gq.

Next let us bring a characterization of maximal curves:

Proposition 1.20 (Rafayelyan, [23], Prop. 3.3). Let X be an n-poised set
and q be an algebraic curve of degree k < n without multiple factors. Then
the following statements are equivalent:

(i) The curve q is mazximal for X;
(i) All the nodes in'Y := X \ q use the curve g, i.e., Ny = 0;

(iii) The set Y is (n — k)-poised. Moreover, if X is a GCy-set then Y is a
GC,,_-set.

Thus NV, = () means that ¢ is a maximal curve. The following result concerns
the case when N, # (.

Proposition 1.21 (Rafayelyan, [23]). Let X be an n-poised set and q be an
algebraic curve of degree k < n without multiple factors. Then the set Ny is
essentially (n — k)-dependent, provided that it is not empty.

It is worth mentioning that the special case k = 1 of above two results,
where ¢ is a line is due to Carnicer and Gasca [§]. Note also that the case
when ¢ is a product of k lines is proved in [15].

Proposition 1.22 ([3]). Let X be an n-poised set. Then there is at most
one algebraic curve of degree n — 1 passing through N — 4 nodes of X.

From here one gets readily for any n-poised set X' (see [1]):

|Xe| <1 if £is a 2-node line. (1.4)

For a generalization of these results for curves of arbitrary degree and 3-node
lines see [19, 20]. Let us mention that the statement for GC), sets has
already been shown in [9].

In the sequel we will use frequently the following 2 lemmas from [9]. Let
us mention that the the second lemma is used in a proof there and is not
explicitly formulated. For the sake of completeness we bring proofs here.



Lemma 1.23 (Carnicer, Gasca, [9]). Let X' be an n-poised set and { be a
line. Suppose also that there is a mazimal line My such that MyN{ ¢ X.
Then we have that

Xp = (X \ My),.

If in addition £ is an n-node line then we have that

Xy =X\ (LU My) and therefore |Xy| = <Z>

Proof. Suppose conversely that a node A € My uses ¢ :

P =4Lq, qe€ll,_.

Notice that ¢ vanishes at the n nodes in My\{A} Thus, in view of Proposition
we have that ¢ and hence p’ vanishes on M. In particular p vanishes
at A, which is a contradiction.

Now assume that £ is an n-node line and A ¢ U M. Then we have that

ph = Moyg, qell,_1.

Notice that g vanishes at the n nodes of £. Thus, in view of Proposition
we have that ¢ = ¢r, r € II,,_3. Thus we obtain that p% = Mylr, i.e., A uses
the line /. O

Lemma 1.24 (Carnicer, Gasca, [9]). Let X be an n-poised set and ¢ be
a line. Suppose also that there are two maximal lines M', M" such that
M NM"nteX. Then we have that

Xp= (X \ (M'uM")),.

If in addition £ is an n-node line then we have that
—1
X=X\ (UM UM") and therefore |X,| = <n 5 )

Proof. Suppose that a node A € (M’ U M")\ £ uses ¢ :

P =4Lq, q€ll,_.

Suppose, for example, A € M’. Then notice that ¢ vanishes at the n nodes of
M"\ ¢. Thus, in view of Proposition we have that ¢ = M"r, r € II,,_o.
Then r vanishes on n— 1 nodes in M’ \ ¢ different from A. Thus r and hence
also p* vanishes on whole line M’ including A, which is a contradiction.
Now assume that ¢ is an n-node line and A ¢ ¢ U M’ U M". Then we
have that
pa=MM"q, qecll, .

Notice that ¢ vanishes at the n — 1 nodes of ¢ different from the node of
intersection with the maximal lines. Thus, in view of Proposition [1.7] we
have that ¢ = ¢r, r € II,_3. Therefore we obtain that p* = M'M"lr, i.e.,
A uses the line /. O



2 Lines in n-poised sets

2.1

On n-node lines in n-poised sets

Let us start our results with the following

Proposition 2.1. Let X be an n-poised set and £ be a line passing through
exactly n nodes of X. Then the following hold:

(i)
(i)

(iii)

%] < (5);
If | %] > (";1) +1 then there is a mazimal line My such that MoN{ ¢

X. Moreover, we have that Xy = X \ (Mo UY). Hence it is an (n — 2)-
poised set. In particular we have that |X;| = (Z),

If ("3Y) > & > ("5%) + 2, then |Xi| = ("}"). Moreover, Xy is an
(n—3)-poised set and there is a conic B € Iy such that X, = X'\ (BUL).
Furthermore, we have that Ny C 8 and |(8\ €) N X| = [Ny = 2n.
Besides these 2n nodes the conic may contain at most one extra node,

which necessarily belongs to €. If B is reducible: B = €14y then we have
that |6; N (X \ )| =n, i=1,2.

Proof. (i) Assume by way of contradiction that |X;| > (3) 4+ 1. Then we

(i)

(iii)

obtain

i< ("5 - [(3) +1] n=n

This is a contradiction, since on one hand, in view of Proposition [1.20
the nonempty set Ny is (n — 1)-dependent and on the other hand, in
view of Theorem [1.9} it is (n — 1)-independent.

In this case we have that

V| < (néﬂ)— [(n;1>+1} Cm=2n—1=2n-1)+1.

Now let us make use of Proposition Since Ny is (n—1)-dependent,
we get that there is a line My passing through n + 1 nodes of N. The
line My is maximal and therefore cannot pass through any more nodes.
Hence we obtain that My N ¢ ¢ X. Thus, in view of Lemma we
have that A} is an (n — 2)-poised set.

In this case we have that

NG| < (”;2>— [(”22>+2} n=3n—4=30n—1)—1.

Since the set Ny is (n — 1)-dependent, we get from Proposition that

either
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a) there is a line M passing through n + 1 nodes in Ny, or

b) there is a conic # € Il passing through 2n = 2(n — 1) 4+ 2 nodes in
No.

Let us start with the case a). We have for the maximal line My, in the
same way as in the case ii), that Mo N ¢ ¢ X and therefore |X| = (}). This
contradicts our assumption in iii).

In the case b) let us first show that |[A;| = 2n. Indeed, in view of
Proposition we have that N is essentially (n — 1)-dependent. Then,
suppose Ny, besides the nodes in 3, contains ¢ nodes outside of it, where
t <n—4 (= 3n—4—2n). In view of Remark [1.5|these ¢ nodes must be (n—3)-
essentially dependent. Therefore, we get from Theorem that ¢ = 0. Now
notice that ¢8 is a maximal cubic since it passes through 3n nodes. The
conic (8, besides the 2n nodes, may contain at most 1 extra node, since the
set X is n-independent. But, if the extra node does not belong to ¢, then
the cubic 8 would contain 3n + 1 nodes, which is a contradiction.

Finally assume that the conic is reducible: 3 = ¢1/5. Then, since N is
(n — 1)-essentially dependent, we readily get that each of the lines passes
through exactly n nodes from the 2n. O

2.2 On (n — 1)-node lines in n-poised sets

Proposition 2.2. Let X be an n-poised set and £ be a line passing through
exactly n — 1 nodes of X. Assume also that |Xs| > (";2) + 3.

Then we have that Xy is (n — 3)-poised set. Hence |Xy| = (";") and |Ny| =
2n + 1. Moreover, these 2n + 1 nodes are located in the following way:

(i) n+ 1 nodes are in a mazximal line My and
(ii) n nodes are in an n-node line M.

Furthermore, besides these n nodes, the line M{ may contain at most one
extra node, which necessarily belongs to M.

Proof. We have that

V| < <n;r2> - Kn;2>+3] (-1 =3n—-4=3(n—1)—1.

According to Proposition the set A is essentially (n — 1)-dependent.
Therefore, in view of Proposition [1.11} we have that either

(i) there is a line My passing through n + 1 nodes of Ny, or
(ii) there is a conic 8 € Iy passing through 2n = 2(n —1) +2 nodes of N.
Assume that i) holds. Then, suppose there are s nodes in A, outside the

line My, where s <2(n—2)—1(=2n—-5=3n—4—n—1).

11



Let us verify that s ## 0. Assume conversely that s = 0. Then we have
that any node A € X'\ (£ U My) uses the line ¢ and maximal line My, i.e.,

P = (Mg, q €1, 0.

This means, in view of Proposition [1.20] (part i) <> ii)), that the conic £Mj
is maximal, which is contradiction, since it passes through only 2n nodes
(instead of 2n + 1 nodes).

Then, in view of Remarkthese s nodes must be (n—2)-essentially de-
pendent. Therefore, by Proposition there is a line M passing through
n nodes of Ny \ My. Now, suppose there are ¢ nodes in Ny outside the lines
My and Mj, where t :< (n —3) —2 (=n—5=2n—5—n). These t nodes,
in view of Remark must be essentially (n — 3)-dependent. Thus, we
conclude from Theorem [1.9] that ¢ = 0 and therefore |Ny| = 2n + 1.

Now, it remains to verify that the case ii) is impossible.

Thus assume that ii) holds. Denote the number of nodes in A outside
the conic S by t. We have that t < (n —2) =2 (=n—4 = 3n—4 — 2n).
In view of Remark these ¢t nodes must be (n — 3)-essentially dependent.
Therefore, by Theorem we obtain that ¢ = 0 and therefore |Ny| = 2n.

Now we have that any node A € X'\ (/U 3) uses the line £. This means

P = {q, g €Il,—.

The curve g passes through all the 2n nodes in 5. By the Bezout theorem we
conclude that ¢ divides . Indeed, this is evident when f is irreducible. Now
assume that § is reducible, i.e., f = ¢1£5. The set Ng is (n — 1)-essentially
dependent. Therefore each line ¢;,i = 1,2, passes through exactly n nodes
of Mg and hence divides g. Thus we have that ¢ = fr, ¢ € II,,_3. Finally we
get

Py = Lpr, rell,_g3 forany Ae X\ (CUPp).

This means that each node outside ¢ and S uses the reducible cubic £8.
Therefore, by Proposition m (part i) < ii)), the latter curve is maximal,
which is contradiction, since it passes through only 3n — 1 nodes (instead of
3n nodes). O

Corollary 2.3. Let X be an n-poised set and ¢ be a line passing through
exactly n — 1 nodes of X. Then we have that |X;| < (”;1)

Proof. Assume by way of contradiction that || > (”;1) + 1. Notice that

-1 -2
<"2 >+12 <"2 >+31fn24.
Now, in view of Proposition we get that || < ("51), which contradicts

our assumption. It remains to note that Corollary in the case n = 3 is a
special case in (1.4]). O
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3 Lines in GC,, sets

3.1 On k-node lines in GC,, sets

Proposition 3.1. Assume that Conjecture holds for all degrees up to
v. Let X be a GC, set, n < v, and £ be a line passing through exactly
k nodes of X. Then the set Xy is (k — 2)-independent set. Moreover, for
each node A € Xy there is a (k — 2)-fundamental polynomial that divides the
n-fundamental polynomial of A in X.

Proof. First suppose that £ = n—+1, meaning that ¢ is a maximal line. Then
we have that Xy = X'\ £ and this set is GC),_1-set and hence is (n—1)-poised.

In the case when £ is not maximal we will use induction on n. The case
n = 2 is evident (see Subsection . Suppose Proposition is true for all
degrees less than n and let us prove it for n.

Suppose that there is a maximal line My such that My N ¢ ¢ X. Then
we get from Lemma that Xy = (Xp)e where Xy := X\ My. We have
that the set Xy is GC,,_1-set and ¢ passes through exactly k& nodes of Aj.
Therefore by induction hypothesis for the degree n — 1 we get that A is
(k — 2)-independent.

Now, in view of Theorem [1.15] consider three maximal lines for X and
denote them by M;, ¢+ = 1,2,3. It remains to consider the case when each
of these maximal lines intersects ¢ at a node of X.

We will prove that Xy is (k — 2)-independent by finding a (k — 2)-
fundamental polynomial for each node A € AX,. Since 3 maximal lines
intersect each other at 3 distinct nodes there is i9 € {1,2,3} such that
A ¢ M;,. We have that the set V := X \ M;, is GC,,_;-set and ¢ passes
through exactly k — 1 nodes of Y. Therefore by induction hypothesis for the
degree n — 1 we get that the set )y is (k — 3)-independent. Moreover, there
is a (k — 3)-fundamental polynomial Py, € llx—3 which divides p7 ,,.

Now, since Xy C Y U M;,, we get readily that the polynomial

M;,ph y, € g2

is a fundamental polynomial of A in X,. We get also that it divides the
polynomial p:l,x = Miopﬁ,y- O

Below we bring some simple consequences of the fact that the set Ay is
(k — 2)-independent:

Corollary 3.2. Assume that the conditions of Proposition[3.1] hold. Then
the following hold.

(M) 1% < (5);

(ii) Ay contains at most k — 1 collinear nodes;
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(iii) For any curve q of degree m < k — 2 we have that

X Mgl < d(k — 2,m).

Note, that ii) is a special case of iii) when m = 1. Let us mention that
i) and ii) were proved in [9], Theorem 4.5.

3.2 On n-node lines in GC,, sets

Next, let us present a main result of this paper:

Theorem 3.3. Assume that Conjecture holds for all degrees up to v.
Let X be a GC, set, n < v and ¢ be a line passing through exactly n nodes
of the set X. Then we have that

M:(Z) or (”21>. (3.1)

Also, the following hold:

(i) If |X,| = (3) then there is a mazimal line My such that MoN € ¢ X.
Moreover, we have that Xy = X \ (¢ U My). Hence it is a GCp_o set;

(ii) If |X| = (";") then there are two mazimal lines M', M", such that

M' N M" Nt e X. Moreover, we have that X = X \ (¢ UM UM").
Hence is a GC,,_3 set.

Let us first assume that Theorem is valid and prove the following

Corollary 3.4. Assume that the conditions of Theorem[3.3 take place. Then
the following hold for any mazimal line M of X':

() M) =0 if
a) MNL¢ X orif
b) there is another maximal line M’ such that M N M' N{ € X;

(i) (M NX|=s-1 if |X|=(3), where s =n,n—1,
for all the remaining maximal lines.

Proof of Corollary[3.4). The statements of i) concerning a) and b) follow
from Lemma [1.23] and LemmaI.24] respectively.

For the statement ii) assume that M is a maximal line intersecting ¢ at
a node A and there is no other maximal line passing through that node.
Now suppose that |X;| = (3). Then, in view of Theorem there is a
maximal line My such that MyN ¢ ¢ X. According to Lemma we have
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that Xy = X'\ (¢U Mjy). Therefore we get [M NXy| = |[MN[X\ (CUMy)]| =
(n+1)—2=mn—1, since M intersects £ and My at two distinct nodes.
Next suppose that |Xy| = ("51) Then there are two maximal lines M’
and M" such that M’ N M" N¢ € X. Now, according to Lemma we
have that X, = X\ (¢ U M" U M"). Therefore we get |[M N A, = |MN[X\
(UM UM =(n+1)—3=n-—2,since M intersects ¢, M’ and M" at
three distinct nodes. O

Remark 3.5. Assume that the conditions of Theorem take place and
Xy # (. Assume also that M is a maximal line of X such that M intersects
¢ at a node and no node from M uses £. Then there is another maximal line
M’ such that M N M'N¢ € X and therefore no node from M’ uses ¢ either.

3.3 The proof of Theorem

Let us start with

3.3.1 The case n=1

G sets consist of 3 non-collinear nodes. Consider a such set X = {A, B, C'}
and an 1-node line ¢ that passes, say, through A. We have that no 1-node
line is used in GC,, sets. Thus Xy = (). Therefore we may assume that both
equalities in take place. Note also that both implications i) and ii) of
Theorem take place. Indeed, the maximal line through B and C' does
not intersect £ at a node. And at the same time the other two maximal lines,
i.e., 2-node lines through A, B and A, C intersect the line £ at the node A.

3.3.2 The case n =2

We divide this case into 2 parts.
1. GOy sets with 3 maximal lines:

Consider a GCy set X with exactly 3 maximal lines. These lines intersect
each other at 3 non-collinear nodes, called vertices. Except these 3 nodes,
there are 3 more (non-collinear) nodes in X', one in each maximal line, called
”free” nodes. Here the 2-node lines are of 2 types:

a) 2-node line ¢ that does not pass through a vertex. Notice that ¢ is
used only by one node and the implication i) of Theorem holds. Namely,
there is a maximal line that does not intersect ¢ at a node.

b) 2-node line that passes through a vertex. Notice that no node uses a
such line and the implication ii) holds.

2. GCy sets with 4 mazximal lines:

In this case we have the Chung-Yao lattice (see Subsection . Here all
6 nodes of X are intersection nodes of the maximal lines and the only used
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lines are the maximal lines. Thus in this case any 2-node line is not used
and evidently the implication ii) holds.

3.3.3 The case n =3
We divide this case into 3 parts:
1. The case of GC3 sets with exactly 3 maximal lines:

Consider a GC5 set X’ with exactly 3 maximal lines. By the properties of
maximal lines we have that they form a triangle and the vertices are nodes
of X. There are 6 (= 3 x 2) more nodes, called "free”, 2 in each maximal
line. There is also one node outside the maximal lines, denoted by O. We
find readily that the 6 ”free” nodes are located in 3 lines passing through
O, 2 in each line (see Fig. [3.1)).

Figure 3.1: Three 3-node lines

These 3 lines are the only 3-node lines in this case. We have that for a
such line ¢ there is a maximal line M that does not intersect ¢ at a node,
i.e., the implication i) of Theorem holds. Also we have that ¢ is used by
exactly 3 nodes. Namely, by the nodes that do not belong to ¢ U M.

2. The case of GCg sets with exactly 4 mazimal lines:

Now consider a GC5 set X' with exactly 4 maximal lines. In this case
there are 6 (: (;)) nodes that are intersection points of maximal lines.

Also there are 4 more nodes in maximal lines, called ”free”, 1 in each. The
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4 " free” nodes are not collinear.
Again we have two types of 3-node lines here.
a) 3-node line ¢ that passes through an intersection node (see Fig|3.2).

Figure 3.2: 3-node line passing through an intersection node

Note that a 3-node line can pass through at most one such node. Indeed,
if a line passes through two intersection nodes then it cannot pass through
any third node.

Notice that ¢ is used by only one node A and the implication ii) of
Theorem takes place.

b) 3-node line ¢ that passes through 3 ”free” nodes (see Fig [3.3).

Notice that the maximal line M whose ”free” node is not lying in ¢ does
not intersect ¢ at a node. Thus the implication i) holds. In this case ¢ is
used by exactly 3 nodes. Namely, by the nodes that do not belong to £U M.

3. The case of GCq sets with exactly 5 mazimal lines:

In this case we have the Chung-Yao lattice (see Subsection . Here all
10 nodes of X are intersection nodes of 5 maximal lines and the only used
lines are the maximal lines. Let us verify that in this case there is no 3-node
line. Assume conversely that ¢ is a such line. Then through each node there
pass two maximal lines and all these maximal lines are distinct. Therefore
we get 6 maximal lines, which is a contradiction.

3.4 The proof of Theorem for n >4

We will prove Theorem by induction on n. The cases n < 3 were verified.
Assume Theorem is true for all degrees less n and let us prove that it is true
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Figure 3.3: 3-node line through 3 ”free” nodes

for the degree n, where n > 4.

Suppose that |Xy| > (";1) + 1. Then by assertion ii) of Proposition
we get that there is a maximal line My such that MyN¢ ¢ X. Thus, in view
of Lemma we obtain that |Ay| = (}) and the implication i) holds.

Thus to prove Theorem it suffices to assume that

| x| < <n Y 1) (3.2)

and to prove that the implication ii) holds, i.e., there are two maximal lines
M’ M", such that M’ N M" Nn¢ € X. Indeed, this completes the proof in
view of Lemma

First suppose that two nodes in some maximal line M use the line ¢, i.e.,

1M N X,| > 2. (3.3)

We have that X \ M is a GC,,_1-set. Hence, by making use of (3.3) and

induction hypothesis, we obtain that
n—2
a2 @ and+2z ("5 %) +2
Therefore, in view of the condition (3.2)) and Proposition [2.1iii), we conclude

that .
| X | = (n; ) and Ny C B € Iy, [Ny =2n. (3.4)
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Let us use the induction hypothesis. By taking into account the first equality
above and condition (3.3]), we obtain that

v = ("),

Thus the cardinality of the set Ny N (X \ M) equals to 2n — 2 (= 2(n —
1)). Therefore, in view of the second equality in (3.4), by using induction
hypothesis we get that all the nodes in § except possibly two are located on
two maximal lines of the set X'\ M, denoted by M’ and M”, which intersect
at anode A € £. Since n > 4 each of these two maximal lines passes through
at least 3 nodes except A, which belong to 5. Thus each of them divides 3
and we get 8 = M’'M". Finally, according to Proposition iii), each of
these lines passes through exactly n nodes outside £ and therefore they are
maximal also for the set X'. Hence the implication ii) holds.
Thus we may suppose that

IM N &y <1 foreach maximal line M of the set X. (3.5)
Next let us verify that we may suppose that
IMN&Xy =1 for each maximal line M of the set X. (3.6)

Indeed, suppose by way of contradiction that no node, say in a maximal
line M; uses the line ¢. Now, in view of Theorem [1.15] consider two other
maximal lines of X and denote them by M;, i = 2, 3.

In view of the condition and Lemma we have that there is
no maximal line My such that My N ¢ ¢ X, i.e., all the maximal lines of X
intersect the line ¢ at a node of X'. Then as was mentioned above, if there
are two maximal lines intersecting at a node in ¢ then Theorem follows from
Lemma

Thus, we may suppose that the 3 maximal lines M;, ¢ = 1,2, 3, intersect
the line ¢ at 3 distinct nodes, denoted by C;, ¢ = 1,2, 3, respectively.

Then consider the GC),—1-set Xy := X'\ My. We may assume that (AX2), #
(. Indeed, otherwise by induction hypothesis and we would obtain
that n — 1 = 2, i.e, n = 3. In X5 no node of the maximal line M; uses ¢.
By induction hypothesis, in view of Remark we have that there is a
maximal line M{ of this set intersecting ¢ at C. In the same way we get
that there is a maximal line M/ in the set X \ M3 intersecting ¢ at Cj.
Now if the maximal line M{ coincides with M{" then we get readily that it is
maximal also for X which completes the proof in view of Lemma Thus
suppose that the maximal lines M| and M are distinct. Then consider the
GCp_o-set X \ (M U Ms3). Here we have 3 maximal lines My, M{ and M{
intersecting at the node (7, which is a contradiction.

Thus we have that holds, i.e., there is only one node in each maximal
line M;, i = 1,2,3, using the line £. Notice that at most one node can be
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intersection node of these 3 maximal lines, since otherwise we would have
2 nodes in a maximal line that use ¢. Consider a node A which lies, say in
M3, uses £ and is not an intersection node, i.e., does not lie in the maximal
lines M; and My (see Fig. .

Consider the GC,,—; node set X; := X \ M; for any fixed i = 1,2. In the
maximal line M3 there is only one node using ¢. Therefore, in view of the
induction hypothesis and Corollary [3.4] we have that

[(Xi)el =1, i=1,2. (3.7)

We may conclude from here that there is only one node in M; U Ms, namely
the intersection node B := M N M>, that uses the line /.

At the same time we get from also that (n—1) =2,0r (n—1)—1 = 2.
Therefore n < 4, i.e., we may assume that n = 4.

3.4.1 A special case

Thus it remains to consider the case n = 4 with |Xy| = 2. Recall that one of
the nodes: A belongs to only one maximal line Ms. While the other node:
B is the intersection node of the maximal lines My and My (see Fig. (3.4)).
We will show that this case is not possible.

Figure 3.4: A special case

Consider the GCs-set X7 := X'\ M. The line ¢ is used by one node here:
A and no node in maximal line My uses it. Thus we conclude that there is
a maximal M} passing through Cs.
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Now, denote by E, the intersection node of the maximal lines M/ and
Ms. Let us identify this node among the 5 nodes in M3. Notice that evidently
E is different from C'5 - the intersection node with £.

We have that F is different also from the intersection nodes with Mj or
with Ms. Indeed, three maximal lines cannot intersect at a node.

Finally note that E is different also from the node A, since it uses £ and
therefore it does not belong to Mj.

Thus E coincides necessarily with the fifth node in M3 denoted by F.

Now consider the GC3-set Xy := X'\ My. Again the line ¢ is used by one
node here: A and no node in maximal line M7 uses it. Thus we conclude
that there is a maximal M/ passing through C}.

Then, exactly in the same way as above, we may conclude that M]
intersects M3 at F.

Finally, consider the GCy-set )Y := X'\ (M; U M>). Notice that the lines
M{, M} and Ms are 3 maximal lines intersecting at the node F, which is a
contradiction. [J

Remark 3.6. Let us mention that in the cases n < 5 Theorem is valid
without the assumption concerning the Gasca-Maeztu conjecture.

3.5 A conjecture concerning GC), sets

Conjecture 3.7. Assume that Conjecture holds for all degrees up to
v. Let X be a GC, set, n < v and £ be a line passing through exactly k
nodes of X set. Then we have that

| Xy | = <;>, for some 2k —n —1<s<k. (3.8)

Moreover, for any mazimal line M of X we have:

(i) IMNnx|=0if
MnNt¢X orif
there is another mazimal line M’ such that M NM' Nl e X;

(i) I MNXy|=s—1 if (;) = |Xy|, where 2k—n—1<s<k,
for all the remaining maximal lines.
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