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Bézier form of dual bivariate Bernstein polynomials
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Abstract Dual Bernstein polynomials of one or two variables have proved to be very useful in obtain-

ing Bézier form of the L2-solution of the problem of best polynomial approximation of Bézier curve or

surface. In this connection, the Bézier coefficients of dual Bernstein polynomials are to be evaluated

at a reasonable cost. In this paper, a set of recurrence relations satisfied by the Bézier coefficients

of dual bivariate Bernstein polynomials is derived and an efficient algorithm for evaluation of these

coefficients is proposed. Applications of this result to some approximation problems of Computer

Aided Geometric Design (CAGD) are discussed.

Key words Dual bivariate Bernstein basis · Bézier coefficients · Bivariate Jacobi polynomials · Bi-

variate Hahn polynomials
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1 Introduction and preliminaries

The Bernstein-Bézier curves and surfaces have become the standard in the CAGD context
due to their favourable geometric properties (cf. [9]). Degree reduction, which consists in
approximating a Bézier curve or surface by another one of a lower degree, and approximation
of a rational Bézier curve or surface by a polynomial one have many important applications in
geometric modelling, such as data exchange, data compression, and data comparison. There
have been many papers relevant to this problem (see, e.g., [1, 2, 4, 7, 10, 14, 19–26,28, 29]).

The above approximation problems, with or without constraints, are studied for different
choices of the error norm. Notice that the Bernstein polynomials do not form an orthogonal
base, so obtaining the Bézier form of the best L2-norm solution requires some effort. In a
frequently used approach, the main tool applied was transformation between the Bernstein
and orthogonal polynomial bases. Such methods are not only expensive, but also may be
ill-conditioned (cf. a remark in [20]).

Recently [28, 29], a novel approach to the best L2 approximation problem, using the dual
basis associated with the univariate or bivariate Bernstein basis, was proposed. The new
methods do not use basis transformation matrices explicitly, hence they do not share the
abovementioned limitation. High efficiency of the methods was obtained thanks to the appli-
cation of recursive properties of the dual Bernstein polynomials.
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In the present paper, we derive the recurrence relations satisfied by the Bézier coefficients of
the dual bivariate Bernstein polynomials and prove in detail a low-cost algorithm for numerical
evaluation of these coefficients; see Section 2. This algorithm (without proof) was successfully
used in [15] as a part of the method for polynomial approximation of rational triangular
Bézier surfaces1; see the discussion in Section 3. Several useful properties of the dual bivariate
Bernstein basis polynomials, exploited in the proposed method, are obtained in Appendix A.
In Appendix B, some results on the bivariate Jacobi and Hahn orthogonal polynomials are
collected.

Below, we introduce notation and definitions that are used in the paper.
For y := (y1, y2, . . . , yd) ∈ R

d, we denote

|y| := y1 + y2 + . . .+ yd, ‖y‖ :=
(

y21 + y22 + . . .+ y2d
)

1

2 .

For n ∈ N and c := (c1, c2, c3) ∈ N
3 such that |c| < n, we define the following sets (cf.

Figure 1):
Θn := {k = (k1, k2) ∈ N

2 : 0 ≤ |k| ≤ n},

Ωc
n := {k = (k1, k2) ∈ N

2 : k1 ≥ c1, k2 ≥ c2, |k| ≤ n− c3},

Γc
n := Θn \ Ωc

n.
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Figure 1: Examples of sets (1.1) (n = 11). Points of the set Ωc
n are marked by white discs,

while the points of the set Γc
n – by black discs. Obviously, Θn = Ωc

n ∪ Γc
n.

Remark 1.1 In applications to approximation problems related to triangular (rational or poly-
nomial) Bézier patches, the set Θn corresponds to the set of control points of a patch, while its
subset Γc

n – to the boundary points, where some constraints are to be imposed. See Section 3.

Let T be the standard triangle in R
2,

T := {(x1, x2) : x1, x2 ≥ 0, x1 + x2 ≤ 1}. (1.2)

1Notice that for a specific choice of parameters, the rational Bézier surface reduces to a polynomial Bézier
surface, so that the above approximation problem, with an additional assumption, is actually the polynomial
degree reduction problem discussed in [29]. In the method proposed there, dual bivariate Bernstein polynomials
also play the basic role. It should be stressed, however, that the present approach is substantially different
and much more efficient than the one proposed in [29].
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For n ∈ N and k := (k1, k2) ∈ Θn, we denote

(

n

k

)

:=
n!

k1!k2!(n− |k|)!
.

The shifted factorial is defined for any a ∈ C by

(a)0 := 1; (a)k := a(a+ 1) · · · (a+ k − 1), k ≥ 1.

The Bernstein polynomial basis in Π2
n, n ∈ N, is given by (see, e.g., [8], or [9, §18.4])

Bn
k(x) :=

(

n

k

)

xk11 xk22 (1− |x|)n−|k|, k := (k1, k2) ∈ Θn, x := (x1, x2). (1.3)

The (unconstrained) dual bivariate Bernstein basis polynomials [16],

Dn
k(·;α) ∈ Π2

n, k ∈ Θn, (1.4)

are defined so that
〈Dn

k, B
n
l 〉α = δk,l, k, l ∈ Θn.

Here, δk,l equals 1 if k = l, and 0 otherwise, while the inner product is defined by

〈f, g〉α :=

∫∫

T

wα(x)f(x) g(x)dx, (1.5)

where the weight function wα is given by

wα(x) := Aαx
α1

1 xα2

2 (1− |x|)α3 , α := (α1, α2, α3), αi > −1, (1.6)

and Aα is a normalisation factor (see (B.4)).
In the sequel, we use the notation ek

l
(α, n) for the connection coefficients between bivariate

Bernstein and dual bivariate Bernstein bases such that

Dn
k
(x;α) =

∑

l∈Θn

ek
l
(α, n)Bn

l
(x), k ∈ Θn. (1.7)

Investigating the properties of these coefficients is one of the main goals of the paper. The
fast recursive scheme for computing the coefficients ek

l
(α, n), k, l ∈ Θn, is formulated in the

next section, while the wide mathematical background is given in Section A.1.
For n ∈ N and c := (c1, c2, c3) ∈ N

3 such that |c| < n, define the constrained bivariate
polynomial space

Πc, 2
n :=

{

P ∈ Π2
n : P (x) = xc11 xc22 (1− |x|)c3 · Q(x), where Q ∈ Π2

n−|c|

}

.

It can be easily seen that the constrained set of polynomials Bn
k

with the range of k restricted
to Ωc

n forms a basis in this space. We define the constrained dual bivariate Bernstein basis
polynomials,

D
(n,c)
k

(·;α) ∈ Πc, 2
n , k ∈ Ωc

n, (1.8)

so that
〈

D
(n,c)
k

, Bn
l

〉

α

= δk,l for k, l ∈ Ωc

n,
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where the notation of (1.5) is used. For c = (0, 0, 0), basis (1.8) reduces to the unconstrained
basis (1.4) in Π2

n. Obviously, for any Q ∈ Πc, 2
n , we have

Q(x) =
∑

k∈Ωc
n

〈

Q,D
(n,c)
k

〉

α

Bn
k(x). (1.9)

Let Ek

l
(α, c, n), l ∈ Ωc

n, denote the Bézier coefficients of the constrained bivariate dual

Bernstein polynomial D
(n,c)
k

(x;α), k ∈ Ωc
n:

D
(n,c)
k

(x;α) =
∑

l∈Ωc
n

Ek

l (α, c, n)Bn
l (x). (1.10)

According to Lemma A.7, the following formula relates the above coefficients with the ”un-
constrained” connection coefficients defined in (1.7):

Ek

l (α, c, n) := U Vk(n)Vl(n) e
k−c′

l−c′
(α+ 2c, n− |c|), k, l ∈ Ωc

n, (1.11)

where c′ := (c1, c2), and U, Vk(n), k ∈ Ωc
n, are constants defined in (A.19).

Hence, for fast evaluation of the coefficients (1.11), it would be sufficient to have an efficient
algorithm for computing the quantities ek

l
(α, n) for the full range k, l ∈ Θn, with arbitrary

parameters α and n. In Section 2, we describe such an algorithm that has the computational
complexity order proportional to the number of these quantities.

2 Computing the Bézier coefficients e
k
l (α, n)

The coefficients ek
l
≡ ek

l
(α, n), k, l ∈ Θn, can be arranged in a block triangular matrix

E =
[

E
k

]

k∈Θn

=



















E
(0,n)

E
(0,n−1)

E
(1,n−1)

. . . . . . . . . . . . . . . . . . . . . .

E
(0,1)

E
(1,1) . . . E

(n−1,1)

E
(0,0)

E
(1,0) . . . E

(n−1,0)
E
(n,0)



















, (2.1)

each block E
k, k ∈ Θn, being a triangular matrix

E
k =

[

ekl

]

l∈Θn

=



















ek(0,n)

ek(0,n−1) ek(1,n−1)

. . . . . . . . . . . . . . . . . . . . .

ek(0,1) ek(1,1) . . . ek(n−1,1)

ek(0,0) ek(1,0) . . . ek(n−1,0) ek(n,0)



















.

The proposed algorithm is based on some recurrences satisfied by the elements of the
matrix (2.1). In the sequel, we assume that ek

l
= 0 if k 6∈ Θn or l 6∈ Θn.

The first recurrence is the following (cf. Lemma A.3):

ek+v2

l
=
(

[σ1(k)− σ1(l)]e
k

l − σ2(k)e
k−v2

l
+ σ0(l)e

k

l+v2
+ σ2(l)e

k

l−v2

)

/σ0(k), (2.2)
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where v2 := (0, 1), and where for t := (t1, t2), we define

σ0(t) := (|t| − n)(t2 + α2 + 1), σ2(t) := t2(|t| − α3 − n− 1), σ1(t) := σ0(t) + σ2(t).

Observe that recurrence (2.2) relates three consecutive blocks of a column of the matrix (2.1),
shown in the following diagram:

E
k+v2

E
k

E
k−v2 .

According to the convention, the block E
(k1,−1) has only zero elements. Thus, we can compute

all the blocks of this column, provided that we have computed the block E
(k1,0) using another

method.
Now, to initialise the computation of the first column, we need a method to compute the

corner block E
(0,0) in the table (2.1). We can use the following formula (cf. Corollary A.5):

e
(0,0)
l

(α, n) =
(−1)l1(|α|+ 3)n
n!(α1 + 2)l1

n−l1
∑

i=0

C∗
i hi(l2;α2, α3, n− l1), l := (l1, l2) ∈ Θn, (2.3)

where the coefficients C∗
i are given by (A.17), and we use the notation hi(t; a, b,M) for the

univariate Hahn polynomials (cf. (B.6)). As noticed in Remark B.1, we can efficiently evaluate
the sum in (2.3) using the Clenshaw’s algorithm, at the cost of O(n− l1) operations.

To compute the remaining part of the last row of the matrix (2.1), i.e.,

E
(1,0)

E
(2,0) . . . E

(n−1,0)
E
(n,0),

we use the second recurrence (cf. Lemma A.3):

ek+v1

l
=
(

[τ1(k)− τ1(l)]e
k

l − τ2(k) e
k−v1

l
+ τ0(l) e

k

l+v1
+ τ2(l) e

k

l−v1

)

/τ0(k), (2.4)

where v1 := (1, 0), and for t := (t1, t2), the coefficients τj(t) are given by

τ0(t) := (|t| − n)(t1 + α1 + 1), τ2(t) := t1(|t| − α3 − n− 1), τ1(t) := τ0(t) + τ2(t).

The recurrence (2.4) relates each three consecutive blocks of a row of the matrix (2.1), shown
in the following diagram:

E
k−v1 E

k
E
k+v1 .

Again, by the convention, the blocks E
(−1,k2) have only zero elements.

The following algorithm can be applied to compute the complete set of the coefficients ek
l

arranged in the block matrix E (cf. (2.1)). The algorithm requires O(n4) operations, i.e., its
cost is proportional to the total number of the coefficients.

Algorithm 2.1 (Computing the table E)

Step 1 For l1 = 0, 1, . . . , n− 1,
l2 = 0, 1, . . . , n− l1,

using the Clenshaw algorithm, compute e
(0,0)
(l1,l2)

defined by (2.3), (A.17),

and put e
(l1,l2)
(0,0) := e

(0,0)
(l1,l2)

.
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Step 2 For k1 = 0, 1, . . . , n− 1,

1o for k2 = 0, 1, . . . , n − k1 − 1,
l1 = k1, k1 + 1, . . . , n,
l2 = 0, 1, . . . , n− l1,

compute e
(k1,k2+1)
(l1,l2)

using the recurrence (2.2), and put e
(l1,l2)
(k1,k2+1) := e

(k1,k2+1)
(l1,l2)

;

2o for l1 = k1 + 1, k1 + 2, . . . , n,
l2 = 0, 1, . . . , n− l1,

compute e
(k1+1,0)
(l1,l2)

using the recurrence (2.4), and put e
(l1,l2)
(k1+1,0) := e

(k1+1,0)
(l1,l2)

.

Output: The set of the coefficients ek
l
(α, n) for k, l ∈ Θn.

Remark 2.2

(i) In Algorithm 2.1, we made use of the symmetry property ek
l
(α, n) = el

k
(α, n) (cf. (A.4)).

(ii) When α2 = α3, the cost of completing the table E can be reduced significantly using
(A.5). First, the lower part of the table (2.1), containing the blocks

E
(k1,⌊

1

2
(n−k1)⌋)

...

E
(k1,1)

E
(k1,0)



























with k1 = 0, 1, . . . , n,

is computed using the properly adapted Algorithm 2.1. In the second step, the upper

part of the table is computed, using the formula ek
l
(α, n) = ek̂

l̂
(α, n), where k̂ :=

(k1, n − |k|) and l̂ := (l1, n− |l|).

(iii) Similar effect of the cost reduction can be obtained if α1 = α2, or α1 = α3, or α1 = α2 =
α3 (cf. (A.7)–(A.9)).

(iv) Observe that the complexity order of Algorithm 2.1 equals O(n4), i.e., is proportional to
the total number of the coefficients ek

l
(α, c, n) for k, l ∈ Θn.

3 Applications

Rational Bézier curves and surfaces, being the most natural generalization of polynomial Bézier
curves and surfaces, are important tools in geometric modelling. However, they are sometimes
inconvenient in practical applications. For this reason, several algorithms for approximating
a rational Bézier geometric form by a polynomial one have been proposed (see, e.g., [10, 18,
21, 24]).

The following constrained approximation problem was recently considered in [15].
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Problem 3.1 Given the Bézier coefficients rk and positive weights ωk, k ∈ Θn, of the rational
function Rn of degree n,

Rn(x) :=

∑

k∈Θn

ωkrkB
n
k
(x)

∑

k∈Θn

ωkB
n
k(x)

=
∑

k∈Θn

rkQ
n
k(x), x ∈ T, (3.1)

where

Qn
k(x) :=

ωkB
n
k(x)

∑

i∈Θn

ωiB
n
i (x)

, (3.2)

find a polynomial of degree m, of the form

Pm(x) :=
∑

k∈Θm

pkB
m
k (x), x ∈ T, (3.3)

with the coefficients pk satisfying the conditions

pk = gk for k ∈ Γc

m, (3.4)

gk being prescribed numbers, and c := (c1, c2, c3) ∈ N
3 being a given parameter vector with

|c| < m, such that the distance between Rn and Pm,

d(Rn,Pm) :=

∫∫

T

wα(x)[Rn(x)− Pm(x)]2 dx, (3.5)

reaches the minimum.

It has been shown that the solution of Problem 3.1 is the polynomial (3.3) with the
coefficients given by (cf. [15, Thm 2.2])

pk =
∑

l∈Ωc
m

(

m

l

)

Ek

l (α, c,m)
(

ul − vl
)

, k ∈ Ωc

m, (3.6)

where

ul :=
∑

h∈Θn

(

n

h

)(

n+m

h+ l

)−1

rh Ih,l,

vl :=
1

(|α|+ 3)2m

∑

h∈Γc
m

(

m

h

)

(

3
∏

i=1

(αi + 1)hi+li

)

gh

with h3 := m− |h|, l3 := m− |l|, and

Ih,l :=

∫∫

T

wα(x)Q
n
h
(x)Bm

l
(x)dx. (3.7)

The symbol Ek

l
(α, c,m) has the meaning given in (1.10) (see also (1.11)).
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Implementation of formula (3.6) demands 1o evaluation of all the coefficients Ek

l
(α, c,m)

with k, l ∈ Ωc
m and 2o computing all the integrals Ih,l with h ∈ Θn, l ∈ Ωc

m.
The first task is accomplished in two steps. (i) We compute all the the coefficients

ek
l
(µ, c,M), k, l ∈ Ωc

m, with M := m − |c| and µ := α + 2c by Algorithm 2.1 and then (ii)
use the result in formula (1.11) (with n replaced by m) to compute Ek

l
(α, c,m), k, l ∈ Ωc

m.
Remark that the striking simplicity of Algorithm 2.1 was obtained thanks to using properties
of dual bivariate Bernstein polynomials, investigated in Appendix A.

As for the second task, observe that in general, the integrals (3.7) cannot be evaluated
exactly, and their number, equal to (n+m−|c|)(n+m−|c|+1)/2, may lead to the impression
that computation of the coefficients (3.6) is time-expensive in practice. The problem has been
defeated in [15], where we have proposed a very effective algorithm which allows to compute
the complete set of integrals Ih,l, h ∈ Θn, l ∈ Ωc

m, in a time about twice as long as the
time required to compute a single integral of this type (the algorithm is an extension of the
adaptive, high precision method of [11], and it uses some special properties of the integrals
(3.7)).

In this way, we have obtained a very efficient method for computing the solution to the
Problem 3.1.

3.1 Case of equal weights

Notice that in the particular case where all the weights are equal, ωi = ω, i ∈ Θn, we have
Qn

k
(x) = Bn

k
(x), k ∈ Θn. Consequently, the rational function (3.1) reduces to a polynomial of

degree n, so that Problem 3.1 (with additional assumption m < n) is actually the constrained
polynomial degree reduction problem that has been discussed [29]. In the cited paper, we have
developed a method to evaluate the control points of the reduced surface in terms of quantities
〈

D
(m,c)
k

, Bn
l

〉

a

, k ∈ Ωc
m, l ∈ Θn. Computing these coefficients was the most cumbersome part

of the method. The main part of the above collection was computed efficiently thanks to using
some recurrence relations. However, a quite large portion of the coefficients demanded some
complex computations. By applying the approach of this paper, we may solve the degree
reduction problem much faster.

N.B. In the case of equal weights, evaluation of the integrals (3.7) is a simple task as we
have (see, e.g., [29])

Ih,l =

(

n

h

)(

m

l

)

(α1 + 1)h1+l1(α2 + 1)h2+l2(α3 + 1)n+m−|h|−|l|

(|α|+ 3)n+m

.

Appendix A: Dual bivariate Bernstein bases

A.1 Unconstrained dual bivariate Bernstein polynomials

In this section, we prove some important properties of the coefficients ek
l
(α, n) introduced in

(1.7). Obviously, we have (cf. (1.9))

ekl (α, n) = 〈Dn
k,D

n
l 〉α, k, l ∈ Θn. (A.1)

However, we need some alternative formulas that would be more useful in obtaining recurrence
relations satisfied by these quantities.
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In the sequel, we adopt the following convention: given t := (t1, t2) ∈ Θn, we use the
notation

t̃ := (t2, t1), t̂ := (t1, t3), ť := (t3, t1), t∗ := (t2, t3) and t◦ := (t3, t2),

where t3 := n− |t|.

Lemma A.1 Dual bivariate Bernstein polynomials have the following representation:

Dn
k(x;α) =

∑

l∈Θn

ekl (α, n)Bn
l (x), k ∈ Θn,

where
ekl (α, n) :=

∑

0≤i≤q≤n

C2
q,i(α, n)Hq,i (k

∗;α, n)Hq,i (l
∗;α, n) (A.2)

with

Cq,i(α, n) :=

(

q

i

)

1

q!(−n)q λq,i

.

Here Hq,i(t;α, n) are the bivariate Hahn polynomials defined by (B.5), and λq,i is the constant
given by (B.3).

Proof. In [16], it has been proved that the dual bivariate Bernstein polynomials have the
following representation:

Dn
k(x;α) =

∑

0≤i≤q≤n

bαq,i(n,k)P
α

q,i(x), k ∈ Θn, (A.3)

where
bαq,i(n,k) := (−1)iCq,i(α, n)Hq,i (k

∗;α, n) .

Here Pα

q,i, q ∈ N; 0 ≤ i ≤ q, are the two-variable Jacobi polynomials ([13]; see also [6, p. 86]
or (B.1)), which are orthonormal on T , i.e., 〈Pα

m,l, P
α

n,k〉α equals 1 if (m, l) = (n, k), and 0
otherwise. Using expansion (A.3) for both dual polynomials in (A.1), we obtain

ekl (α, n) =
∑

0≤i≤q≤n

bαq,i(n,k)b
α

q,i(n, l),

which is equivalent to (A.2). �

Remark A.2 Some symmetry properties of the coefficients ek
l
(α, n) should be noticed.

1. The following equation results easily from (A.1):

ekl (α, n) = elk(α, n). (A.4)

2. Let α2 = α3. The following equality holds:

ekl (α, n) = ek̂
l̂
(α, n). (A.5)

This equation can be easily verified using (A.2), definition (B.5) of the bivariate Hahn
polynomials, and the identity hi(n − |t|;α2, α2, n − t1) = (−1)ihi(t2;α2, α2, n − t1) (cf.
(B.6)).
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3. The following equation holds:

ekl (α, n) = ek̃
l̃
(α̃, n), (A.6)

where α̃ := (α2, α1, α3). By (A.1), equation (A.6) is equivalent to the equation

〈Dn
k(·;α),Dn

l (·;α)〉
α
=
〈

Dn

k̃
(·; α̃),Dn

l̃
(·; α̃)

〉

α̃

which can be easily verified using the definition (1.5) of the inner product 〈·, ·〉α.

4. Let α1 = α2. By (A.6), we obtain the equation

ekl (α, n) = ek̃
l̃
(α, n). (A.7)

5. Let α1 = α3. Then
ekl (α, n) = ek

◦

l
◦ (α, n). (A.8)

Transforming ek
l
(α, n), using consecutively (A.6), (A.5), and again (A.6), the result

follows.

6. Let α1 = α2 = α3. By (A.5), (A.7), and (A.8),

ekl (α, n) = ek̃
l̃
(α, n) = ek̂

l̂
(α, n) = ek

∗

l
∗ (α, n) = eǩ

ľ
(α, n) = ek

◦

l
◦ (α, n). (A.9)

Lemma A.3 The coefficients ek
l
≡ ek

l
(α, n) defined in (1.7), and given by (A.2), satisfy the

following bivariate recurrence relations:

σ0(k) e
k+v2

l
− σ1(k) e

k

l + σ2(k) e
k−v2

l
= σ0(l) e

k

l+v2
− σ1(l) e

k

l + σ2(l) e
k

l−v2
, (A.10)

τ0(k) e
k+v1

l
− τ1(k) e

k

l + τ2(k) e
k−v1

l
= τ0(l) e

k

l+v1
− τ1(l) e

k

l + τ2(l) e
k

l−v1
, (A.11)

where v1 := (1, 0), v2 := (0, 1), and for t := (t1, t2), we define

σi(t) := ϕi(α, t), τi(t) := ϕi(α̃, t̃), i = 0, 1, 2, (A.12)

with α̃ := (α2, α1, α3), and

ϕ0(α, t) := (|t| − n)(t2 + α2 + 1), ϕ2(α, t) := t2(|t| − α3 − n− 1),

ϕ1(α, t) := ϕ0(α, t) + ϕ2(α, t).
(A.13)

Proof. First, we prove the recurrence (A.10). By (B.5), we have

Hq,i (t
∗;α, n) = hi(t2;α2, α3, n− t1)hq−i(n− t1 − i;α2 + α3 + 2i+ 1, α1, n− i).

Let Dn−t1
t2

be the difference operator defined according to (B.9). Then, by (B.8),

Dn−t1
t2

hi(t2;α2, α3, n− t1) = i(i+ α2 + α3 + 1)hi(t2;α2, α3, n− t1).

10



Hence, we obtain

Dn−t1
t2

Hq,i (t
∗;α, n) = Dn−t1

t2
hi(t2;α2, α3, n− t1) · hq−i(n− t1 − i;α2 + α3 + 2i+ 1, α1, n− i)

= i(i+ α2 + α3 + 1)Hq,i (t
∗;α, n) .

Consequently, having in mind the form (A.2), we obtain the equation

Dn−k1
k2

ekl (α, n) = Dn−l1
l2

ekl (α, n)

which can be simplified to the form (A.10).
To prove (A.11), let us define the difference operator Rα

t by

Rα

t F (t) = ϕ0(α, t)F (t + v2)− ϕ1(α, t)F (t) + ϕ2(α, t)F (t − v2),

where we use the notation of (A.13). The recurrence (A.10) can be written as

Rα

k
ek
l
(α, n) = Rα

l
ek
l
(α, n).

Substituting k̃, l̃ and α̃ in place of k, l and α, respectively, gives

Rα̃

k̃
ek̃
l̃
(α̃, n) = Rα̃

l̃
ek̃
l̃
(α̃, n). (A.14)

Now, notice that by (A.6) we have

Rα̃

k̃
ek̃
l̃
(α̃, n) = ϕ0(α̃, k̃)ek+v1

l
− ϕ1(α̃, k̃)ekl + ϕ2(α̃, k̃)ek−v1

l
,

Rα̃

l̃
ek̃
l̃
(α̃, n) = ϕ0(α̃, l̃)ekl+v1

− ϕ1(α̃, l̃)ekl + ϕ2(α̃, l̃)ekl−v1
.

Using this in (A.14), equation (A.11) follows. �

Lemma A.4 For k = (k1, 0), l = (l1, l2) ∈ Θn, the following formula holds:

ekl (α, n) = Gα

n−max(k1,l1)
∑

i=0

Ci hi(l2;α2, α3, n − l1), (A.15)

where Gα := Γ(η + 1)Γ(α1 + 1)/Γ(|α|+ 3), η := α2 + α3 + 1, symbol hi(t; a, b,M) is defined
in (B.6), and

C0 := ck1,l1(n, η, α1),

Ci :=
(2i+ η)(k1 − n)i(η + 1)i−1

i!(−n)2i (α3 + 1)i
ck1,l1(n− i, 2i+ η, α1), i ≥ 1,











(A.16)

the symbol ch,j(m,α, β) denoting the jth Bézier coefficient of the univariate dual Bernstein
polynomial Dm

h (x;α, β) (cf. [17]).

Proof. We give a sketch of the proof. By [16, Thm 3.3], we have for k := (k1, k2) ∈ Θn,

Dn
k(x;α) = Gα

n−k1
∑

i=0

fi(n,k)(1− x1)
iR

(α3,α2)
i (x2/(1− x1))D

n−i
k1

(x1; 2i+ η, α1),

11



where R
(α3,α2)
i are the univariate Jacobi polynomials (cf. (B.2)), DN

j (t;µ, ν) are univariate
dual Bernstein polynomials (see, e.g., [17]), and

f0(n,k) := 1,

fi(n,k) := (−1)i
(2i+ η)(η + 1)i−1

(−n)i(α2 + 1)i(α3 + 1)i
hi(k2;α2, α3, n− k1), i ≥ 1.

We use the above formula in (A.1), then reduce the integration over the triangle T to evalu-
ating two one-dimensional integrals, and apply the orthogonality property of the polynomials

R
(α3,α2)
i (cf. [12, §1.8]). Letting k := (k1, 0), the formula (A.15) follows. �

Corollary A.5 The following formula holds:

e
(0,0)
l

(α, n) =
(−1)l1(|α|+ 3)n
n!(α1 + 2)l1

n−l1
∑

i=0

C∗
i hi(l2;α2, α3, n− l1), l := (l1, l2) ∈ Θn,

where

C∗
0 :=

(α1 + 2)n
(α2 + α3 + 2)n−l1

,

C∗
i := (−1)i

(2i+ α2 + α3 + 1)(α1 + 2)n−i(|α|+ n+ 3)i
i!(α3 + 1)i(α2 + α3 + i+ 1)n−l1+1

, i ≥ 1.















(A.17)

Proof. The result follows by putting k1 = 0 in (A.15), (A.16), and using the explicit form for
c0,l1(n− i, 2i + α2 + α3 + 1, α1), given in [17, Eq. (2.11)]. �

A.2 Constrained dual bivariate Bernstein polynomials

The constrained dual bivariate Bernstein basis polynomials (1.8) can be expressed in terms of
the unconstrained dual bivariate Bernstein polynomials (1.4) with shifted degree and param-
eters. Namely, we have the following result.

Lemma A.6 ([29]) For k ∈ Ωc
n, the following formula holds:

D
(n,c)
k

(x;α) = U Vk(n)x
c1
1 xc22 (1− |x|)c3 D

n−|c|
k−c′

(x;α+ 2c), (A.18)

where c′ := (c1, c2), and

U := (|α|+ 3)2|c|

3
∏

i=1

(αi + 1)−1
2ci

, Vk(n) :=

(

n− |c|

k − c′

)(

n

k

)−1

. (A.19)

Lemma A.7 The constrained dual bivariate Bernstein polynomials have the Bézier represen-
tation

D
(n,c)
k

(x;α) =
∑

l∈Ωc
n

Ek

l (α, c, n)Bn
l (x),

where
Ek

l (α, c, n) := U Vk(n)Vl(n) e
k−c′

l−c′
(α+ 2c, n− |c|), c′ := (c1, c2),

notation used being that of (A.2) and (A.19).
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Proof. By Lemma A.1, we have

D
n−|c|
k−c′

(x;α+ 2c) =
∑

l∈Θn−|c|

ek−c′

l
(α+ 2c, n − |c|)B

n−|c|
l

(x).

Putting this result in (A.18) and using the equation

xc11 xc22 (1− |x|)c3 ·B
n−|c|
l

(x) =

(

n− |c|

l

)(

n

l+ c′

)−1

Bn
l+c′(x),

we obtain

D
(n,c)
k

(x;α) =U Vk(n)
∑

l∈Θn

(

n− |c|

l

)(

n

l + c′

)−1

ek−c
′

l
(α+ 2c, n− |c|)Bn

l+c′(x)

=U Vk(n)
∑

l∈Ωc
n

(

n− |c|

l − c′

)(

n

l

)−1

ek−c
′

l−c′
(α+ 2c, n− |c|)Bn

l (x).

Hence, the lemma is proved. �

Appendix B: Bivariate orthogonal polynomials

The notation

rFs

(

a1, . . . , ar
b1, . . . , bs

∣

∣

∣
z

)

:=
∞
∑

k=0

(a1)k · · · (ar)k
k!(b1)k · · · (bs)k

zk

is used for the generalised hypergeometric series (see, e.g., [3, §2.1]); here r, s ∈ Z+, z,
a1, . . . , ar, b1, . . . , bs∈ C, and (c)k is the shifted factorial.

Recall that two-variable Jacobi polynomials Pα

n,k(x), n = 0, 1, . . . , k = 0, 1, . . . , n, are
defined by ([13]; see also [6, p. 86])

Pα

n,k(x) :=λ−1
n,k R

(2k+α2+α3+1,α1)
n−k (x1) (1− x1)

k R
(α3,α2)
k (x2/(1− x1)) , (B.1)

where x := (x1, x2), α := (α1, α2, α3), αi > −1,

R(µ,ν)
m (t) :=

(µ+ 1)m
m!

2F1

(

−m,m+ µ+ ν + 1

µ+ 1

∣

∣

∣
1− t

)

(B.2)

is the mth shifted Jacobi polynomial in one variable [12, §1.8], and

λ2
n,k ≡

[

λα

n,k

]2
:=

(α1 + 1)n−k(α2 + 1)k(α3 + 1)k(k + η)n+1

k!(n − k)!(2k + η)(2n/σ + 1)(σ)n+k

(B.3)

with η := α2 +α3 +1, σ := |α|+2. Polynomials (B.1) form the orthonormal set with respect
to the inner product

〈f, g〉α :=

∫∫

T

wα(x)f(x) g(x)dx,

13



where T := {(x1, x2) : x1, x2 ≥ 0, 1−x1−x2 ≥ 0}, and wα(x) := Aα xα1

1 xα2

2 (1−x1−x2)
α3

with

Aα := Γ(|α|+ 3)
3
∏

i=1

[Γ(αi + 1)]−1. (B.4)

Bivariate Hahn polynomials are defined by (see, e.g., [27])

Hq,i(t;α, n) := hi(t1;α2, α3, t1 + t2)hq−i(t1 + t2 − i;α2 + α3 + 2i+ 1, α1, n− i) , (B.5)

where 0 ≤ i ≤ q ≤ n, n ∈ N, α =: (α1, α2 α3), αi > −1, i = 1, 2, 3, t := (t1, t2) ∈ R
2, and

hl(t; a, b,M) := (a+ 1)l(−M)l 3F2

(

−l, l + a+ b+ 1,−t

a+ 1,−M

∣

∣

∣
1

)

(B.6)

are the univariate Hahn polynomials (see, e.g., [12, §1.5]). The latter polynomials satisfy the
recurrence relation

hl+1(t) = Al(t,M)hl(t) +Bl(M)hl−1(t), l ≥ 0; h0(t) ≡ 1; h−1(t) ≡ 0,

where hl(t) ≡ hl(t; a, b,M),

Al(t,M) := Cl (2l + s− 1)2 t−Dl − El, Bl(M) := −Dl El−1, (B.7)

with s := a+ b+ 1, Cl := (2l + s+ 1)/[(l + s)(2l + s− 1)], Dl := Cl l(l +M + s)(l + b), and
El := (l + a+ 1)(M − l). Moreover, the polynomials (B.6) satisfy the difference equation

DM
t hj(t; a, b,M) = j(j + a+ b+ 1)hj(t; a, b,M), (B.8)

where the difference operator DM
t is given by

DM
t F (t) := U(t; a, b,M)F (t + 1)− V (t; a, b,M)F (t) +W (t; a, b,M)F (t − 1) (B.9)

with U(t; a, b,M) := (t−M)(t+ a+1), W (t; a, b,M) := t(t− b−M − 1) and V (t; a, b,M) :=
U(t; a, b,M) +W (t; a, b,M).

Remark B.1 A linear combination sN (t) :=
∑N

i=0 γihi(t; a, b,M) can be summed up using the
following Clenshaw’s algorithm (see, e.g., [5, Thm 3.2.11]). Compute the sequence V0, V1, . . .,
Vn+2 from

Vi := γi +Ai(t;M)Vi+1 +Bi+1(M)Vi+2, i = N,N − 1, . . . , 0,

with VN+1 = VN+2 = 0, where the coefficients Ai(t;M) and Bi(M) are defined by (B.7).
Then, sN (t) = V0.
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