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is based on approximating the configuration and the Lagrange multiplier via differ-
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convergence is investigated numerically. Order reduction of the momentum and the
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1 Introduction

Variational integrators are of high interest in numerical integration theory as they
inherit specific properties of the underlying mechanical system. The variational
integrators base on a discrete version of the variational principle in Lagrangian
mechanics. They are symplectic, momentum preserving, and show excellent long
time behaviour [17]. Special interest lies in variational integrators of higher order
to achieve accurate discretization schemes in conjunction with moderate computa-
tional costs. To get higher orders, one possibility is to approximate the continuous
curves via polynomials of higher degrees and to use quadrature formulas of higher
order for the approximation of the action integral. In the unconstrained case, this
approach is a particular case of the Galerkin variational integrators, studied, e.g.,
in [17] and developed further and analyzed in [20] and [19].

Considering a Lagrangian system with holonomic constraints, the motion is
described by index 3 differential-algebraic equations (DAEs). In the DAEs, the
Lagrange multipliers λ are related to the constraint forces that prevent the sys-
tem from deviation of the constraint manifold. The numerical treatment of the
Lagrange multiplier and the constraints is challenging and affects the order of the
approximation. Instead of discretizing the DAE directly, e.g., in [4], [8], [3], [9],
a variational integrator is based on a discrete version of the variational principle
also taking account of the holonomic constraints. One possibility is to approxi-
mate the holonomic constraints by stiff restraints as in [24] where a variational
and linearly implicit integrator is investigated. In [17], the constrained Galerkin
methods are presented as a straightforward expansion of the former mentioned
Galerkin variational integrators using Lagrange multipliers. They are equivalent
to constrained symplectic partitioned Runge-Kutta methods and a particular case
of the symplectic SPARK methods [12]. In [12] it is shown how the symplectic
SPARK method can be derived variationally.

The approach in this work for constructing variational integrators of higher or-
der for constrained systems follows [20] and is based on the constrained Galerkin
methods in [17]. A short summary of some results presented here are already given
in [26]. The construction starts with the approximation of the continuous curves of
the configuration q and λ via different polynomials. The integral of the augmented
Lagrangian, i.e., the Lagrangian augmented by the scalar product g(q) · λ, is ap-
proximated via appropriate quadrature formulas. The splitting of the augmented
Lagrangian in the two parts Lagrangian and scalar product g(q) ·λ enables the use
of different quadrature formulas for each part. This is in contrast to the constrained
Galerkin methods in [17]. Conditions on the degrees of the polynomials, the poly-
nomial control points and the quadrature formulas are formulated, to ensure the
solvability of the higher order constrained discrete Euler-Lagrange equations and
to allow for high accuracy and stiffly accurate integration. The discrete augmented
Lagrangian serves as a generating function for the variational integrators, con-
structed in this work, just as for the symplectic SPARK integrators in [12]. But
in contrast to [17] and [12], the degree of the polynomial qd is not restricted to
equal the number of quadrature nodes of the quadrature formula approximating
the integral of the Lagrangian here. Furthermore, in [12] the SPARK integrator
is applied to a system of index 2 overdetermined DAEs. In this work, the preser-
vation properties, such as symplecticity, preservation of momentum maps and the
time reversibility of the constructed integrators are investigated analytically and
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verified numerically. For the investigation of the time reversibility, a distinction
between the discrete flow on configuration level only and on configuration and
momentum level leads to different results. The order of convergence is determined
numerically, revealing order reduction of the momentum and the Lagrange multi-
plier compared to the order of the configuration. A numerical analysis regarding
accuracy versus efficiency shows that the presented integrators with high orders
provide very accurate results together with low computational times.

Outline In Section 2, constrained Lagrangian dynamics and the discretization of
the underlying variational principle, using linear polynomials for the approxima-
tion of the continuous curves, are recalled and the preservation properties are
discussed. Section 3 deals with the construction of the constrained higher order
variational integrators. The derivations base on the higher order variational inte-
grators in [20] and extend them to the constrained case, see Section 3.1 and 3.2. In
Section 3.3, conditions are formulated to reach linear independence of the higher
order constrained discrete Euler-Lagrange equations and to obtain stiffly accurate
integrators. In the following Sections 3.4.1 and 3.4.2, the preservation properties,
such as symplecticity and preservation of momentum maps, are discussed. Fur-
thermore, in Section 3.4.3 the time reversibility of the constructed integrators is
investigated. A comparison with existing methods for index 3 DAEs in Section
3.5 embeds them into existing works and reveals the differences. In Section 4, the
convergence order of the constructed integrators is investigated numerically and
the preservation properties are demonstrated by numerical examples. A numerical
analysis regarding the efficiency and accuracy is carried out for the most promising
integrators. Finally, a conclusion is given in Section 5, together with an outlook
on future work.

2 Variational mechanics for constrained systems

2.1 Constrained Lagrangian dynamics

This section presents a summary of the theoretical background following [17].
Consider an n-dimensional mechanical system defined on the configuration space
Q being an n-dimensional vector space, e.g., Q = Rn, with configuration vector
q(t) ∈ Q and velocity vector q̇(t) ∈ Tq(t)Q, e.g., q̇(t) ∈ Tq(t)Rn(= Rn). The
variable t denotes the time in the interval t ∈ [t0, tN ]. For a mechanical system
the Lagrangian L : TQ → R is the difference of the kinetic energy T (q, q̇) and
the potential V (q). Let the motion be constrained by a vector valued function
of holonomic scleronomic constraints g(q) = 0 ∈ Rm. Assuming that 0 ∈ Rm
is a regular value of g, the motion is constrained to the (n − m)-dimensional
submanifold C = g−1(0) = {q | q ∈ Q, g(q) = 0} ⊂ Q. The map i : C → Q
embeds the submanifold C in Q and the tangential lift T i gives a way to embed
the submanifold TC in TQ. Making use of the Lagrange multiplier theorem the
holonomic constraints can be included by augmenting a given Lagrangian by the
scalar product −g(q) ·λ, where λ(t) ∈ Rm is the Lagrange multiplier. The so called
augmented Lagrangian L̄ : TQ× Rm → R is defined by

L̄(q, q̇, λ) = L(q, q̇)− g(q) · λ (1)
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The augmented action S̄ :C(Q× Rm) → R is the time integral of the augmented
Lagrangian, i.e.,

S̄(q, λ) =

∫ tN

t0

[L(q, q̇)− g(q) · λ] dt (2)

with C(Q) =C([t0, tN ] , Q; q0, qN ) being the space of smooth functions q : [t0, tN ]→
Q satisfying q(0) = q0 and q(tN ) = qN , where q0, qN ∈ C ⊂ Q are fixed endpoints,
and C(Rm) =C([t0, tN ] ,Rm) being the space of curves λ : [t0, tN ]→ Rm with no
boundary conditions. Hamilton’s principle seeks the curves (q, λ) ∈ C (Q× Rm)
that extremize the augmented action. The demand of stationarity yields the con-
strained Euler-Lagrange equations

∂L(q, q̇)

∂q
− d

dt

(
∂L(q, q̇)

∂q̇

)
−GT (q) · λ = 0

g(q) = 0 (3)

whereby G(q) = Dg(q) denotes the m × n Jacobian of the constraints and is
supposed to be of full row rank m. The term −GT (q) · λ represents the constraint
forces that prevent the system from deviation of the constraint submanifold C.
The constrained Euler-Lagrange equations are index 3 DAEs of second order.

We assume that the Lagrangian L is hyperregular, such that the constrained
Lagrangian flow FL : TQ|C → TQ|C is well defined and the Legendre transform
FL : TQ|C → T ∗Q|C , with FL : (q, q̇) 7→ (q, ∂L∂q̇ ) = (q, p) and p being the conjugate

momentum, is a global diffeomorphism, where TQ|C respectively T ∗Q|C contains
all elements of the tangential space TQ respectively cotangential space T ∗Q with
basis points in C. The Hamiltonian H defined by H(q, p) = FL(q, q̇) · q̇ − L(q, q̇)
is then hyperregular as well with Legendre transform FH = (FL)−1 : T ∗Q|C →
TQ|C . Define LC = L|TC as the restriction of L to the submanifold TC, such
that LC = L ◦ T i. This implies that LC is regular when L is and the diagram
on the left side in Fig. 1 commutes, with the projection T ∗i : T ∗Q|C → T ∗C. As

TC
FLC

T ∗C

TQ|C

T i

T ∗Q|C
FL

T ∗i

TC
FLC

T ∗C

TQ|C

T i

T ∗Q|C
FL

η

Fig. 1 Relation between Lagrangian and Hamiltonian representations, the embeddings T i :
TC → TQ, η : T ∗C → T ∗Q|C and the projection T ∗i : T ∗Q|C → T ∗C

the Lagrangian and Hamiltonian representations are equivalent, the embedding
η : T ∗C → T ∗Q can be defined by requiring that the right diagram in Fig. 1
commutes, it reads

η(T ∗C) = {(q, p) ∈ T ∗Q | g(q) = 0 and G · ∂H
∂p

(q, p) = 0}

The term G · ∂H∂p (q, p) is obtained by differentiating the constraints g(q) w.r.t. the

time t with q̇ = ∂H
∂p (q, p) and is called hidden constraints. A projection map
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P : T ∗Q|C → η(T ∗C) can be defined by P = η ◦ T ∗i, reading in coordinates

P = I −GT (q)

[
G(q)

∂2H(q, p)

∂p2
GT (q)

]−1

G(q)
∂2H(q, p)

∂p2
(4)

with I being the n×n identity matrix, [8], [14], [17]. While the dual T ∗q C consists
of equivalence classes [p] with p′ ∈ [p] iff 〈p − p′, q̇〉 = 0 for all q̇ ∈ TqC with 〈·, ·〉
being the canonical pairing, the projection to the embedding corresponds to the
selection of a representative fulfilling the hidden constraints. Next, the preservation
properties being characteristic for the dynamical system in (3) are discussed briefly.

Symmetry, symplecticity and energy behaviour The systems, considered here, are
conservative. Thus, the total energy of the system is conserved along the solution
of the Euler-Lagrange equations (3) and the Lagrangian flow is symmetric1 and
symplectic. The symplecticity of the Lagrangian flow of a conservative system is
shown, e.g., in [17], both for unconstrained and for constrained systems.

Noether theorem The Noether theorem provides first integrals of the Euler-Lagrange
equations. They are also called momentum maps. Let L(q, q̇) be a regular La-
grangian of a dynamical system, constrained by holonomic constraints g(q). If
there is a one-parameter group of transformations Φ = {φu : u ∈ R}, leaving the
Lagrangian invariant, i.e., L(φu(q), φ′u(q)q̇) = L(q, q̇), ∀(q, q̇) ∈ TQ,∀u ∈ R, and
the constraints g(φu(q)) = 0, ∀q ∈ C, ∀u ∈ R satisfied, then a first integral of the
Euler-Lagrange equations can be defined by

I(q, p) = pT a(q) (5)

whereby a(q) = d
duφu(q)|u=0 is a vector field with flow φu(q) and p is the conjugate

momentum defined by the Legendre transform p = ∂L
∂q̇ .

A proof of the Noether theorem for unconstrained systems can be found in
[5]. The proof can be extended to systems with holonomic constraints, given that
g(φu(q)) = 0 holds ∀q ∈ C.

In [17] the validity of the Noether theorem in the constrained case is shown via
the relation of the unconstrained system with the standard Lagrangian L : TQ→
R and the constrained system with the restricted Lagrangian LC = L|TC : TC →
R defined by LC = L ◦ T i.

2.2 Constrained discrete variational dynamics

The main idea of variational integrators is based on the discretization of the vari-
ational principle instead of solving the resulting equations of motion.
The path q : [t0, tN ] → Q is replaced by a discrete path {qk}Nk=0 : {tk}Nk=0 =
{t0, t0 + h, . . . , t0 + kh, . . . , t0 +Nh = tN} → Q. Let the time step h be constant.
The configuration qk holds as an approximation to q(tk). Similarly the Lagrange
multipliers are approximated by defining λk as the approximation to λ(tk), with
{λk}Nk=0 : {tk}Nk=0 → Rm. The curves q and λ between two neighbouring time

1 As in [5] (Ch. V, Def. 1.4), symmetry and time reversibility are used synonymously here,
a definition is given in Section 3.4.3
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points tk and tk+1 are approximated via the polynomials qd respectively λd. Linear
polynomials for both are considered first. The approximate integral in [tk, tk+1]
of the augmented action S̄ in (2) is called the discrete augmented Lagrangian
L̄d : Q×Q× Rm × Rm → R

L̄d(qk, qk+1, λk, λk+1) ≈
∫ tk+1

tk

[L(q, q̇)− g(q) · λ] dt (6)

Ld(qk, qk+1) ≈
∫ tk+1

tk

L(q, q̇) dt (7)

gd(qk, qk+1, λk, λk+1) ≈
∫ tk+1

tk

g(q) · λ dt (8)

In (7), Ld approximates the integral in [tk, tk+1] of the Lagrangian L (briefly named
the Lagrangian integral) and in (8), gd approximates the integral in [tk, tk+1] of
the scalar product of the constraints and the Lagrange multipliers (briefly named
constraints integral). For the entire time interval [t0, tN ] the approximation of the
augmented action is the discrete augmented action sum

S̄d =

N−1∑
k=0

L̄d(qk, qk+1, λk, λk+1) (9)

The variation of the discrete augmented action sum (9) w.r.t. {δqk}N−1
k=1 ∀δqk ∈

TqkQ, δq0 = δqN = 0, and w.r.t. {δλk}Nk=0∀δλk ∈ Rm and requiring its stationarity
gives the constrained discrete Euler-Lagrange equations. The quadrature formulas
for Ld and gd determine the integrator. In particular, when approximating the
constraints integral via the Lobatto quadrature of order two

gd =
h

2
(g(qk) · λk + g(qk+1) · λk+1)

whereas for the approximation of the Lagrangian integral various quadrature for-
mulas can be used (e.g., the midpoint approximation, Gauss quadrature or also
the Lobatto quadrature), the constrained discrete Euler-Lagrange equations read

D2Ld(qk−1, qk) +D1Ld(qk, qk+1)−GTd (qk) · λk = 0 (10)

g(qk+1) = 0

with hGT = GTd and DαLd being the partial derivative of the discrete Lagrangian
w.r.t. the α-th argument. The system’s evolution on momentum level can be ob-
tained from the constrained discrete Legendre transform F±

L̄d
: Q × Q|qk∈C →

T ∗Q|C

F+
L̄d

: (qk−1, qk) 7→ (qk, p
+
k ) =

(
qk, D2Ld(qk−1, qk)− 1

2
GTd (qk) · λk

)
F−
L̄d

: (qk, qk+1) 7→ (qk, p
−
k ) =

(
qk,−D1Ld(qk, qk+1) +

1

2
GTd (qk) · λk

)
Note that (10) can be interpreted as enforcing the matching of momenta p+

k −p
−
k =

0. Thus, there is a unique momentum pk at each time node tk along the discrete
trajectory, which not necessarily fulfills the hidden constraints. The solution of
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(10) together with the discrete Legendre transform yields the discrete Hamiltonian
map F̃L̄d

: T ∗Q|C → T ∗Q|C with F̃L̄d
: (qk, pk) 7→ (qk+1, pk+1). When using the

Lobatto quadrature of order two for the approximation of the Lagrangian integral
with L of the form L(q, q̇) = 1

2 q̇
TMq̇ − V (q) and M being the mass matrix,

(10) results in the SHAKE algorithm [17]. As SHAKE is a famous representative
of the variational integrator, it is discussed widely and its main properties are
summarized here briefly.

Symmetry, symplecticity and energy behaviour In the literature the properties of
SHAKE are not described consistently. In [13] the SHAKE algorithm is declared
to be time reversible. It is proved that SHAKE preserves the wedge product
dqk+1 ∧ dpk+1 = dqk ∧ dpk, “[. . .]although SHAKE is not, strictly speaking, a
symplectic method, as the meshpoint velocities are not tangent to the constraint
manifold[. . .]”, because the hidden constraints, here G(qk) ·M−1 ·pk = 0, typically
fail to be satisfied. In [18], the SHAKE algorithm for Hamiltonian systems with
cosiotropic constraints is investigated geometrically. An index 3 DAE, as in (3),
describes a special case of this class of constrained systems. It is shown, that the
numerical solution of SHAKE fulfills the configuration constraints but not the hid-
den constraints. They prove that the SHAKE map preserves the wedge product
and say that it is thus symplectic. In [18], SHAKE is negated to be symmetric.
In [17], SHAKE is described as a method that conserves the symplectic structure.
The reason for different statements concerning the time reversibility of SHAKE is
discussed in the remark after Theorem 2.

In accordance with the general theory of symplectic integrators, the varia-
tional integrator (10) shows excellent energy properties. The energy does not grow
or decrease in time due to numerical errors but stays bounded [21], [2]. This is
interesting especially in case of long-time simulations.

Discrete Noether Theorem In the presence of symmetry in the discrete Lagrangian
(7) where the corresponding transformation leaves the constraints manifold C
invariant, the variational integrator (10) preserves discrete momentum maps [17].

3 Higher order variational integrators for constrained systems

3.1 Approximation of the augmented action integral

The following derivations are based on the higher order variational integrators in
[20], and extend them to the constrained case. The approximation of the aug-
mented action integral consists of two approximation steps. The first step is the
approximation of the continuous curves q and λ on the time interval [0, h]. In con-
trast to the approach in Section 2.2, polynomials of higher degree instead of linear
polynomials are used for the discretization. As a second step, the integral of the
augmented Lagrangian is approximated by appropriate quadrature formulas.

The polynomial qd of degree s approximates the continuous curve q on the time
interval [0, h], thus the space of trajectories C([0, h], Q) = {q : [0, h]→ Q | q(0) =
q0
k, q(h) = q0

k+1} reduces to the the space of trajectories Cs([0, h], Q) ⊂ C([0, h], Q)
given by

Cs([0, h], Q) = {q ∈ C([0, h], Q) | q ∈ Πs}
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whereby Πs is the space of polynomials of degree s. A polynomial of degree s is
uniquely defined by s+ 1 configurations qk = (q0

k, . . . , q
s
k) ∈ Qs+1 at s+ 1 control

points 0 = d0 < d1 < . . . < ds−1 < ds = 1, such that the polynomial passes
through each qνk at the time dνh, ν = 0, . . . , s. With the Lagrange polynomials
lν,s : [0, h]→ R the polynomial qd(t; qk, h), t ∈ [0, h], has the following form

qd(t; qk, h) =
s∑

ν=0

qνk lν,s

(
t

h

)
with lν,s

(
t

h

)
=

∏
0≤j≤s,j 6=ν

t
h − dj
dν − dj

(11)

It can be checked easily, that qd(djh; qk, h) = qjk is true for all j = 0, . . . , s with

lν,s(dj) =

{
1 , j = ν

0 , j 6= ν

Differentiating qd w.r.t. t, an approximation of q̇ on [0, h] is obtained

q̇d(t; qk, h) =
1

h

s∑
ν=0

qνk l̇ν,s

(
t

h

)
Let the time interval [t0, tN ], with t0 = 0, be divided in N = tN/h subintervals of
lengths h such that

[t0, tN ] =

N−1⋃
k=0

[kh, (k + 1)h]

On each subinterval, the continuous curve q is approximated by a polynomial
qd,k : [kh, (k + 1)h]→ Q, k = 0, . . . , N − 1. To get a continuous approximation of
the trajectory q on [t0, tN ], the conditions qsk−1 = q0

k, k = 1, . . . , N − 1 must be
fulfilled.

A similar procedure is applied to discretize λ. The space of trajectories
C([0, h],Rm) reduces to Cw([0, h],Rm) = {λ ∈ C([0, h] ,Rm) | λ ∈ Πw}. Given

w + 1 control points d̃0 = 0 < d̃1 < . . . < d̃w−1 < d̃w = 1 and w + 1 Lagrange-
multipliers λk = (λ0

k, . . . , λ
w
k ) ∈ (Rm)w+1, the polynomial λd(t;λk, h), t ∈ [0, h]

is uniquely defined by (12). Note that the control points d̃j , j = 0, . . . , w do not
have to match the control points dj , j = 0, . . . , s, neither has the degree w of the
polynomial λd to equal the degree s of qd.

λd(t;λk, h) =
w∑
µ=0

λµk l̃µ,w

(
t

h

)
l̃µ,w

(
t

h

)
=

∏
0≤j≤w,j 6=µ

t
h − d̃j
d̃µ − d̃j

(12)

To get a continuous approximation of λ on [t0, tN ], the conditions λwk−1 = λ0
k,

k = 1, . . . , N − 1 must hold.
For the approximation of the augmented action integral S̄ in (2) on each time

subinterval [kh, (k + 1)h], k = 0, . . . , N − 1 different quadrature formulas for the
two integrals, the Lagrangian integral and the constraints integral, are considered.
The quadrature rule (bi, ci)

r
i=1 is chosen for the Lagrangian integral and (ei, fi)

z
i=1

for the constraints integral. The quadrature rules are w.r.t. the time [0, 1] with
quadrature nodes ci respectively fi and the associated weights bi respectively ei.
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The curves q, q̇ and λ are replaced by the piecewise polynomials qd, q̇d and λd such
that the discrete augmented Lagrangian L̄d : Qs+1 × (Rm)w+1 × R→ R reads

L̄d(qk, λk, h) = Ld(qk, h)− gd(qk, λk, h) ≈
∫ (k+1)h

kh

[L(q, q̇)− g(q) · λ] dt

L̄d(qk, λk, h) = h
r∑
i=1

biL(qd(cih; qk, h), q̇d(cih; qk, h))

− h
z∑
i=1

ei [g(qd(fih; qk, h)) · λd(fih;λk, h)] (13)

In the following the abbreviations L̄d(qk, λk), qd(t; qk) and λd(t;λk) will be used
instead of L̄d(qk, λk, h), qd(t; qk, h) and λd(t;λk, h). Finally the approximation of
the augmented action integral S̄ in (2) on the entire time interval [t0, tN ] can be
written as

S̄d(q0, . . . , qN−1, λ0, . . . , λN−1) =

N−1∑
k=0

L̄d(qk, λk) (14)

3.2 Discrete Hamilton’s principle for constrained systems

Regarding to Hamilton’s principle, the discrete augmented action sum S̄d in (14)
has to be stationary. To find the discrete curves extremizing the discrete aug-
mented action sum S̄d, the derivatives of S̄d w.r.t. qνk and λµk have to vanish
∀ k = 0, . . . , N − 1, ν = 0, . . . , s, µ = 0, . . . , w. The variations of the endpoints
q(t0) = q0

0 , q(tN ) = q0
N ∈ C × C are zero, δq0

0 = δq0
N = 0. Thus, the constrained

discrete Euler-Lagrange equations are obtained

0 =p0
0 +D1L̄d(q0

0 , . . . , q
s
0, λ

0
0, . . . , λ

w
0 )

0 =DαL̄d(q0
k, . . . , q

s
k, λ

0
k, . . . , λ

w
k ) α = 2, . . . , s k = 0, . . . , N − 1

0 =Ds+1L̄d(q0
k, . . . , q

s
k, λ

0
k, . . . , λ

w
k )

+D1L̄d(q0
k+1, . . . , q

s
k+1, λ

0
k+1, . . . , λ

w
k+1) k = 0, . . . , N − 2

0 =Ds+2L̄d(q0
0 , . . . , q

s
0, λ

0
0, . . . , λ

w
0 ) (15)

0 =Ds+1+αL̄d(q0
k, . . . , q

s
k, λ

0
k, . . . , λ

w
k ) α = 2, . . . , w k = 0, . . . , N − 1

0 =Ds+w+2L̄d(q0
k, . . . , q

s
k, λ

0
k, . . . , λ

w
k )

+Ds+2L̄(q0
k+1, . . . , q

s
k+1, λ

0
k+1, . . . , λ

w
k+1) k = 0, . . . , N − 2

0 =Ds+w+2L̄d(q0
N−1, . . . , q

s
N−1, λ

0
N−1, . . . , λ

w
N−1)

with the first equation being the constrained discrete Legendre transform F−
L̄d

:

(q0
0 , q

0
1) 7→ (q0

0 , p
0
0). In (15) the configuration q0

0 and the momentum p0
0 at time

point t0 = 0 are assumed as given and q0
N as unknown. The definitions of the

constrained discrete Legendre transforms F±
L̄d

: Q × Q|q0k∈C → T ∗Q|C read as
follows

F+
L̄d

: (q0
k−1, q

s
k−1) 7→ (qsk−1, p

s+

k−1) = (qsk−1, Ds+1L̄d(qk−1, λk−1)) (16)

F−
L̄d

: (q0
k, q

s
k) 7→ (q0

k, p
0−

k ) = (q0
k,−D1L̄d(qk, λk)) (17)
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One recognizes the constrained discrete Euler-Lagrange equations in ps
+

k−1−p0−

k =

0, such that along the solution of (15) the momentum p0
k = ps

+

k−1 = p0−

k is unique.
However, p0

k does not necessarily fulfill the hidden constraints.

3.3 Construction of the constrained higher order variational integrators

The polynomial qd in (11) and λd in (12) and the quadrature formulas in (13) can
not be used in arbitrary combinations for the approximation of the augmented
action. For example, consider a dynamical system with given initial conditions q0

0

and p0
0 at time point t0 = 0. For the first time interval [0, h], the augmented discrete

Lagrangian (13) reads L̄d(q0, λ0) = L̄d(q0
0 , . . . , q

s
0, λ0

0, . . . , λ
w
0 ) and depends on

(s + w + 1) unknowns, as the Lagrange-multiplier λ0
0 is assumed to be unknown.

Considering (15) one can see that there are only (s + w) equations to determine
the configurations q1

0 , . . . , q
s
0 and the Lagrange-multipliers λ0

0, . . . , λ
w
0 . These are

the Legendre transform and the equations obtained by differentiating L̄d(q0, λ0)
w.r.t. q1

0 , . . . , q
s−1
0 and λ0

0, . . . , λ
w−1
0 . Note, that the variations w.r.t. qs0 and λw0

bring in new unknowns. Furthermore, when dealing with index 3 DAEs, so called
stiffly accurate Runge-Kutta methods provide highly accurate results [4], [9], [10],
[3], [8]. The stiffly accurate condition implies that q1 = Qs, whereby Qs is the
internal stage at time node cs of the Runge-Kutta method.

Remark on stiffly accurate Stiffly accurate integration scheme means here that
the configurations q0

k at the time nodes tk fulfill the constraints, i.e., q0
k ∈ C,

k = 0, . . . , N .

In the following, we give conditions that ensure the solvability of the discrete
Euler-Lagrange equations and an additional condition for a stiffly accurate inte-
gration scheme.

Assumption 1 The Lagrangian L is regular and the order of the quadrature formula
(bi, ci)

r
i=1 for approximating the Lagrangian integral is high enough such that the

discrete Lagrangian flow is well defined [6].

Theorem 1 Under assumption 1, the following conditions

1 All quadrature nodes fi, i = 1, . . . , z are part of the control points d̃j, j =
0, . . . , w of the polynomial λd.

2 The degree s of the polynomial qd is greater or equal to the degree w of the
polynomial λd, i.e., s ≥ w if the constraints integral is approximated via the
Lobatto quadrature.
The degree s of the polynomial qd is greater or equal to w − 1, i.e., s ≥ w − 1
if the constraints integral is approximated via the Gauss quadrature.

are sufficient to ensure that the discrete Euler-Lagrange equations are solvable. If
additionally the following condition holds

3 The quadrature node fz equals one, i.e., fz = 1.

the integration scheme is stiffly accurate.

Proof. Condition 1 causes the number of unknowns to equal the number of equa-
tions in one time step. When condition 1 holds, condition 2 ensures the linear
independence of the equations. Thus, condition 1 together with condition 2 assure
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the solvability of the discrete Euler-Lagrange equations. A stiffly accurate integra-
tion scheme is reached by condition 1 together with condition 3. The conditions
given in Theorem 1 are discussed now in detail.

Condition 1 Let condition 1 hold. With the control points d̃j , j = 0, . . . , w of
the polynomial λd matching the quadrature nodes fi, i = 1, . . . , z, the number
of equations equals the number of unknowns in one time step. Note, that the
quadrature nodes fi, i = 1, . . . , z are used for the approximation of gd in (13) and
the boundary control points d̃0 = 0 and d̃w = 1 of the polynomial λd are fixed.

In this work, the quadrature formulas Lobatto and Gauss are used. In the
following the calculation of gd in (13) via the Lobatto or via the Gauss quadrature
is considered separately, whereas the approximation of the Lagrangian integral is
not specified further, see Assumption 1.

In the first case, when approximating the constraints integral via the Lobatto
quadrature (ei, fi)

z
i=1, the control points of the polynomial λd are

0 = d̃0 = f1, d̃1 = f2, . . . , d̃w = fz = 1 with z = w + 1

As a consequence, no linear combinations of λd occur in the approximation of the
constraints integral because the evaluation of λd at a quadrature node fi+1 being
equal to the control point d̃i yields only the corresponding Lagrange-multiplier λik,
i.e.,

λd(fi+1h;λk) = λd(d̃ih;λk) = λik, i = 0, . . . , w

The resulting augmented discrete Lagrangian reads

L̄d(qk, λk) = Ld(qk)− gd(qk, λk) (18)

with

Ld(qk) =h
r∑
i=1

biL(qd(cih; qk), q̇d(cih; qk)) (19)

gd(qk, λk) =h
w∑
i=0

ei+1

[
g(qd(d̃ih; qk)) · λik

]
(20)

Note that the variation of L̄d(q0, λ0) w.r.t. λ0
0 now yields he1g(q0

0) = 0 which is
automatically satisfied since q0

0 is assumed to be consistent. The variation w.r.t.
λw0 = λ0

1 yields

0 = Ds+w+2L̄d(q0
0 , . . . , q

s
0, λ

0
0, . . . , λ

w
0 ) +Ds+2L̄d(q0

1 , . . . , q
s
1, λ

0
1, . . . , λ

w
1 )

= −hew+1g(qs0)− he1g(q0
1) = −2he1g(qs0) = −2he1g(q0

1) (21)

taking account of the symmetry of the weights of the Lobatto quadrature ei+1 =
ez−i, i = 0, . . . , z−1. Equation (21) can be used to determine the unknowns in the
first time interval. With condition 1 and the Lobatto quadrature for calculating
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gd, the constrained discrete Euler-Lagrange equations for the entire time interval
[t0, tN ] read

0 =p0
0 +D1L̄d(q0, λ0)

=p0
0 +D1Ld(q0)− he1G

T (q0
0) · λ0

0 + h

w−1∑
i=1

ei+1G
T (qd(d̃ih; q0))l0,s(d̃i) · λi0

0 =DνL̄d(qk, λk) = DνLd(qk)− h
w−1∑
i=1

ei+1G
T (qd(d̃ih; qk))lν−1,s(d̃i) · λik

ν = 2, . . . , s k = 0, . . . , N − 1

0 =Ds+1L̄d(qk, λk) +D1L̄d(qk+1, λk+1) = (22)

Ds+1Ld(qk)− h
w∑
i=1

ei+1G
T (qd(d̃ih; qk))ls,s(d̃i) · λik+

D1Ld(qk+1)− h
w−1∑
i=0

ei+1G
T (qd(d̃ih; qk+1))l0,s(d̃i) · λik+1 k = 0, . . . , N − 2

0 =g(qd(d̃ih; qk)) i = 1, . . . , w − 1 k = 0, . . . , N − 1

0 =g(qd(d̃wh; qk)) = g(qsk) k = 0, . . . , N − 1

with the first equation being the constrained discrete Legendre transform F−
L̄d

:

(q0
0 , q

0
1) 7→ (q0

0 , p
0
0). The Lagrange-multiplier λwN does not appear in the set of

equations anymore. Regarding the equations for one time step, assume qk−1 =
(q0
k−1, . . . , q

s
k−1) and λ0

k−1, . . . , λ
w−1
k−1 as given, respectively p0

0 and q0
0 in the first

time step, then the number of equations in (22) matches the number of unknown
variables q1

k, . . . , q
s
k and λ0

k, . . . , λ
w−1
k .

In the second case, the Gauss quadrature is used to approximate the constraints
integral and thus, if condition 1 holds, the control points of the polynomial λd are
as follows

d̃1 = f1, d̃2 = f2, . . . , d̃w−1 = fz with z = w − 1 (23)

The boundaries of the time interval are not used in the Gauss quadrature and
consequently the number of the polynomial control points w + 1 is larger by two
than the number of quadrature nodes z, with d̃0 = 0 and d̃w = 1. The augmented
discrete Lagrangian L̄d is composed by (19) and

gd(qk, λk) = h

w−1∑
i=1

ei
[
g(qd(d̃ih; qk)) · λik

]
(24)

In (24), the Lagrange multipliers λ0
k and λwk do not appear and consequently

neither in the corresponding discrete Euler-Lagrange equations. For given config-
urations qk−1 = (q0

k−1, . . . , q
s
k−1) and Lagrange multipliers λ1

k−1, . . . , λ
w−1
k−1 , the

number of unknowns q1
k, . . . , q

s
k and λ1

k, . . . , λ
w−1
k is equal to the number of the

corresponding discrete Euler-Lagrange equations.
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Condition 2 When condition 1 holds, condition 2 ensures the linear independence
of the discrete Euler-Lagrange equations in one time interval. The following dis-
cussion starts from a general point of view, without the assumption that condition
1 or 2 holds. The derivatives of the discrete augmented Lagrangian w.r.t. the
Lagrange multipliers λµk , µ = 0, . . . , w − 1, see (15), read

z∑
i=1

(
l̃0,w(fi)

)
eig(qd(fih; qk)) =

z∑
i=1

(
l̃w,w(fi)

)
eig(qd(fih; qk−1))

z∑
i=1

(
l̃µ,w(fi)

)
eig(qd(fih; qk)) = 0 µ = 1, . . . w − 1 (25)

Linear dependence between the equations in (25) can occur. To get insight, the
rank of the Jacobian of (25) is investigated,

∂L̄

∂qνk∂λ
µ
k

= L̃G̃

with {L̃}µ,i = l̃µ,w(fi) µ = 0, . . . , w − 1, i = 1, . . . , z

{G̃}i,ν = eiG(qd(fih))lν,s(fi) i = 1, . . . , z, ν = 1, . . . , s

The rank of the single matrices are rk(L̃) =min(w̃, z̃) and rk(G̃) =min(z̃, s),
whereas w̃ and z̃ depend on the used quadrature formula. For example, when
gd in (13) is calculated via the Lobatto quadrature, it holds w̃ = w and z̃ = z− 2.
This is because g(qd(f1)) = g(q0

k) derived w.r.t. q1
k, . . . , q

s
k yields the zero vector

and l̃µ,w(fz) = 0, µ = 0, . . . , w− 1, such that the z-th column of L̃ is also the zero
vector. The rank of the matrix multiplication L̃G̃ fulfills the following inequality,
where the lower bound origins from Sylvester’s rank inequality

rk(L̃) + rk(G̃)− z̃ ≤ rk(L̃G̃) ≤ min(w̃, z̃, s)

Discussing all cases,

rk(L̃G̃) = min(w̃, z̃, s) (26)

holds except for the case when z̃ > w̃ and z̃ > s where the rank might be re-
duced rk(L̃G̃) ≤ min(w̃, s). Let’s assume condition 1 holds. Then this case can
not occur, since then z̃ = w̃. For the row rank of L̃G̃ to be full, it can be seen
from (26) that condition 2 must hold. In particular, when the Gauss quadra-
ture is used to calculate gd, it holds w̃ = z̃ = w − 1. Consequently, there are
s+min(w− 1, w− 1, s) linearly independent equations to determine the s+w− 1
unknowns q1

k, . . . , q
s
k, λ

1
k, . . . , λ

w−1
k . Thus, s ≥ w − 1 must hold. Using the Lo-

batto quadrature yields w̃ = z̃ = w. Thus, the linear independence of the equa-
tions (22) is given, if s ≥ w. This ensures that the number of linearly inde-
pendent equations, i.e., s+min(w,w, s), equals the number of the (s + w) un-
knowns q1

k, . . . , q
s
k, λ

0
k, . . . , λ

w−1
k . Note, when condition 1 holds, the differentiation

of L̄d w.r.t. the Lagrange-multipliers yields only the second equation in (25) with
µ = 1, . . . , w when the Lobatto quadrature is used for calculating gd. Condition
1 and 2 together cause L̃ to be of full rank and as the right hand side is zero,
the equations simplify to g(qd(fih; qk)) = 0, i = 1, . . . , w − 1 (Gauss) respectively
i = 2, . . . , w + 1 (Lobatto).
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Condition 3 If condition 1 and condition 3 are fulfilled, the integration scheme is
stiffly accurate. Let only condition 3 be fulfilled. The variation of L̄d w.r.t. to the
Lagrange multipliers yields the discrete constraints. As the Lagrange multipliers
only occur in the constraints integral, the consideration of gd suffices here. The
approximation of the constraints integral in (13) reads

gd = h

z−1∑
i=1

ei [g(qd(fih; qk)) · λd(fih;λk)] + hez [g(qsk) · λwk ] (27)

where condition 3, i.e., fz = 1, causes the last term in (27) with qd(fzh; qk) =
qd(h; qk) = qsk and λd(fzh;λk) = λd(h;λk) = λwk . Let in addition condition 1
hold. Then, the variation of gd in (27) w.r.t. λwk yields

0 = hezg(qsk) if f1 6= 0 (28)

0 = hezg(qsk) + he1g(q0
k+1) = h(ez + e1)g(qsk) if f1 = 0 (29)

Both equations, (28) and (29), formulate the stiffly accurate condition.

Remark on stiffly accurate condition Equation (29) can be found in (21) with
z = w+1 and therefore also in the last equation in (22) with d̃w = fz = 1 where the
integration scheme (22) bases on the calculation of gd via the Lobatto quadrature
when condition 1 holds. When the quadrature nodes of gd and the control points of
λd do not match (condition 1), the fulfillment of the stiffly accurate condition fails,
even when the Lobatto quadrature rule is used. Then, the variation w.r.t. λwk−1 =
λ0
k only yields a weighted sum of the constraints g(qd(fih; qk−1)) and g(qd(fih; qk))

evaluated at the quadrature nodes fi, i = 1, . . . , z of gd. Conversely, when condition
1 is fulfilled but condition 3 not, i.e., fz 6= 1, the Lagrange multiplier λwk does
not occur in the approximation of the constraints integral and the last term in
(27) is replaced by hez

[
g(qd(fzh; qk) · λw−1

k

]
, with qd(fzh; qk) 6= qsk. Thus, the

stiffly accurate condition lacks. As an example consider the Gauss quadrature for
calculating gd, see (24).

Due to condition 1, the degree w of the polynomial λd is coupled with the
order of the quadrature formula (fi, ei)

z
i=1. To denote which quadrature formula

of which order is used, some abbreviations are introduced. ordL denotes the or-
der of the quadrature formula used to approximate the Lagrangian integral. ordZ
denotes the order of the quadrature formula used to approximate the constraints
integral. The name of the quadrature rule follows in brackets, whereby (Gau)
means Gauss quadrature and (Lob) Lobatto quadrature. The correlation of the
number of quadrature nodes n, here n can be r or z, and the order ord of the
quadrature formula is given via ord = 2n (Gau) and ord = 2n− 2 (Lob) (cf., e.g.,
[7], [22]). As seen before, the integrator is not stiffly accurate, when the Gauss
quadrature is used for the approximation of the constraints integral. A numerical
drift of the constraint manifold can be observed and therefore the integrator shows
poor accuracy. The variational integrators (22), with s ≥ w holds, are stiffly ac-
curate and thus they are the interesting ones. The degree w of λd determines the
number z = w + 1 of the quadrature nodes of the Lobatto quadrature and thus
the order ordZ = 2z − 2 = 2w.
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Remark on boundary values problems Alternatively, instead of a given initial con-
figuration q0

0 and momentum p0
0 at time point t0 = 0, let’s assume that the config-

urations at the endpoints q0
0 = q(t0) and q0

N = q(tN ) are given, like in optimal con-
trol problems, see, e.g., [16]. The configurations q1

0 , . . . , q
s−1
0 , qik, k = 1, . . . , N − 1,

i = 0, . . . , s − 1, are determined by solving the discrete Euler-Lagrange equa-
tions in (22), just as the Lagrange multipliers λ1

0, . . . , λ
w−1
0 , λik, k = 1, . . . , N − 1,

i = 0, . . . , s − 1, except for the Lagrange multipliers λ0
0 and λ0

N at the time end-
points t0 respectively tN .

Remark on Theorem 1 One might think that even without condition 1 the problem
of disparity of unknowns and discrete equations in one time step could be fixed
by one of the following two possibilities. Either assuming that λ0

0 is given as λ0
0 is

uniquely determined by the initial conditions q0
0 and p0

0 from the continuous Euler-
Lagrange equations (3) or counting all discrete Euler-Lagrange equations for the
entire time interval [t0, tN ]. There are N(w+ s) + 1 unknowns versus N(w+ s) + 1
equations. But in both possibilities, the stiffly accurate condition lacks and without
additional restrictions, linear dependence of the discrete Euler-Lagrange equations
is a problem.

3.4 Conservation properties

In this section, the conservation properties of the constrained variational integra-
tors are discussed. The symplecticity and the energy behaviour are demonstrated
generally, meaning without considering Theorem 1 in Section 3.3. To show the
discrete Noether-theorem, we assume that condition 1 in Theorem 1 holds. The
symmetry is examined as a special property of the stiffly accurate variational
integrators, constructed in this work by using the Lobatto quadrature for the
approximation of the constraints integral.

3.4.1 Symplecticity and energy behaviour

Define S̄d(q0
0 , q

0
N ) as the sum of L̄d in (??), i.e., S̄d(q0

0 , q
0
N ) =

∑N−1
k=0 L̄d(q0

k, q
s
k),

depending on the fixed boundaries values q0
0 and q0

N , where {qk, λk} is the solution
of the discrete Euler-Lagrange equations (15). With the Legendre transforms (16),
(17) the total differential reads

dS̄d =
∂S̄d
∂q0

0

dq0
0 +

∂S̄d
∂q0
N

dq0
N = −p0

0dq
0
0 + p0

Ndq
0
N

which is the basic formula for symplecticity generating functions, see [5]. Conse-
quently, along the discrete solution {q0

k, p
0
k} provided by the variational integrators

based on S̄d(q0
0 , q

0
N ) with p0

k calculated via the Legendre transforms (16), (17) the
wedge product is conserved. In accordance with the general theory of symplectic
integrators, variational integrators show a good energy behaviour.

3.4.2 Discrete Noether theorem

The continuous Noether theorem for constrained systems (see Section 2.1) can be
extended to a discrete analog. It is assumed, that condition 1 of Theorem 1 holds.
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We use the discrete Lagrangian Ld(q0
k, q

s
k), introduced in [17], that is charac-

terized as follows

Ld(q0
k, q

s
k) = ext

qνk ∈ Q,
ν ∈ {1, . . . , s− 1}

h
r∑
i=1

biL(qd(cih; qk), q̇d(cih; qk)) (30)

where the (s − 1) configurations q1
k, . . . , q

s−1
k are determined by extremizing the

discrete Lagrangian.
Let Φ be a one-parameter group of transformations Φ = {φu : u ∈ R}, leav-

ing the Lagrangian L and the constraints manifold C invariant, see Section 2.1.
Suppose, the one-parameter group Φ leaves the discrete Lagrangian Ld(q0

0 , q
0
1) in-

variant, i.e., Ld(φu(q0
0), φu(q0

1)) = Ld(q0
0 , q

0
1), ∀(q0

0 , q
0
1) ∈ Q×Q, ∀u ∈ R, then the

first integral (5) is also an invariant of the constrained discrete Euler-Lagrange
equations

I(q0
0 , p

0
0) = I(q0

k, p
0
k) ∀ k = 1, . . . , N (31)

The momentum p0
k is provided by the discrete Legendre transforms (16), (17).

The discrete Noether theorem for unconstrained systems is shown in [5] and
can be applied to constrained systems when g(φu(q)) = 0 ∀q ∈ C holds. A proof
of the discrete Noether theorem for constrained systems can be found in, e.g., [17].

The first integral (5) is only an invariant of the discrete Euler-Lagrange equa-
tions, if the discrete Lagrangian Ld inherits the invariance of the Lagrangian L,
what is the case, when qd is equivariant w.r.t. Φ, see [20].

3.4.3 Time reversibility

The flow of an autonomous Hamiltonian system is time reversible. Thus, the use
of numerical methods that produce a time reversible numerical flow seems favor-
able. When using time reversible numerical methods, a long-time behaviour of the
numerical solution similar to the exact solution is expectable [5]. The definition of
time reversibility of a numerical method is taken from [5].

A numerical one-step method Φd is called symmetric or time reversible or self-
adjoint, if it satisfies

Φhd ◦ Φ−hd = id or equivalently Φhd = (Φ−hd )−1 = (Φhd)∗ (32)

The method (Φhd)∗ = (Φ−hd )−1 is called the adjoint method.

In the following, the discrete Hamiltonian map F̃L̄d
: T ∗Q|C → T ∗Q|C , i.e.,

the solution of (22) combined with the discrete Legendre transform yielding the
mapping F̃L̄d

: (q0
k, p

0
k) 7→ (q0

k+1, p
0
k+1), its projection to the configuration space

πQ ◦ F̃L̄d
via πQ : T ∗Q → Q, and its hidden constraint fulfilling variant F̃L̄d

:
η(T ∗C) → η(T ∗C) are investigated. The adjoint discrete augmented Lagrangian
L̄∗d : Qs+1× (Rm)w+1×R→ R of the discrete augmented Lagrangian L̄d : Qs+1×
(Rm)w+1 × R→ R is defined by

L̄∗d(q0
0 , . . . , q

0
1 , λ

0
0, . . . , λ

0
1, h) = −L̄d(q0

1 , . . . , q
0
0 , λ

0
1, . . . , λ

0
0,−h) (33)

The discrete augmented Lagrangian L̄d is self adjoint, when L̄∗d = L̄d holds.
The following theorem connects the adjoint of the discrete augmented La-

grangian with the adjoint of the one step method F̃L̄d
.
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Theorem 2 (i) Adjointness: Let L̄∗d be the adjoint of L̄d, then the projection of
the adjoint method of F̃L̄d

on Q is the projection of F̃L̄∗
d

on Q, i.e., πQ ◦ F̃ ∗L̄d
=

πQ ◦ F̃L̄∗
d
. If the momenta are forced to fulfill the hidden constraints, F̃L̄∗

d
is the

adjoint method of F̃L̄d
: η(T ∗C) → η(T ∗C). (ii) Self-adjointness: If the discrete

augmented Lagrangian is self-adjoint, then πQ ◦ F̃ ∗L̄d
= πQ ◦ F̃L̄d

and F̃L̄d
is called

time reversible on configuration level. Under the additional assumption that the
hidden constraints are fulfilled, F̃L̄d

: η(T ∗C) → η(T ∗C) is self-adjoint and thus

time reversible on configuration and momentum level. Conversely, if F̃L̄d
is time

reversible or F̃L̄d
: η(T ∗C)→ η(T ∗C) is self-adjoint, then the discrete augmented

Lagrangian is equivalent to a self-adjoint discrete augmented Lagrangian.

Proof. The adjoint method of the discrete Hamiltonian map F̃L̄d
is studied by

means of linear polynomials for qd and λd and quadrature formulas of order two.
In the linear case there are no intermediate nodes, i.e., qk = (q0

k, q
1
k) respectively

λk = (λ0
k, λ

1
k), and we denote q0

k by qk and q1
k by qk+1 respectively λ0

k by λk and
λ1
k by λk+1. The idea of the proof builds up on Theorem 2.4.1 in [17], there shown

for the unconstrained case.

Consider the two discrete augmented Lagrangians L̄d : Q×Q×Rm×Rm×R→
R and L̄∗d : Q×Q× Rm × Rm × R→ R

L̄d (q0, q1, λ0, λ1, h) = Ld (q0, q1, h)− h

2
(g (q0)λ0 + g (q1)λ1) (34)

L̄∗d(q0, q̄1, λ̄0, λ̄1, h) = L∗d(q0, q̄1, h)− h

2
(g(q0)λ̄0 + g(q̄1)λ̄1) (35)

and the corresponding discrete methods F̃L̄d
and F̃L̄∗

d
. Suppose (q1, p1) ∈ T ∗Q|C

are given.

(i) Replacing h by −h and switching the roles of (q0, p0) and (q1, p1) in F̃L̄d
reads

p1 = −D1L̄d(q1, q0, λ1, λ0,−h) (36)

0 = g(q0) (37)

0 = D2L̄d(q1, q0, λ1, λ0,−h) +D1L̄d(q0, q−1, λ0, λ−1,−h) (38)

0 = g(q−1) (39)

p0 = D2L̄d(q1, q0, λ1, λ0,−h) (40)

and yields q0, p0, q−1, λ0, λ1. The discrete method F̃L̄∗
d

: (q0, p0) 7→ (q̄1, p̄1) is
defined as

p0 = −D1L̄
∗
d(q0, q̄1, λ̄0, λ̄1, h) (41)

0 = g(q̄1) (42)

0 = D2L̄
∗
d(q0, q̄1, λ̄0, λ̄1, h) +D1L̄

∗
d(q̄1, q̄2, λ̄1, λ̄2, h) (43)

0 = g(q̄2) (44)

p̄1 = D2L̄
∗
d(q0, q̄1, λ̄0, λ̄1, h) (45)

and yields q̄1, p̄1, q̄2, λ̄0, λ̄1.
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Let L̄∗d be the adjoint of L̄d as defined in (33), with s = w = 1. Taking the
derivatives of L̄∗d yields

D1L
∗
d(q0, q1, h)− h

2
GT (q0)λ0 = −D2Ld(q1, q0,−h)− h

2
GT (q0)λ0 (46)

D2L
∗
d(q0, q1, h)− h

2
GT (q1)λ1 = −D1Ld(q1, q0,−h)− h

2
GT (q1)λ1 (47)

For F̃L̄d
and F̃L̄∗

d
to be adjoint, the definition (32) requires that p̄1 = p1 and

q̄1 = q1.

The initial values (q0, p0) in F̃L̄∗
d

: (q0, p0) 7→ (q̄1, p̄1) are given by the solution

of (36)–(40). Now (40) together with q1 ∈ C yields

p0 = −D1L
∗
d(q0, q1, h) +

h

2
GT (q0)λ0 (48)

0 = g(q1) (49)

while (41) and (42) read

p0 = −D1L
∗
d(q0, q̄1, h) +

h

2
GT (q0)λ̄0 (50)

0 = g(q̄1) (51)

with the same (q0, p0). For h small enough, there exist unique solutions q̄1, λ̄0 and
q1, λ0, thus q1 = q̄1 ∈ C and λ0 = λ̄0 holds. Thus πQ ◦ F̃ ∗L̄d

= πQ ◦ F̃L̄∗
d
. Using the

definition in (33) in (36) yields

p1 = D2L
∗
d(q0, q1, h)− h

2
GT (q1)λ1 (52)

while (45) reads

p̄1 = D2L
∗
d(q0, q̄1, h)− h

2
GT (q̄1)λ̄1 (53)

Thus, checking the second requirement p̄1 = p1 yields

−p1 + p̄1 =
h

2
GT (q1)(λ1 − λ̄1) (54)

Equation (54) shows that F̃L̄∗
d

is not necessarily the adjoint of F̃L̄d
. The Lagrange

multipliers λ1 and λ̄1 might differ and therefore the momenta p1 and p̄1 too,
as GT (q1) has full rank. The momenta p1 and p̄1 only differ in the magnitude
of the constraint force GT (q1), i.e., in the normal direction, thus they are two
representatives of the same equivalence class. To get the representative that fulfills
the hidden constraints one can use the projection P : T ∗Q|C → η(T ∗C) in (4) and
gets Pp1 = Pp̄1 ∈ η(T ∗C) showing that F̃L̄∗

d
is the adjoint of F̃L̄d

: η(T ∗C) →
η(T ∗C).
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(ii) When L̄d is self-adjoint, i.e., L̄∗d = L̄d

πQ ◦ F̃ ∗L̄d

(i)
= πQ ◦ F̃L̄∗

d
= πQ ◦ F̃L̄d

(55)

Furthermore, when additionally the momenta fulfill the hidden constraints, F̃L̄d
:

η(T ∗C)→ η(T ∗C) is self-adjoint.

Conversely, if πQ ◦ F̃ ∗L̄d
= πQ ◦ F̃L̄∗

d
the equations (48)–(51) hold with q̄1 = q1

and λ̄0 = λ0. As p0 in (48) is equal to p0 in (50), the derivatives of L̄d and L̄∗d with
respect to q0 satisfy the definition of adjointness (33) and therefore L̄d and L̄∗d are
mutually adjoint up to the addition of a function of h. If F̃L̄d

and F̃L̄∗
d

are adjoint,

the momenta must fulfill the hidden constraints, and definition (32) implies the
equations (48)–(53), with q̄1 = q1, λ̄0 = λ0, p̄1 = p1, λ̄1 = λ1. The momentum
p1 in (52) equals p̄1 in (53) and states that the derivatives of L̄d and L̄∗d with
respect to q1 also satisfy the definition of adjointness (33). Time reversibility on
configuration level or self-adjointness of F̃L̄d

: η(T ∗C)→ η(T ∗C) implies that L̄d
is equivalent to a self-adjoint discrete augmented Lagrangian.

Remark on time reversibility of SHAKE Theorem 2 explains the reason for dif-
ferent statements in literature pertaining to the time reversibility of SHAKE. Re-
garding only the discrete flow of SHAKE on configuration level, the method can be
stated to be symmetric, whereas the mapping (qk, pk) 7→ (qk+1, pk+1) is not sym-
metric, with pk+1 being the representative of the equivalence class [pk+1] provided
by the SHAKE method. However, the discrete flow (qk, [pk]) 7→ (qk+1, [pk+1]) is
time reversible. One can choose the representative that does fulfill the hidden con-
straints by a projection step and the resulting (qk, pk) sequence is the same that
is obtained by the RATTLE-algorithm, see [18]. The symmetry of RATTLE is
shown in [13].

The proof of the Theorem 2 works analogously when higher degree polynomials
and higher quadrature orders are used. Note that using linear polynomials for qd
and λd is the simplest case of the variational integrators (22). Finally it can be
summarized that the projection πQ of the adjoint of the discrete Hamiltonian map
of L̄d is the projection πQ of the discrete Hamiltonian map of L̄∗d, with L̄∗d being
the adjoint discrete augmented Lagrangian of Ld. However, F̃L̄d

and F̃L̄∗
d

are not
necessarily adjoint due to the fact that the momenta are not forced to fulfill the
hidden constraints. Furthermore, when L̄∗d = L̄d, the variational integrators are
time reversible on configuration level and also on momentum level if the projection
(4) is used in a postprocessing step to enforce the hidden constraints. Under which
conditions L̄∗d = L̄d is true, is shown next, based on [20].

Lemma 1 Let L̄d be the discrete augmented Lagrangian with symmetric quadra-
ture formulas (bi, ci)

r
i=1 and (ei, fi)

z
i=1 and interpolation polynomials qd and λd

each with symmetrically distributed control points (dj)
s
j=0 and (d̃j)

w
j=0. Then L̄d

is self-adjoint.
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Proof. The following holds

qd(−t; q0,−h) =
s∑

ν=0

qν0 lν,s

(
t

h

)
= qd(t; q0, h) (56)

q̇d(−t; q0,−h) =
1

−h

s∑
ν=0

qν0 l̇ν,s

(
t

h

)
= −q̇d(t; q0, h) (57)

λd(−t;λ0,−h) =
w∑
υ=0

λυ0 lµ,s

(
t

h

)
= λd(t;λ0, h) (58)

The correlation between the Lagrange polynomials lν,s and ls−ν,s and the La-
grange polynomials l̃µ,w and l̃w−µ,w, with τ ∈ [0, 1],

lν,s(1− τ) = ls−ν,s(τ)

l̃µ,s(1− τ) = l̃s−µ,s(τ)

is due to the symmetry of the control points dj of qd and the symmetry of the
control points d̃j of λd. With q0 = (q0

0 , . . . , q
s
0), q̃0 = (qs0, . . . , q

0
0) and t ∈ [0, h]

qd(t; q̃0, h) = qd(h− t; q0, h) (59)

The derivative reads

q̇d(h− t; q0, h) = −q̇d(t; q̃0, h) (60)

Analogously, with λ0 = (λ0
0, . . . , λ

w
0 ) and λ̃0 = (λw0 , . . . , λ

0
0), the polynomial

λd(t; λ̃0, h) is rearrangeable to λd(h− t;λ0, h) via

λd(t; λ̃0, h) =
w∑
µ=0

λw−µ0 l̃µ,w

(
t

h

)
=

w∑
k=0

λk0 l̃w−k,w

(
t

h

)

=
w∑
k=0

λk0 l̃k,w

(
1− t

h

)
=

w∑
k=0

λk0 l̃k,w

(
h− t
h

)
= λd(h− t;λ0, h) (61)

Finally, (56) together with (59), respectively (57) with (60), (58) with (61), yields

qd(−t; q̃0,−h) = qd(t; q̃0, h) = qd(h− t; q0, h) (62)

q̇d(−t; q̃0,−h) = −q̇d(t; q̃0, h) = q̇d(h− t; q0, h) (63)

λd(−t; λ̃0,−h) = λd(t; λ̃0, h) = λd(h− t;λ0, h) (64)

Substituting these expressions in the adjoint discrete augmented Lagrangian L̄∗d
shows that L̄d is self-adjoint under the assumption of symmetric quadrature for-
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mulas (bi, ci)
r
i=1 and (ei, fi)

w
i=0.

−L̄d(q̃0, λ̃0,−h) =− (−h)
r∑
i=1

biL(qd(−cih; q̃0,−h)), q̇d(−cih; q̃0,−h))

+ (−h)
z∑
i=1

ei[g(qd(−fih; q̃0,−h)) · λd(−fih; λ̃0,−h)]

=h
r∑
i=1

biL(qd(h− cih; q0, h)), q̇d(h− cih; q0, h))

− h
z∑
i=1

ei[g(qd(h− fih; q0, h)) · λd(h− fih;λ0, h)]

=h
r∑
i=1

br+1−iL(qd(cr+1−ih; q0, h)), q̇d(cr+1−ih; q0, h))

− h
z∑
i=1

ez+1−i[g(qd(fz+1−ih; q0, h)) · λd(fz+1−ih;λ0, h)]

=L̄d(q0, λ0, h) (65)

Thus, L̄d in (18) is self adjoint because the used quadrature formulas Lobatto and
Gauss are symmetric and the control points of qd and λd are chosen symmetrically.

The corollary is that the higher order constrained variational integrators here
are time reversible on configuration level, but not necessarily on momentum level.
Numerical investigations confirm the results.

3.5 Relation to other methods for index 3 DAEs

In [17], Galerkin discrete Lagrangians are extended to include holonomic con-
straints. The Galerkin discrete Lagrangian is modified as follows

Ld(q0, q1, h) = ext
q∈Cs([0,h],Q)
g(q(cih))=0

σs(q) (66)

whereby g : Q→ R is the constraint function and σs(q) is the approximated action.
The requirements c1 = 0 and cs = 1 stated in [17] constrain q0 and q1 to lie on
the constraint submanifold. This is conform with the requirements mentioned in
Section 3.3 to satisfy the stiffly accurate condition. However, in [17] no splitting of
the two integrals in Lagrangian integral and constraints integral is made and thus
diversity in approximation by using different quadrature formulas is not possible.
Furthermore, in contrast to [17], the number of quadrature points is not restricted
to be equal to the degree s of the polynomial qd here.

Based on the discrete augmented Lagrangian L̄d in (18) we can use the vari-
ational principle together with the Legendre transforms p0

k = −D1L̄d(qk, λk) and
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p0
k+1 = Ds+1L̄d(qk, λk) to set up the following discrete equations

p0
k = −D1L̄d(qk, λk) = −D1Ld(qk) + h

w−1∑
i=0

ei+1G
T (qd(d̃ih))l0,s(d̃i)λ

i
k

0 = DνL̄d(qk, λk) = DνLd(qk)− h
w−1∑
i=1

ei+1G
T (qd(d̃ih))lν−1,s(d̃i)λ

i
k ν = 2, . . . , s

p0
k+1 = Ds+1L̄d(qk, λk) = Ds+1Ld(qk)− h

w∑
i=1

ei+1G
T (qd(d̃ih))ls,s(d̃i)λ

i
k

0 = g(qd(d̃ih)) i = 1, . . . , w (67)

For given q0
k and p0

k the set of equations (67) shows a discrepancy between the
number of unknowns (s+w+ 2) and the number of equations (s+w+ 1), because
the Lagrange multiplier λwk enters into the update of p0

k+1. To solve the system
of equations, an additional equation, that is not naturally obtained by the varia-
tional principle, is required. As a remedy, the update p0

k+1 can be extended by a
projection step, choosing λwk such that (q0

k+1, p
0
k+1) lie on the manifold η(T ∗q0k+1

C).

This was first suggested by Anderson (1983) and yielded the RATTLE algorithm
[5]. Construction methods to show the equivalence of variational integrators and
symplectic Runge-Kutta methods for unconstrained systems are given in [17] and
in a more general way in [5]. Extending these approaches to the constrained case, it
can be shown that for r = s the set of equations (67) together with the projection
step can be rearranged to a discrete Hamiltonian map (q0

k, p
0
k) 7→ (q0

k+1, p
0
k+1) that

is a constrained symplectic partitioned Runge-Kutta method identical to the ones
introduced by [10], [11], [12] and studied in, e.g., [17]. They are called symlectic
SPARK-methods. As stated in [12], they are variational integrators. This is shown
in [12] and mentioned in [17]. In [12] the generating function of the symplectic
SPARK integrators is defined by

Ad(q0, q1, h) := h
s∑
i=1

biL(Qi, Vi)− h
s̃∑
i=0

b̃iΛig(Q̃i) (68)

The number of quadrature nodes used to approximate the Lagrangian integral
and the degree of the polynomial qd are both s in (68). This is in contrast to the
variational integrators presented here. The number r of the quadrature nodes of
the quadrature formula (ci, bi)

r
i=1 is not restricted to s. Numerical investigations

reveal that when using the Lobatto-quadrature to approximate the integral of
the Lagrangian in (18) the choice of the degree s of qd to be one less than the
number of quadrature points r yields a more efficient integrator compared to the
established combination r = s. In particular we get the same convergence orders
for the two combinations while one unknown less has to be solved for in the discrete
Euler-Lagrange equations (22) in the first mentioned combination. Note for r > s
the construction method given in [5] for the equivalence of variational integrators
and symplectic Runge-Kutta methods fails, as the internal stage derivatives Vi
become linearly dependent, see [19] for further details. However, following the
approach in [19], it is possible to derive a so called modified constrained symplectic
Runge-Kutta method [25]. There is another important difference. The variational
integrators introduced in this paper go along with a continuous discrete trajectory
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{λk}N−1
k=0 , since λwk = λ0

k+1. In contrast to the symplectic SPARK integrators,
that go along with a discontinuous trajectory, since λwk 6= λ0

k+1 [23]. In particular,
choose s = w, ordL = 2s (Gau), ordZ = 2w (Lob) to determine the generating
function L̄d (18). Then, the associated discrete Hamiltonian map, i.e., the discrete
equations in (67) together with the projection step, is equal to the symplectic
(s, s)-Gauss-Lobatto SPARK method [12] applied to an overdetermined DAE of
index 2. When setting w = s− 1, ordL = 2s− 2 (Lob), ordZ = 2s− 2 (Lob) the
associated discrete Hamiltonian map to (18) is the constrained Lobatto IIIA-IIIB
method [11], [17].

Approximating the constraints integral via the Gauss quadrature (24), in addi-
tion using the Gauss quadrature for the approximation of the Lagrangian integral
as well, with w = s + 1, ordL = 2s (Gau), ordZ = 2s (Gau), the associated dis-
crete Hamiltonian map is the s-stage Gauss method applied to an index 3 DAE.
Investigations in [3] already show, that the Gauss method is rather inappropriate
for this type of application, due to not being stiffly accurate.

4 Numerical Analysis

The performance and the convergence order of the variational integrators (22) are
examined and demonstrated by means of two numerical examples. The investigated
numerical examples are the planar pendulum and the three-dimensional double
pendulum.

The motion of the planar pendulum is described by redundant coordinates
q = [x, y]T ∈ R2. The constraint function g

g =
1

2
(x2 + y2 − l2)

constrains the motion to the submanifold C = S1
l , whereby l is the rod length. With

mass m, yielding the [2 × 2] mass matrix M = mI2×2, and with the gravitation
g = [0,−9.81]T , the Lagrangian reads

L(q, q̇) =
1

2
q̇TMq̇ + (Mg)T · q (69)

The second dynamical system, the three-dimensional double pendulum, has
the configuration space Q = R6, with q = [x1, y1, z1, x2, y2, z2]T . The configuration
space is constrained to the submanifold C = g−1(0), with g = [g1, g2]T ,

g1 =
1

2
(x2

1 + y2
1 + z2

1 − l21)

g2 =
1

2
((x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 − l22)

with rod lengths l1, l2. With the pendulum masses m1, m2, yielding the [6×6] mass
matrix M and with the gravitation g = [0, 0,−9.81, 0, 0,−9.81]T the Lagrangian is
also given in (69). As shown in Section 3.3, the number of admissible combinations
of the degrees s of qd and w of λd and the quadrature formulas (ci, bi)

r
i=1 of order

ordL and (ei, fi)
z
i=1 of order ordZ is restricted. A short review is given here. For

the approximation of the constraints integral only the Lobatto quadrature is used
and the degree w of the polynomial λd is coupled to the order of the quadrature
formula via ordZ = 2w. Additionally, the inequality w ≤ s has to be satisfied. All
other combinations fulfilling this are tested.
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Table 1 Convergence orders of the variational integrator (22) for q, p, λ
Ld(qk) (19) approximated via Gauss quadrature of order oL, where oL = ordL
gd(qk, λk) (20) approximated via Lobatto quadrature of order oZ, where oZ = ordZ
s - degree of polynomial qd, w - degree of polynomial λd

oL 2 4 6 8 10 12 4 6 8 10 12 6 8 10 12 8 10 12 10 12 12
oZ w s 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 4 4 4 5 5 6
2 1 q 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

p 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
λ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

4 2 q 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2
p 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2
λ 2 2 2 2 2 2 2 2 2 d d d d d d

6 3 q 6 6 6 6 6 6 6 4 4 2
p 4 4 4 4 4 4 4 2 2 2
λ 4 4 4 4 4 4 4 2 2 d

8 4 q 8 8 8 8 8 6
p 6 6 6 6 6 4
λ 4 4 4 4 4 2

10 5 q 10 10 10
p 6 6 6
λ 6 6 6

12 6 q 12
p 8
λ 6
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Table 2 Convergence orders of the variational integrator (22) for q, p, λ
Ld(qk) (19) approximated via Lobatto quadrature of order oL, where oL = ordL
gd(qk, λk) (20) approximated via Lobatto quadrature of order oZ, where oZ = ordZ
s - degree of polynomial qd, w - degree of polynomial λd

oL 2 4 6 8 10 12 2 4 6 8 10 12 4 6 8 10 12 6 8 10 12 8 10 12 10 12
oZ w s 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 5 5 5 6 6
2 1 q 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

p 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
λ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

4 2 q 2 4 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 2 2 2
p 2 4 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 2 2 2
λ d 2 2 2 2 2 2 2 2 2 2 d d d d d d d d d

6 3 q 4 6 6 6 6 6 6 6 6 4 4 4 2 2
p 2 4 4 4 4 4 4 4 4 2 2 2 2 2
λ 2 4 4 4 4 4 4 4 4 2 2 2 d d

8 4 q 6 8 8 8 8 8 8 6 6
p 4 6 6 6 6 6 6 4 4
λ 2 4 4 4 4 4 4 2 2

10 5 q 8 10 10 10 10
p 4 6 6 6 6
λ 4 6 6 6 6

12 6 q 10 12
p 6 8
λ 4 6
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4.1 Convergence order

The convergence order of the variational integrators (22) is investigated numeri-
cally. Using a constant step size over a fixed time interval, the convergence order
is determined from the difference of the global errors for different step sizes. The
global error eg is obtained by the comparison of the simulated values to appropriate
reference values, whereby x can be q, p, λ.

eg = max
k∈{0,...,N}

∥∥∥x0
k − xref (kh)

∥∥∥
The convergence orders of the configuration q, the Lagrange multiplier λ and the
momentum p are examined. The Tables 1 and 2 show the results. The letter ’d’ in
the Tables stands for divergent, meaning the global error does not decrease when
the time step decreases.

The convergence orders are discussed qualitatively. When ordL becomes less
than 2s using the Gauss quadrature respectively 2s− 2 using the Lobatto quadra-
ture for calculating Ld in (19), the simulation does not work properly. No orders
are listed for these cases. The two statements can be reformulated to one, saying
the number of quadrature nodes r has to be greater or equal than s, i.e., r ≥ s. The
statement, observed here only numerically, is valid for an unconstrained dynamical
system with a regular Lagrangian of the form L(q, q̇) = 1

2 q̇
TMq̇−V (q), symmetric

positive-definite mass-matrix M and ∇V being Lipschitz continuous, see [6] and
[20]. In [6] it is shown that the discrete Lagrangian flow is well posed, when the or-
der of the quadrature rule, that approximates the integral of the Lagrangian, is at
least 2s−1, meaning r ≥ s for the Gauss quadrature and r ≥ s+1 for the Lobatto
quadrature. However, the condition is only sufficient but not necessary as the stan-
dard Lobatto IIIA-B partitioned Runge-Kutta method is a counterexample with
Lobatto quadrature of order 2s− 2 or rather r = s, see [20].

The following remarks are valid only for the gray shaded combinations in the
Tables 1 and 2, i.e., s = w and s = w+ 1. The results for the convergence order of
the configuration q, briefly named ord(q), can be summarized as follows. It must
be differentiated between calculating Ld in (19) via the Lobatto or via the Gauss
quadrature.

Ld via Gauss quadrature ord(q) = min(ordL, ordZ) = min(2s, 2r, 2w)

Ld via Lobatto quadrature ord(q) = min(ordL, ordZ) = min(2s, 2r − 2, 2w)

Thus, the orders ordL and ordZ of the quadrature formulas determine the resulting
order of the variational integrator in q. Furthermore, the configuration q is super
convergent of order 2s, when r ≥ s (approximating Ld via the Gauss quadrature)
respectively r ≥ s+ 1 (approximating Ld via the Lobatto quadrature). The order
of the Lagrange multiplier λ, ord(λ), is reduced compared to the order of the
configuration q. The convergence order of the momentum p, ord(p), is mostly
also smaller than the one of the configuration q. Note that the momentum p is
calculated in a post-processing step via the discrete Legendre transform using the
simulated configurations q and Lagrange multipliers λ. There is a relation between
the degree w of the polynomial λd and the convergence orders of the Lagrange
multiplier λ and the momentum p recognizable, again only valid for s = w or
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s = w + 1 and ordL ≥ 2s.

w even ord(p) = w + 2 ord(λ) = w

w uneven ord(p) = w + 1 ord(λ) = w + 1

Furthermore, the relation ord(p) = ord(q) − ord(λ) + 2 between the convergence
orders of p and λ and q can be observed. Moreover it is significant, that all orders
are even. The order of a symmetric integrator is even [5]. In Section 3.4.3 the
symmetry of the variational integrators (22) is discussed. The variational integra-
tors (22) are symmetric in q, but not in p and in λ. Nevertheless, the numerical
examination reveals even orders for q, p and λ.

In order to achieve the same convergence order for p as for q, one may project
the numerical solution onto η(T ∗q0k

C) via p0,p
k = Pp0

k, k = 1, . . . , N − 1, using the

projection P in (4). The accuracy of the Lagrange multiplier can be improved if
λ0,p
k is defined as

λ(q, p) =
(
GHT

ppG
T
)−1 (

Gq
(
HT
p , H

T
p

)
+GHT

pqH
T
p −GHT

ppH
T
q

)
(p, q) (70)

evaluated at q0
k and p0,p

k . The indices q and p denote the derivative w.r.t. q respec-
tively p. Equation (70) is obtained by differentiating the constraints g two times
w.r.t. t, supposing that

(
GHT

ppG
T
)

is invertible in a neighbourhood of the exact
solution. Then the convergence order of λ is the same as the convergence orders
of q and p. This approach for recalculating λ is suggested in [10]. In this work the
improvement of the orders of p and λ is tested numerically only.

Order reduction of the Lagrange multiplier and the momentum is a known
problem when integrating DAEs in Hessenberg-form of index 3, see, e.g., [4], [8],
[3], [9]. In [3] the s-stage Radau IIA method is studied, the paper of [8] deals
with the equivalent collocation method Radau IIA, both with regard to DAEs in
Hessenberg form of index 3. The s-stage Radau IIA method, i.e., the collocation
method Radau IIA, is stiffly accurate, but not symplectic. It is shown in [8], the
Radau IIA-method applied to a DAE in Hessenberg-form, index 3, yields staggered
orders, beginning with the order of the configuration q, i.e., 2s−1, the order of the
momentum decreases to s and the order of λ to s − 1. Similar results pertaining
to the reduction of the orders are obtained, when using the Gauss-method or
Lobatto IIIC to approximate the solution of a DAE index 3 system [4], [9]. The
(s, s)-SPARK Gauss-Lobatto integrators have the convergence order 2s both for
the configuration q and the momentum p. The constrained Lobatto IIIA/IIIB
method has a convergence order of 2s− 2. There is no order reduction in p due to
the projection step on the manifold η(T ∗C). The DAEs of index 3 together with
the constraints differentiated once w.r.t. t can be interpreted as a system of index
2 overdetermined DAEs [12]. To get accurate values for the Lagrange multiplier,
the possibility given in [10] is to determine λwk via the additional constraint (70).
Then the convergence order of λ is the same as the convergence orders of q and p.

The combinations in the Tables 1 and 2, which are not shaded gray, show order
reduction in q, p and λ. The increase of the degree s of the polynomial qd to a
value greater than w+ 1 comes along with decreased orders. The limitation of the
order ordZ to 2w might be a reason.
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Fig. 2 Planar pendulum: Error of the total energy
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Fig. 3 Double pendulum: Error of the z-component of the angular momentum

4.2 Long-time energy behaviour and conservation of angular momentum

The variational integrators in (22) are symplectic and therefore show a good long-
time energy behaviour, see Section 3.4.1. In Fig. 2 the error of the total energy
of the planar pendulum is shown. The combinations [s = 5, ordL = 10(Gau),w =
4, ordZ = 8] with ord(q) = 8 (see Table 1) and [s = 5, ordL = 8(Lob),w =
3, ordZ = 6] with ord(q) = 4 (see Table 2) are chosen as representatives. Note,
that in Fig. 2 the time step for the first mentioned combination is ten time larger
than for the second and still the energy error is smaller. The error of the total
energy decreases, when the order ord(q) of the variational integrator increases.
The same behaviour of the error of the total energy is given in case of the three-
dimensional double pendulum. The use of the variational integrators leads to a
stable energy behaviour. The error in Fig. 2 is oscillating, but stays bounded. The
total energy of the system does not increase or decrease artificially over time. In
the combination [s = 5, ordL = 8(Lob),w = 3, ordZ = 6], s is not in the ideal ratio
of s and w and therefore the order ord(q) is reduced and the error of the total
energy oscillates with greater amplitude. The Lagrangian of the double pendulum
(69) is invariant under the group of rotations. Consequently the z-component of
the angular momentum

I(p, q) = −px1y1 + py1x1 − p2xy2 + p2yx2 (71)
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Fig. 4 Planar pendulum: Global error of the configuration q against run-time for the integra-
tors s = w = r = 1, . . . 6, OrdL = 2r (Gau), OrdZ = 2w (Lob)

is a conserved quantity in the system, whereby pα = (pαx, pαy) denotes the mo-
mentum of the α-th mass, α = 1, 2. As shown in Section 3.4.2 the augmented
discrete Lagrangian L̄d inherits the invariance of L̄, when the group of transfor-
mations is linear. Thus, the variational integrators (22) conserve the z-component
of the angular momentum. Fig. 3 shows the error of the z-component of the an-
gular momentum for some combinations. The angular momentum is preserved up
to numerical accuracy.

4.3 Computational efficiency
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Fig. 5 Planar pendulum: Global error of the configuration q against run-time for the integra-
tors s = w, OrdL = 2s (Gau) respectively (Lob), OrdZ = 2w (Lob)

To assess the computational efficiency of the variational integrators in (22),
the error of the configuration q for different step sizes h is plotted versus the run-
time. The parameters are chosen such that the oscillation period of the pendulum
is an integer multiple of the time step size, such that the error of the simulation
can be computed with respect to destined analytically known reference configu-
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rations. Investigated are these integrators that have super convergence of 2s in q
together with a minimal number of quadrature nodes. In particular, the combi-
nations showed in Fig. 4 are s = w = r = 1, . . . , 6 with the Gauss quadrature of
order 2r for approximating the Lagrangian integral. The computational effort of
the constrained higher order integrators reduces significantly and the results are
much more accurate compared to the constrained integrator of order 2, i.e., the
combination s = w = r = 1. Thus, increasing the order of the integrators yields
higher accuracy while run time decreases.

When approximating the Lagrangian integral via the Lobatto quadrature, the
minimal number of quadrature nodes r to achieve convergence order of 2s in q is
s + 1. Thus, it is larger by one than using the Gauss quadrature. The evaluation
of the Lagrangian at a further quadrature node costs run-time. Fig. 5 shows the
influence by means of the combinations s = w = 2 and s = w = 5. For the same
step sizes, the integrators provide the same accuracy, but the integrators that use
the Gauss quadrature for approximating the Lagrangian integral are slightly faster
than the ones using the Lobatto quadrature.

5 Conclusion

In this work, variational integrators of higher order for systems with holonomic
constraints are constructed and analyzed. The idea is based on [20], where varia-
tional integrators of higher order for unconstrained systems have been constructed
and analyzed, and on the constrained Galerkin methods, that are presented in [17].
The continuous curves q and λ are discretized via polynomials of degree s respec-
tively w and quadrature rules of higher order are used to approximate the action
integral. The distinction between the integral of the Lagrangian and the integral
of the scalar product of the constraints and the Lagrange multipliers g(q) ·λ allows
the use of different quadrature formulas for each with r quadrature nodes for ap-
proximating the first and z for approximating the second. This is in contrast to the
constrained Galerkin methods in [17]. Restrictions such that the control points of
λd are disposed like the quadrature nodes z, in particular like the quadrature nodes
of the Lobatto quadrature with z = w + 1, and s ≥ w, ensure the solvability of
the constrained discrete Euler-Lagrange equations and stiff accuracy. The resulting
discrete augmented Lagrangian can serve as a generating function for the symplec-
tic SPARK integrators of [12]. However, in [12] the symplectic SPARK integrator
is applied to a system of index 2 overdetermined DAEs. Furthermore, contrary to
[17] and [12] the restriction r = s quadrature nodes for approximating the integral
of the Lagrangian is dropped here as it is in [20] for the unconstrained systems.
The preservation properties of the variational integrators, such as symplecticty
and preservation of momentum maps, are proved analytically and verified numer-
ically. It is shown that the presented variational integrators are time reversible on
configuration level but not on momentum level because the momenta do not fulfill
the hidden constraints. However, if the momenta are forced to fulfill the hidden
constraints via a simple projection in a post processing step, the discrete flow is
time reversible on configuration and momentum level. Note that this is achieved
in a simpler way compared to symplectic SPARK integrators, where an additional
equation and unknown is introduced to fulfill the hidden constraints. The order of
convergence is determined numerically. The numerical investigations give a first
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insight what orders can be expected for the configuration q, the Lagrange mul-
tiplier λ and the momentum p. The orders of the momentum and the Lagrange
multiplier are reduced compared to the order of the configuration. Again, with a
simple post processing step accomplishing the fulfillment of the hidden constraints,
the order reduction can be avoided, while the symplectic SPARK integrators yield
same orders of convergence for the configuration and the momentum [12] via solv-
ing an extended system of equations and unknowns. The numerical tests reveal
highest orders for r ≥ s + 1, when the Lobatto quadrature is applied, and r ≥ s
when the Gauss quadrature is applied. Furthermore, an increase of s to s > w+ 1
decreases the resulting orders. Inserting the coefficients of the Lobatto-quadrature
for (ci, bi)

r
i=1 and choosing the degree of the polynomial qd to be one less than

r the resulting integrator has the same convergence order as when we choose the
degree of qd and r to be equal. However, the lower degree polynomial leads to one
unknown less in the discrete Euler-Lagrange equations to be solved for and thus
saves computational costs. Note, that for r > s the constrained variational inte-
grator is equivalent to a so called modified constrained symplectic Runge-Kutta
method, that is an extension of the modified symplectic Runge-Kutta method in
[19] to the holonomically constrained case. In view of highest accuracy and low
computational effort, the most promising combinations are s = w with r = s
(Gauss) or r = s + 1 (Lobatto). A numerical investigation regarding efficiency
versus accuracy is performed for these combinations, revealing that higher orders
increase the accuracy substantially while the run-times decrease. Furthermore, at
the same order of accuracy, the additional quadrature node being necessary using
the Lobatto quadrature leads to a slightly higher run-time than using the Gauss
quadrature.

The analytical proof of the convergence orders is future work. To decrease
rounding off errors, a reformulation of the system of equations can be considered
similar to the leap frog method. Note that the leap frog method results from a
reformulation of SHAKE [17], which is a special case of the variational integrators
presented here. Moreover the influence of using different interpolations methods for
qd, like, e.g., Chebyshev polynomials, could be investigated. The conditions that
guarantee stiff accuracy include the restriction to choose a quadrature formula with
the last quadrature node to be 1, which is satisfied by the Radau-IIA quadrature,
too. First numerical tests using the Radau-IIA quadrature to approximate the
integral of the scalar product g(q) · λ are promising. Moreover, in contrast to
assuming the Lagrange multiplier λ0

0 to be unknown, the initial conditions q0
0 , p0

0

could be extended by it, such that the number of discrete Euler-Lagrange equations
for one time step equal the number of unknowns. But this has to be investigated
carefully, because without appropriate restrictions, linear dependence can occur
and the lack of the stiffly accurate condition can lead to drift-off problems. The
appliance of the variational integrators to more complex constrained systems is a
next step, especially interesting for constrained systems that involve slow and fast
time scales [15]. Another possible direction is to use the presented integrators for
mechanical systems on selected Lie groups [1] embedded in the Euclidean space by
constraints. Furthermore, reducing the dimension of the nonlinear equation system
is another challenging topic. One could think of applying the nullspace method [14]
on a specific type of the presented integrators, such that the dimension reduces
from (sn+ wm) to sn.
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15. Leyendecker, S., Ober-Blöbaum, S.: A variational approach to multirate integration for
constrained systems. In: Multibody dynamics, computational methods in applied sciences,
vol. 28, pp. 97–121. Springer (2013)
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