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A FULLY DIAGONALIZED SPECTRAL METHOD USING GENERALIZED

LAGUERRE FUNCTIONS ON THE HALF LINE

FU-JUN LIU1, ZHONG-QING WANG2, AND HUI-YUAN LI3

Abstract. A fully diagonalized spectral method using generalized Laguerre functions is proposed

and analyzed for solving elliptic equations on the half line. We first define the generalized Laguerre

functions which are complete and mutually orthogonal with respect to an equivalent Sobolev

inner product. Then the Fourier-like Sobolev orthogonal basis functions are constructed for the

diagonalized Laguerre spectral method of elliptic equations. Besides, a unified orthogonal Laguerre

projection is established for various elliptic equations. On the basis of this orthogonal Laguerre

projection, we obtain optimal error estimates of the fully diagonalized Laguerre spectral method

for both Dirichlet and Robin boundary value problems. Finally, numerical experiments, which are

in agreement with the theoretical analysis, demonstrate the effectiveness and the spectral accuracy

of our diagonalized method.

1. Introduction

Spectral methods for solving partial differential equations on unbounded domains have gained a

rapid development during the last few decades. An abundance of literature on this research topic

has emerged, and their underlying approximation approaches can be essentially classified into three

catalogues [4, 27]:

(i) truncate an unbounded domain to a bounded one and solve the problem on the bounded

domain subject to artificial or transparent boundary conditions [22, 26];

(ii) map the original problem on an unbounded domain to one on a bounded domain and

use classic spectral methods to solve the new problem [9]; or equivalently, approximate

the original problem by some non-classical functions mapped from the classic orthogonal

polynomials/functions on a bounded domain [2, 3, 7, 11, 12, 27, 31, 34];

(iii) directly approximate the original problem by genuine orthogonal functions such as Laguerre

polynomials or functions on the unbounded domain [6, 10, 13, 14, 15, 16, 17, 18, 19, 20, 24,

30, 32, 33, 35].
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The third approach is of particular interest to researchers, and has won an increasing popularity

in a broad class of applications, owing to its essential advantages over other two approaches. These

direct approximation schemes constitute an initial step towards the efficient spectral methods, which

admit fast and stable algorithms for their efficient implementations.

As we know, the Fourier spectral method makes use of the eigenfunctions of the Laplace operator

which are orthogonal to each other with respect to the Sobolev inner product involving derivatives,

thus the corresponding algebraic system is diagonal [4, 5, 25]. This fact together with the availability

of the fast Fourier transform (FFT) makes the Fourier spectral method be an ideal approximation

approach for differential equations with periodic boundary conditions. Although the utilization

of the genuine orthogonal polynomials/functions in this direct approach usually leads to a highly

sparse (e.g., tri-diagonal, penta-diagonal) and well-conditioned algebraic system, however, in many

cases, people still want to get a set of Fourier-like basis functions for a fully diagonalized algebraic

system [28].

The main purpose of this paper is to construct the Fourier-like Sobolev orthogonal basis functions

[8, 21] for elliptic boundary value problems on the half line Λ = (0,∞). For this purpose, we shall

first extend the definition of Laguerre polynomials
{

Lα
k (x)

}

k≥0
and Laguerre functions

{

lα,βk (x) =

e−
β
2 xLα

k (βx)
}

k≥0
for β > 0 to allow α being any real number. The resulting generalized Laguerre

functions are proven to be the eigenfunctions of certain high order Sturm-Liouville differential

operators (see Lemma 2.6 of this paper). Moreover, they are complete and mutually orthogonal

in Hr
xr+α(Λ) for any nonnegative integer r > −α − 1 with respect to an equivalent Sobolev inner

product (see (2.23) of this paper).

Since the problem is dependent on the inner product originated from the coercive bilinear form of

the elliptic equation, it does not necessarily coincide with the equivalent Sobolev inner product, fur-

ther efforts should be paid to obtain the Fourier-like basis functions for a fully diagonalized spectral

approximation, in spite of the Sobolev orthogonality of
{

lα,βk (x)
}

k≥0
. Starting with

{

l−1,β
k (x)

}

k≥0
,

stable and efficient algorithms are then proposed to construct the Fourier-like basis functions for

the non-homogeneous Dirichlet and Robin boundary value problems of the second order elliptic

equations. In the sequel, both the exact solution and the approximate solution can be represented

as infinite and truncated Fourier series in
{

l−1,β
k (x)

}

, respectively. Although the fully diagonalized

spectral methods are studied for second order equations, they can be readily generalized to solve

2r-th order equations by starting with
{

l−r,β
k (x)

}

.

An ideal spectral approximation to differential equations may guarantee an optimal error estimate

in its convergence analysis. To match this requirement, various orthogonal projections involving dif-

ferent orders of derivatives and boundary conditions have been designed and studied case by case,

which frequently make the numerical analysis in spectral method a tedious task. Moreover, the

traditional routine to measure the approximation error is first to establish the norm defined by a

second-order self-adjoint differential operator, and then estimate the upper bound of the approxi-

mation error with the induced norms. However, this practical approach usually fails to characterize

the function space in which the orthogonal projection has an optimal error estimate.

To conquer these difficulties, we need a unified definition of the orthogonal spectral projections

with a systematic numerical analysis. Fortunately, the Sobolev orthogonality of the generalized

Laguerre functions
{

lα,βk (x)
}

with a negative integer α = −n enables us to define the unified

orthogonal projection π−n,β
N from Hn

xr−n(Λ) to the finite approximation space for all nonnegative

integer r ≥ n, ignoring the specific value of r. More importantly, such an orthogonal projection π−n,β
N

interpolates the endpoint function values up to the (n− 1)-th derivative, i.e, ∂ℓ
xπ

−n,β
N u(0) = ∂ℓ

xu(0)

for any 0 ≤ ℓ ≤ n−1 and N ≥ n. This endpoint interpolation property ensures u−π−n,β
N u ∈ Hn

0 (Λ),



LAGUERRE SPECTRAL METHOD 3

thus makes π−n,β
N applicable to both the Dirichlet and Robin boundary value problems, and available

to multi-domain spectral methods. Besides, owing to the clarity of the orthogonality structure of

the generalised Laguerre functions, one can not only derive an optimal order of the convergence for

the approximated function, but also get a generic characterization of the function space where the

orthogonal projection has an optimal error estimate.

Therefore, the second purpose of this paper is to establish such a unified orthogonal Laguerre

projection, and apply it to the convergence analysis on the fully diagonalized Laguerre spectral

method for both the Dirichlet and Robin boundary value problems of second order elliptic equations.

The remainder of the paper is organized as follows. In Section 2, we first make conventions on

the frequently used notations, and then introduce generalized Laguerre polynomials and functions

with arbitrary index α. The fully diagonalized Laguerre spectral methods and the implementation

of algorithms are proposed in Section 3 for the Dirichlet and Robin boundary value problems of

second order elliptic equations. Section 4 is then devoted to the convergence analysis of the unified

orthogonal projection together with our Laguerre spectral methods. Finally, numerical results are

presented in Section 5 to demonstrate the effectiveness and accuracy of the proposed diagonalized

Laguerre spectral methods, which are in agreement with our theoretical predictions.

2. Generalized Laguerre polynomials and functions

2.1. Notations and preliminaries. Let Λ = (0,∞) and ̟(x) be a weight function which is not

necessary in L1(Λ). We define

L2
̟(Λ) = {v | v is measurable on Λ and ‖v‖̟ < ∞},

with the following inner product and norm,

(u, v)̟ =

∫

Λ

u(x)v(x)̟(x)dx, ‖v‖̟ = (v, v)
1
2
̟, ∀u, v ∈ L2

̟(Λ).

For simplicity, we denote dkv
dxk = ∂k

xv and dv
dx = v′. For any integer m ≥ 0, we define

Hm
̟ (Λ) = {v | ∂k

xv ∈ L2
̟(Λ), 0 ≤ k ≤ m},

with the following semi-norm and norm,

|v|m,̟ = ‖∂m
x v‖̟, ‖v‖m,̟ =

(

m
∑

k=0

|v|2k,̟
)

1
2

.

For any real r > 0, we define the space Hr
̟(Λ) and its norm ‖v‖r,̟ by function space interpolation

as in [1]. In cases where no confusion arises, ̟ may be dropped from the notations whenever

̟(x) ≡ 1. Specifically, we shall use the weight functions w = w(x) = x and wα = wα(x) = xα in

the subsequent sections.

We denote by R the collection of real numbers, by N0 and Z
− the collections of nonnegative and

negative integers, respectively. Further, we let Pk be the space of polynomials of degree ≤ k.

Let ℵ := Z
− ∪ (−1,+∞). We also define the characteristic functions χn for n ∈ N0,

χn(α) =

{

−α, α+ n ∈ Z
−,

0, α+ n ∈ (−1,+∞).

For short we write χ(α) = χ0(α).
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2.2. Generalized Laguerre polynomials. It is well known that, for α > −1, the classical La-

guerre polynomials Lα
k (x), k = 0, 1, . . . , admit an explicit representation (see [29]):

Lα
k (x) =

k
∑

ν=0

(α+ ν + 1)k−ν

(k − ν)!ν!
(−x)ν , x ∈ Λ, k ≥ 0, (2.1)

where we use the Pochhammer symbol (a)n = a(a+ 1) . . . (a+ n− 1) for any a ∈ R and n ∈ N0.

The classical Laguerre polynomials can be extended to cases with any α ∈ R and the same

representation as (2.1), which are referred to as the generalized Laguerre polynomials (cf. [23]).

Obviously, the generalized Laguerre polynomials Lα
k (x), k = 0, 1, . . . , constitute a complete basis

for the linear space of real polynomials as well, since degLα
k = k for all k ≥ 0.

The generalized Laguerre polynomials fulfill the following recurrence relations.

Lemma 2.1. For any α ∈ R, it holds
{

Lα
0 (x) = 1, Lα

1 (x) = −x+ α+ 1,

(k + 1)Lα
k+1(x) = (2k + α+ 1− x)Lα

k (x)− (k + α)Lα
k−1(x), k ≥ 1.

(2.2)

Proof. The recurrence relation (2.2) for α ∈ R can be derived from those of the classic Laguerre

polynomials for α > −1 by the continuation method. Here, we also give a concrete proof by the

representation (2.1). Using the expression (2.1), we obtain that for integer k ≥ 1,

(2k + α+ 1)Lα
k (x) − (k + α)Lα

k−1(x)− (k + 1)Lα
k+1(x)

= (2k + α+ 1)

k
∑

ν=0

(−1)νΓ(k + α+ 1)

ν!(k − ν)!Γ(α + ν + 1)
xν − (k + α)

k−1
∑

ν=0

(−1)νΓ(k + α)

ν!(k − ν − 1)!Γ(α+ ν + 1)
xν

−(k + 1)
k+1
∑

ν=0

(−1)νΓ(k + α+ 2)

ν!(k − ν + 1)!Γ(α+ ν + 1)
xν .

Then a direct computation shows that

(2k + α+ 1)Lα
k (x) − (k + α)Lα

k−1(x)− (k + 1)Lα
k+1(x)

=

k+1
∑

ν=1

(−1)ν−1Γ(k + α+ 1)

(ν − 1)!(k − ν + 1)!Γ(α+ ν)
xν = xLα

k (x).

The desired result is now derived. �

Lemma 2.2. For any α ∈ R and k ≥ 0, it holds

Lα
k (x) = Lα+1

k (x) − Lα+1
k−1 (x), (2.3)

∂xLα
k (x) = −Lα+1

k−1 (x), (2.4)

x∂xLα
k (x) = kLα

k (x) − (k + α)Lα
k−1(x), (2.5)

Lα
k (x) = ∂xLα

k (x) − ∂xLα
k+1(x), (2.6)

where Lα
k (x) ≡ 0 for any k ∈ Z

−.

Proof. The recurrence relations (2.3)-(2.5) can be obtained readily by using similar arguments as

in Lemma 2.1. Moreover, by (2.3) and (2.4), it is easy to derive (2.6). �

Lemma 2.3. For any α ∈ R, the generalized Laguerre polynomials Lα
k (x) satisfy the Sturm-Liouville

equation

x−αex∂x(x
α+1e−x∂xLα

k (x)) + λkLα
k (x) = 0, k ≥ 0, (2.7)
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or equivalently,

x∂2
xLα

k (x) + (α+ 1− x)∂xLα
k (x) + λkLα

k (x) = 0, k ≥ 0, (2.8)

with the corresponding eigenvalue λk = k.

Proof. Lemma 2.3 can be proved by the continuation method from the Sturm-Liouville equation of

the classic Laguerre polynomials for α > −1. Also one can give a proof by using the representation

(2.1). We omit the details here. �

We are interested in those generalized Laguerre polynomials with an integer index α ∈ Z
−.

Lemma 2.4. For any α ∈ Z
−, we have

Lα
k (x) = (−x)−α (k + α)!

k!
L−α
k+α(x), k ≥ χ(α). (2.9)

And for any α ∈ ℵ, the following orthogonality relation holds:
∫

Λ

Lα
k (x)Lα

m(x)xαe−xdx = γα
k δk,m, γα

k =
Γ(k + α+ 1)

k!
, k,m ≥ χ(α), (2.10)

where δk,m is the Kronecker symbol.

Proof. The identity (2.9) comes directly from [29]. The orthogonality relation (2.10) is known

for classic Laguerre polynomials with α ∈ (−1,+∞); while for α ∈ Z
−, (2.10) can be obtained

immediately from (2.9) together with (2.10) for α ∈ (−1,+∞). �

We now conclude this subsection with some generalized Laguerre polynomials Lα
k (x) for α ∈ Z

−.

k = 0 k = 1 k = 2 k = 3 . . . k ≥ χ(α)

α = −1 1 −x 1
2x(x − 2) − 1

6x(x
2 − 6x+ 6) . . . − 1

kxL1
k−1(x)

α = −2 1 −x− 1 1
2x

2 − 1
6x

2(x− 3) . . . 1
k(k−1)x

2L2
k−2(x)

α = −3 1 −x− 2 1
2x

2 + x+ 1 − 1
6x

3 . . . − 1
k(k−1)(k−2)x

3L3
k−3(x)

. . . . . . . . . . . . . . . . . . . . .

2.3. Generalized Laguerre functions. In this subsection, we shall introduce the generalized

Laguerre functions with arbitrary parameters α ∈ R and β > 0 and present some properties.

The generalized Laguerre functions lα,βk (x), k ≥ 0 are defined by

lα,βk (x) = e−
1
2βxLα

k (βx), ∀α ∈ R, β > 0, (2.11)

and the multiplication of e−
1
2βx and the leading term of Lα

k (βx) is simply referred to as the leading

term of lα,βk (x).

According to (2.9), for any α ∈ Z
−, we have

lα,βk (x) = (−βx)−α (k + α)!

k!
l−α,β
k+α (x), k ≥ χ(α), (2.12)

which means that x = 0 is a zero of lα,βk (x) with the multiplicity −α, i.e.,

∂ν
x l

α,β
k (0) = 0, k ≥ χ(α), ν = 0, 1, . . . ,−α− 1. (2.13)

Due to (2.2)-(2.6), the generalized Laguerre functions satisfy the following recurrence relations:



6 F. LIU, Z. WANG, AND H. LI

Lemma 2.5. For any k ∈ N0, it holds that

βxlα,βk (x) = −(k + 1)lα,βk+1(x) + (2k + α+ 1)lα,βk (x) − (k + α)lα,βk−1(x), (2.14)

lα,βk (x) = lα+1,β
k (x)− lα+1,β

k−1 (x), (2.15)

∂xl
α,β
k (x) = −βlα+1,β

k−1 (x)− β

2
lα,βk (x) = −β

2

[

lα+1,β
k (x) + lα+1,β

k−1 (x)
]

, (2.16)

x∂xl
α,β
k (x) =

k + 1

2
lα,βk+1(x) −

α+ 1

2
lα,βk (x) − k + α

2
lα,βk−1(x), (2.17)

∂xl
α,β
k (x)− ∂xl

α,β
k+1(x) =

1

2
β(lα,βk (x) + lα,βk+1(x)). (2.18)

Hereafter, we use the convention that lα,βk (x) = 0 whenever k ∈ Z
−.

The generalized Laguerre functions are eigenfunctions of certain singular Sturm-Liouville differ-

ential operators.

Lemma 2.6. For any n ∈ N0, it holds that

n
∑

ν=0

(−1)ν
(

n

ν

)

β2n−2ν

22n−2ν
x−α∂ν

x

(

xα+n∂ν
x l

α,β
k

)

=
βn

2n
λα
k,nl

α,β
k , k ≥ 0, (2.19)

where λα
k,n satisfies the following recurrence relation,

λα
k,0 = 1, λα

k,n = (k + α+ 1)λα+1
k,n−1 + kλα+1

k−1,n−1, n ≥ 1, k ≥ 0. (2.20)

Proof. We prove (2.19) and (2.20) by induction. It is obvious that (2.19) holds for n = 0. Moreover,

by virtue of (2.7) and (2.11) we have

−x−α∂x

(

xα+1∂xl
α,β
k (x)

)

+
β2

4
xlα,βk (x) =

β

2
(2k + α+ 1)lα,βk (x) =

β

2
λα
k,1l

α,β
k (x), k ≥ 0,

which gives (2.19) and (2.20) for n = 1.

We now assume that (2.19) and (2.20) hold for an integer n ≥ 1. Then by the recursive formula

of binomial coefficients together with (2.15) and (2.16),

I :=

n+1
∑

ν=0

(−1)ν
(

n+ 1

ν

)

β2n+2−2ν

22n+2−2ν
x−α∂ν

x

(

xn+1+α∂ν
x l

α,β
k

)

=
n+1
∑

ν=0

(−1)ν
[(

n

ν

)

+

(

n

ν − 1

)]

β2n+2−2ν

22n+2−2ν
x−α∂ν

x

(

xn+1+α∂ν
x l

α,β
k

)

=
β2

4
x

n
∑

ν=0

(−1)ν
(

n

ν

)

β2n−2ν

22n−2ν
x−(α+1)∂ν

x

[

xn+(α+1)∂ν
x

(

lα+1,β
k − lα+1,β

k−1

)]

+
β

2
x−α∂x

n+1
∑

ν=1

(−1)ν−1

(

n

ν − 1

)

β2n−2(ν−1)

22n−2(ν−1)
∂ν−1
x

[

xn+(α+1)∂ν−1
x

(

lα+1,β
k + lα+1,β

k−1

) ]

.

Thus by the induction assumption, (2.14), (2.17) and (2.15), we derive that

I =
βn+2

2n+2
x
[

λα+1
k,n lα+1,β

k − λα+1
k−1,nl

α+1,β
k−1

]

+
βn+1

2n+1
x−α∂x

[

xα+1
(

λα+1
k,n lα+1,β

k + λα+1
k−1,nl

α+1,β
k−1

)]

=
βn+1

2n+1
λα+1
k,n

[

(α+ 1 + β
2x)l

α+1,β
k + x∂xl

α+1,β
k

]

+
βn+1

2n+1
λα+1
k−1,n

[

(α + 1− β
2x)l

α+1,β
k−1 + x∂xl

α+1,β
k−1

]

=
βn+1

2n+1
λα+1
k,n (k + α+ 1)

[

lα+1,β
k − lα+1,β

k−1

]

+
βn+1

2n+1
λα+1
k−1,nk

[

lα+1,β
k − lα+1,β

k−1

]
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=
βn+1

2n+1

[

(k + α+ 1)λα+1
k,n + kλα+1

k−1,n

]

lα,βk ,

which is exactly (2.19) and (2.20) with n+ 1 in place of n. This ends the proof. �

For any n ∈ N0, α ∈ R and β > 0, define the bilinear form on Hn
wα+n(Λ)×Hn

wα+n(Λ),

aα,βn (u, v) =
n
∑

ν=0

(

n

ν

)

β2n−2ν

22n−2ν
(∂ν

xu, ∂
ν
xv)wα+n . (2.21)

It is obvious that aα,βn (·, ·) is an inner product on Hn
wα+n(Λ) if α+ n > −1.

Theorem 2.1. The generalized Laguerre functions lα,βk (x), k ≥ χ(α) for α ∈ ℵ are mutually

orthogonal with respect to the weight function wα,

aα,β0 (lα,βk , lα,βm ) = (lα,βk , lα,βm )wα = β−α−1γα
k δk,m, k,m ≥ χ(α). (2.22)

More generally, for any n ∈ N0 and α+ n ∈ ℵ,
aα,βn (lα,βk , lα,βm ) = βn−α−1γα

k,nδk,m, k,m ≥ χn(α), (2.23)

where the positive numbers γα
k,n satisfy the recurrence relation

γα+n
k,0 = γα+n

k , γα
k,n =

1

2

[

γα+1
k,n−1 + γα+1

k−1,n−1

]

, n ≥ 1, (2.24)

under the convention that γα
k,n = 0 whenever k ∈ Z

−.

Proof. The orthogonality (2.22) is an immediate consequence of (2.10). Meanwhile, the recursive

formula (2.21) of binomial coefficients together with (2.15) and (2.16) yields

aα,βn+1

(

lα,βk , lα,βm

)

=

n+1
∑

ν=0

[

(

n

ν − 1

)

+

(

n

ν

)

]β2n+2−2ν

22n+2−2ν

(

∂ν
x l

α,β
k , ∂ν

xl
α,β
m

)

wα+n+1

=
β2

4

n+1
∑

ν=1

(

n

ν − 1

)

β2n−2(ν−1)

22n−2(ν−1)

(

∂ν−1
x

[

lα+1,β
k + lα+1,β

k−1

]

, ∂ν−1
x

[

lα+1,β
m + lα+1,β

m−1

])

wn+(α+1)

+
β2

4

n
∑

ν=0

(

n

ν

)

β2n−2ν

22n−2ν

(

∂ν
x

[

lα+1,β
k − lα+1,β

k−1

]

, ∂ν
x

[

lα+1,β
m − lα+1,β

m−1

])

wn+(α+1) (2.25)

=
β2

2

n
∑

ν=0

(

n

ν

)

β2n−2ν

22n−2ν

[(

∂ν
x l

α+1,β
k , ∂ν

x l
α+1,β
m

)

wn+(α+1) +
(

∂ν
x l

α+1,β
k−1 , ∂ν

x l
α+1,β
m−1

)

wn+(α+1)

]

=
β2

2

[

aα+1,β
n

(

lα+1,β
k , lα+1,β

m

)

+ aα+1,β
n

(

lα+1,β
k−1 , lα+1,β

m−1

)]

.

To complete the proof of (2.23), we proceed by induction on n. By (2.25) we get

aα,β1

(

lα,βk , lα,βm

)

=
β2

2

[

β−(α+1)−1γα+1
k,0 + β−(α+1)−1γα+1

k−1,0

]

δk,m =
β−α

2

[

γα+1
k,0 + γα+1

k−1,0

]

δk,m, (2.26)

if either (a). α + 1 ∈ {−1,−2,−3, · · · } and k,m ≥ −α; or (b). α + 1 ∈ (−1,+∞) and k,m ≥ 0.

This exactly gives (2.23) for k,m ≥ χ1(α) with n = 1.

Assume that the result (2.23) for k,m ≥ χn(α) with n = p holds. We now verify the result with

n = p+ 1. Clearly, by (2.25) we have

aα,βp+1

(

lα,βk , lα,βm

)

=
β2

2

[

βp−(α+1)−1γα+1
k,p + βp−(α+1)−1γα+1

k−1,p

]

δk,m =
βp−α

2

[

γα+1
k,p + γα+1

k−1,p

]

δk,m,

if either (a). α + 1 ∈ {−p− 1,−p− 2, · · · } and k,m ≥ −α; or (b). α + 1 > −p − 1 and k,m ≥ 0.

This statement implies the result (2.23) for k,m ≥ χn+1(α) with n = p+1. This ends the proof. �
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The normalization constants γα
k,n and the eigenvalues λα

k,n are closely related. In effect, for any

α ∈ ℵ, k ≥ χ(α), n ∈ N0, we get that

γα
k,n

(2.23)
= βα+1−naα,βn (lα,βk , lα,βk )

(2.21)
= βα+1−n

n
∑

ν=0

(

n

ν

)

β2n−2ν

22n−2ν

(

∂ν
x l

α,β
k , ∂ν

x l
α,β
k

)

wα+n

=βα+1−n
n
∑

ν=0

(−1)ν
(

n

ν

)

β2n−2ν

22n−2ν

(

∂ν
x

[

wα+n∂ν
x l

α,β
k

]

, lα,βk

)

(2.19)
= βα+1−n β

n

2n
λα
k,n

(

lα,βk , lα,βk

)

wα

(2.22)
=

1

2n
λα
k,nγ

α
k ,

(2.27)

where the third inequality sign is obtained by integration by parts combined with (2.13).

Moreover, for sufficiently large k, an induction procedure starting with (2.20) reveals

λα
k,n = (2k + α+ 1)n +O(kn−2), (2.28)

which implies

γα
k,n

γα
k,n+1

=
2

2k + α+ 1
+O(k−3). (2.29)

The following eigenvalues λ−n
k,n and normalization constants γ−n

k,n are of our particular interest,

λ0
k,0 = 1, λ−n

k,n = 2n(k − n+ 1)n, k, n ∈ N0, (2.30)

γ0
k,0 = 1, γ−n

k,n =
1

2n

min(k,n)
∑

ν=0

(

n

ν

)

, k, n ∈ N0. (2.31)

3. Fully diagonalized spectral methods

In this section, we propose the fully diagonalized spectral methods using generalized Laguerre

functions for solving differential equations on the half line. The main idea is to find a system of

Sobolev orthogonal functions [8, 21] with respect to the coercive bilinear form arising from differential

equation, such that both the exact solution and the approximate solution can be explicitly expressed

as a Fourier series in the Sobolev orthogonal functions. Although we only consider in this section non-

homogenous Robin/Drichlet boundary value problems of a second order equation, one can extend

the fully diagonalized spectral methods for solving partial differential equations of an arbitrary high

order.

3.1. Robin boundary value problems. Consider the second order elliptic boundary value prob-

lem:






−u′′(x) + γu(x) = f(x), γ ≥ 0, x ∈ Λ,

−u′(0) + µu(0) = η, lim
x→+∞

u(x) = 0, µ ≥ 0.
(3.1)

A weak formulation of (3.1) is to find u ∈ H1(Λ) such that

Aγ,µ(u, v) := µu(0)v(0) + (u′, v′) + γ(u, v) = (f, v) + η v(0), ∀v ∈ H1(Λ). (3.2)

The Lax-Milgram lemma guarantees a unique solution to (3.2) if f ∈ (H1(Λ))′.

Let

Xβ
N := {e− 1

2βxp(x) : p ∈ PN} = {l−1,β
k : 0 ≤ k ≤ N}.

The generalized Laguerre spectral scheme for (3.1) is to find uN ∈ Xβ
N , such that

Aγ,µ(uN , vN ) = (f, vN ) + ηvN (0), ∀vN ∈ Xβ
N . (3.3)
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For an efficient approximation scheme, one usually chooses the generalized Laguerre functions

{l−1,β
k (x)}0≤k≤N as the basis functions for problem (3.3). However, we are eager for an ideal approx-

imation scheme whose (total) stiff matrix, in analogue to the Fourier spectral method for periodic

problem, is diagonal. Obviously, the utilization of the basis functions {l−1,β
k (x)}0≤k≤N leads to a

tridiagonal algebraic system. To this end, we shall construct new basis functions {Rβ
k (x)}0≤k≤N

which are mutually orthogonal with respect to the Sobolev inner product Aγ,µ(·, ·) instead of

a−1,β
1 (·, ·) defined in Theorem 2.1.

Lemma 3.1. Let Rβ
k ∈ Xβ

k , k ∈ N0 be the Sobolev orthogonal Laguerre functions such that Rβ
k −

l−1,β
k ∈ Xβ

k−1 and

Aγ,µ(Rβ
k ,Rβ

m) = ρkδk,m, k,m ∈ N0. (3.4)

Then Rβ
k (x), k ∈ N0 satisfy the following recurrence relation,

Rβ
0 (x) = l−1,β

0 (x), Rβ
k (x) = l−1,β

k (x) − dk−1Rβ
k−1(x), ∀ k ≥ 1, (3.5)

where ρ0 = µ+
β

4
+

γ

β
and

dk−1 =
β

4ρk−1
− γ

βρk−1
, ρk = −d2k−1ρk−1 +

β

2
+

2γ

β
, k ≥ 1.

Proof. By the orthogonality assumption (3.4) of {Rβ
k},

l−1,β
k (x) = Rβ

k (x) +

k−1
∑

m=0

Aγ,µ(l
−1,β
k ,Rβ

m)

ρm
Rβ

m(x).

Meanwhile, by (3.2) and (2.21), for any k > m ≥ 0,

Aγ,µ(l
−1,β
k ,Rβ

m) = a−1,β
1 (l−1,β

k ,Rβ
m) + µl−1,β

k (0)Rβ
m(0) +

(

γ − β2

4

)

(l−1,β
k ,Rβ

m).

Both the first and the second terms in the righthand side above are zero due to the orthogonality

relation (2.23) of {l−1,β
k } and the homogeneity boundary condition (2.13) for l−1,β

k , k ≥ 1. Further

by (2.15) and the orthogonality relation (2.22) for {l0,βk },

Aγ,µ(l
−1,β
k ,Rβ

m) =
(

γ − β2

4

)

(l−1,β
k ,Rβ

m) =
(

γ − β2

4

)

(l−1,β
k , l−1,β

k−1 )δm,k−1

=
(

γ − β2

4

)

(l0,βk − l0,βk−1, l
0,β
k−1 − l0,βk−2)δm,k−1

=
(

γ − β2

4

)

(−l0,βk−1, l
0,β
k−1)δm,k−1 =

(β

4
− γ

β

)

δm,k−1, k > m ≥ 0,

which, in return, implies

l−1,β
k (x) = Rβ

k (x) + dk−1Rβ
k−1(x), dk−1 =

β

4ρk−1
− γ

βρk−1
, k ≥ 1.

We now turn to the proof of the recurrence identity for ρk, k ≥ 0. Firstly, a direct computation

shows

ρ0 =Aγ,µ(Rβ
0 ,Rβ

0 ) = Aγ,µ(l
−1,β
0 , l−1,β

0 ) = µ+
β

4
+

γ

β
.

Further, for k ≥ 1,

β = a−1,β
1 (l−1,β

k , l−1,β
k ) = Aγ,µ(l

−1,β
k , l−1,β

k ) +
(β2

4
− γ
)

(l−1,β
k , l−1,β

k )
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=Aγ,µ(Rβ
k (x) + dk−1Rβ

k−1(x),R
β
k (x) + dk−1Rβ

k−1(x)) +
(β2

4
− γ
)

(l0,βk − l0,βk−1, l
0,β
k − l0,βk−1)

= ρk + d2k−1ρk−1 +
(β2

4
− γ
) 2

β
,

where we have used (2.23) and (2.24) for the first equality sign, (3.5) and (2.15) for the third equality

sign, and (3.4) and (2.22) for the fourth equality sign. The proof is completed. �

Obviously, Xβ
N = {Rβ

k : 0 ≤ k ≤ N}. Thus the variational forms (3.2) and (3.3) together with

the orthogonality of {Rβ
k} lead to the following main theorem in this subsection.

Theorem 3.1. Let u and uN be the solution of (3.1) and (3.3), respectively. Then both u and uN

have the explicit representations in {Rβ
k},

u(x) =
∞
∑

k=0

ûkRβ
k (x), uN(x) =

N
∑

k=0

ûkRβ
k (x),

ûk =
1

ρk
Aγ,µ(u,Rβ

k ) =
1

ρk

[

(f,Rβ
k ) + ηRβ

k (0)
]

, k ≥ 0.

3.2. Dirichlet boundary value problems. Consider the second order elliptic boundary value

problem:






−u′′(x) + γu(x) = f(x), γ > 0, x ∈ Λ,

u(0) = η, lim
x→+∞

u(x) = 0.
(3.6)

A weak formulation of (3.6) is to find u ∈ H1(Λ) such that u(0) = η and

Aγ(u, v) := (u′, v′) + γ(u, v) = (f, v), ∀v ∈ H1
0 (Λ). (3.7)

Clearly, if f ∈ (H1
0 (Λ))

′, then by Lax-Milgram lemma, (3.7) admits a unique solution.

Let

X0,β
N := {e− 1

2βxp(x) : p(0) = 0 and p ∈ PN} = {l−1,β
k : 1 ≤ k ≤ N}.

The generalized Laguerre spectral scheme for (3.6) is to find uN ∈ Xβ
N , such that uN(0) = η and

Aγ(uN , vN ) = (f, vN ), ∀vN ∈ X0,β
N . (3.8)

To propose a fully diagonal approximation scheme for (3.7) , we need to construct new basis

functions {Sβ
k }1≤k≤N which are mutually orthogonal with respect to the Sobolev inner product

Aγ(·, ·).

Lemma 3.2. Let Sβ
k ∈ X0,β

k , k ≥ 1 be the Sobolev orthogonal Laguerre functions such that Sβ
k −

l−1,β
k ∈ X0,β

k−1 and

Aγ(Sβ
k ,Sβ

m) = ̺kδk,m, k,m ≥ 1. (3.9)

Then we have

Sβ
1 (x) = l−1,β

1 (x), Sβ
k (x) = l−1,β

k (x) − dk−1Sβ
k−1(x), k ≥ 2, (3.10)

where ̺1 =
4γ + β2

2β
and

dk−1 =
β

4̺k−1
− γ

β̺k−1
, ̺k = −d2k−1̺k−1 +

β

2
+

2γ

β
, k ≥ 2.

Proof. The proof is in the same way as Lemma 3.1. We neglect the details. �
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To deal with the non-homogenous boundary condition, we need to supplement Sβ
0 (x) which is

orthogonal to all functions in H1
0 (Λ) with respect to Aγ(·, ·). Suppose

Sβ
0 (x) =

∞
∑

m=0

ŝml−1,β
m (x) with ŝ0 = 1,

such that Sβ
0 (0) = 1. Then by (2.15), (2.23) and (2.22),

0 =Aγ(Sβ
0 , l

−1,β
k ) = aα,β1 (Sβ

0 , l
−1,β
k ) +

(

γ − β2

4

)

(Sβ
0 , l

−1,β
k )

=

∞
∑

m=0

ŝmaα,β1 (l−1,β
m , l−1,β

k ) +
(

γ − β2

4

)

∞
∑

m=0

ŝm
(

l0,βm − l0,βm−1, l
0,β
k − l0,βk−1

)

= βŝk +
(

γ − β2

4

)2ŝk − ŝk−1 − ŝk+1

β

=
(

γ +
β2

4

)2ŝk
β

−
(

γ − β2

4

) ŝk−1 + ŝk+1

β
, k ≥ 1.

The characteristic equation for the above three term recurrence relation reads

(β2 − 4γ
)

z2 + 2
(

4γ + β2
)

z + (β2 − 4γ
)

= 0,

which admits two distinct real roots z± =
2
√
γ ∓ β

2
√
γ ± β

if and only if γ > 0. In this case, all ŝm, m ≥ 0

can be expressed as

ŝm = c+
(2
√
γ − β)m

(2
√
γ + β)m

+ c−
(2
√
γ + β)m

(2
√
γ − β)m

, (3.11)

with the coefficients c± to be determined by ŝ0 = 1 and limm→∞ ŝm = 0. As a result,

c+ = 1, c− = 0, and Sβ
0 (x) =

∞
∑

m=0

(2
√
γ − β)m

(2
√
γ + β)m

l−1,β
m (x).

Also, we need a function Sβ
0,N ∈ Xβ

N which satisfies Sβ
0,N (0) = 1 and is orthogonal to all functions

in X0,β
N with respect to Aγ(·, ·). Let us write

Sβ
0,N (x) =

N
∑

m=0

ŝml−1,β
k (x).

Then {ŝm}0≤m≤N is determined by (3.11) for 1 ≤ m ≤ N together with the endpoint values ŝ0 = 1

and ŝN+1 = 0. Solving the system for c±we finally have

c+ =
(2
√
γ + β)2N+2

(2
√
γ + β)2N+2 − (2

√
γ − β)2N+2

, c− = − (2
√
γ − β)2N+2

(2
√
γ + β)2N+2 − (2

√
γ − β)2N+2

,

Sβ
0,N (x) =

N
∑

m=0

(2
√
γ + β)2N+2−m(2

√
γ − β)m − (2

√
γ − β)2N+2−m(2

√
γ + β)m

(2
√
γ + β)2N+2 − (2

√
γ − β)2N+2

l−1,β
k (x).

Theorem 3.2. Let u and uN be the solution to (3.6) and (3.8), respectively. Then both u and uN

have the explicit representations in {Sβ
k },

u(x) = ηSβ
0 (x) +

∞
∑

k=1

ûkSβ
k (x), uN (x) = ηSβ

0,N (x) +

N
∑

k=1

ûkSβ
k (x),

ûk =
1

̺k
Aγ(u,Sβ

k ) =
(f,Sβ

m)

̺m
, k ≥ 1.
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4. Convergence analysis

In this section, we shall derive the optimal error estimate for the spectral methods using gener-

alized Laguerre functions. To this end, we first conduct some numerical analysis on the orthogonal

projections.

4.1. Orthogonal projections. Let r,N ∈ N0, α > −r − 1 and β > 0. Define the orthogonal

projection πα,β
r,N : Hr

wα+r(Λ) 7→ Xβ
N such that

aα,βr (u− πα,β
r,Nu, v) = 0, v ∈ Xβ

N . (4.1)

In view of the orthogonality relation (2.23), πα,β
r,Nu is a truncated Fourier series of u in {lα,βk },

πα,β
r,Nu(x) =

N
∑

k=0

ûkl
α,β
k (x), u(x) =

∞
∑

k=0

ûkl
α,β
k (x), ûk =

aα,βr (u, lα,βk )

aα,βr (lα,βk , lα,βk )
. (4.2)

In return, one obtains that, for any nonnegative integers N and s with N, s > −α− 1,

aα,βs (u− πα,β
r,Nu, v) = 0, v ∈ Xβ

N ,

which states that πα,β
r,N = πα,β

s,N for all admissible s, r and N . For this reason, we shall omit the

subscript r and simplify write πα,β
N = πα,β

r,N .

Besides, (2.12) clearly states ∂ℓ
xl

−n,β
k (0) = 0, ℓ = 0, 1, . . . , n − 1 for any k ≥ n ≥ 1. Thus for

N ≥ n, π−n,β
N u preserves the endpoint values of u up to the (n− 1)-th order derivative, i.e.,

∂ℓ
xπ

−n,β
N u(0) = ∂ℓ

xu(0), ℓ = 0, 1, . . . , n− 1. (4.3)

In other words, u− π−n,β
N u ∈ Hn

0 (Λ) for any u ∈ Hn(Λ) if N ≥ n.

To measure the error between u and πα,β
N u, we introduce the equivalent norm in Hr

wα+r(Λ) for

r ∈ N0 and α ∈ R,

‖u‖r,α,β =
[

aα,βr (u, u)
]1/2

=
[

r
∑

ν=0

(

r

ν

)

β2r−2ν

22r−2ν

(

∂ν
xu, ∂

ν
xu
)

wα+r

]1/2

.

Theorem 4.1. Let r ∈ N0, α > −r − 1 and β > 0. Then for any function u ∈ Hr
wα+r(Λ) and any

nonnegative integers N, s > −α− 1,

‖u− πα,β
N u‖s,α,β . (βN)

s−r
2 ‖u− πα,β

N u‖r,α,β . (βN)
s−r
2 ‖u‖r,α,β, r ≥ s, (4.4)

where the implicit constants c = c(α, r) is independent of β, N , s and u.

Proof. By (4.2) and the orthogonality (2.23),

‖u− πα,β
N u‖2s,α,β =

∞
∑

k=N+1

βs−α−1γα
k,sû

2
k = βs−r

∞
∑

k=N+1

(

γα
k,s

γα
k,r

)

βr−α−1γα
k,rû

2
k.

By (2.29), one reveals that

γα
k,s

γα
k,r

.
2r−s

(2k + α+ 1)r−s
.

1

N r−s
, k ≥ N + 1, r ≥ s.

As a result,

‖u−πα,β
N u‖2s,α,β . (βN)s−r

∞
∑

k=N+1

βr−α−1γα
k,rû

2
k

= (βN)s−r‖u− πα,β
N u‖2r,α,β ≤ (βN)s−r‖u‖2r,α,β,
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which leads to (4.4). �

4.2. Convergence analysis. We first give the error estimate of the generalized Laguerre spectral

method (3.8) for the non-homogenous Dirichlet boundary value problem (3.6).

Theorem 4.2. Let u and uN be the solutions to (3.6) and (3.8), respectively. If u ∈ Hr
wr−1(Λ) and

integer r ≥ 1, then for sufficiently large N ,

‖(u− uN )′‖2 + γ‖u− uN‖2 .
(

1 +
4γ

β2

)

(βN)1−r‖u‖2r,−1,β, (4.5)

and

‖u− uN‖w−1 .
(

1 +
β2

4γ

)(

1 +
2
√
γ

β

)2

(βN)−
r
2 ‖u‖r,−1,β. (4.6)

Proof. We first prove the inequality (4.5). By (3.7), we get

((π−1,β
N u)′, v′N ) + γ(π−1,β

N u, vN ) = (f, vN ) + ((π−1,β
N u− u)′, v′N ) + γ(π−1,β

N u− u, vN ), vN ∈ X0,β
N .

Subtracting the above equation from (3.8) yields

((π−1,β
N u− uN)′, v′N ) + γ(π−1,β

N u− uN , vN ) = ((π−1,β
N u− u)′, v′N ) + γ(π−1,β

N u− u, vN ).

The above with (4.1) and the Cauchy-Schwartz inequality gives that for any real number q,
∣

∣((π−1,β
N u− uN)′, v′N ) + γ(π−1,β

N u− uN , vN )
∣

∣

=
∣

∣(1 + q)((π−1,β
N u− u)′, v′N ) +

4γ + β2q

4
(π−1,β

N u− u, vN )
∣

∣

≤ |1 + q|
∥

∥(π−1,β
N u− u)′

∥

∥

∥

∥v′N
∥

∥+
|4γ + β2q|

4

∥

∥π−1,β
N u− u

∥

∥

∥

∥vN
∥

∥

≤
[

(1 + q)2
∥

∥(π−1,β
N u− u)′

∥

∥

2
+

(4γ + β2q)2

16γ

∥

∥π−1,β
N u− u

∥

∥

2
]1/2

[

‖v′N‖2 + γ‖vN‖2
]1/2

.

Taking vN = uN − π−1,β
N u ∈ X0,β

N , we obtain

‖(uN−π−1,β
N u)′‖2 + γ‖uN − π−1,β

N u‖2 ≤ (1 + q)2
∥

∥(π−1,β
N u− u)′

∥

∥

2
+

(4γ + β2q)2

16γ

∥

∥π−1,β
N u− u

∥

∥

2
.

This, along with the triangle inequality, leads to

‖(u− uN )′‖2 + γ‖u− uN‖2

≤ 2‖(u− π−1,β
N u)′‖2 + 2γ‖u− π−1,β

N u‖2 + 2‖(uN − π−1,β
N u)′‖2 + 2γ‖uN − π−1,β

N u‖2

≤ 2(q2 + 2q + 2)
∥

∥(π−1,β
N u− u)′

∥

∥

2
+

β4q2 + 8β2γq + 32γ2

8γ

∥

∥π−1,β
N u− u

∥

∥

2
.

Now taking q = − 2
√
2γ
β and using (4.4), we obtain

‖(u− uN)′‖2 + γ‖u− uN‖2 ≤
[

2 + 2
(

1− 2
√
2γ
β

)2]
[

∥

∥(π−1,β
N u− u)′

∥

∥

2
+

β2

4

∥

∥π−1,β
N u− u

∥

∥

2
]

.

.
(

1 + 4γ/β2
)

(βN)1−r‖u‖2r,−1,β.

We next verify the inequality (4.6) using a duality argument. Consider the auxiliary problem

− xv′′(x) + γxv(x) = u(x)− uN(x) in Λ, v(0) = 0. (4.7)

Its weak form is

(ϕ′, v′) + γ(ϕ, v) = (ϕ, u − uN)w−1 , ∀ϕ ∈ H1
0 (Λ),
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which admits a unique solution v ∈ H1
0 (Λ). Moreover, (4.7) yields

‖u− uN‖2w−1 = (−xv′′ + γxv,−v′′ + γv) = ‖v′′‖2w + γ2‖v‖2w + 2γ‖v′‖2w = ‖v‖22,−1,2
√
γ , (4.8)

where the second equality sign is derived by integration by parts. Further, a direct computation

leads to

‖v‖2,−1,β ≤
(

1 +
β2

4γ

)

‖v‖2,−1,2
√
γ . (4.9)

Hence, taking ϕ = u− uN and using the Cauchy-Schwartz inequality, we have

‖u− uN‖2w−1 = (u − uN , u− uN )w−1 = ((u− uN )′, v′) + γ(u− uN , v)

(3.8)
= ((u− uN )′, (v − π−1,β

N v)′) + γ(u− uN , v − π−1,β
N v)

≤
[

‖(u− uN )′‖2 + 4γ2

β2
‖u− uN‖2

]
1
2
[

‖(v − π−1,β
N v)′‖2 + β2

4
‖v − π−1,β

N v‖2
]

1
2

(4.4)

. (βN)−1/2‖v‖2,−1,β

[

‖(u− uN )′‖2 + 4γ2

β2
‖u− uN‖2

]
1
2

(4.10)

(4.9)

.
(

1 +
β2

4γ

)

(βN)−1/2‖v‖2,−1,2
√
γ ×

(

1 +
2
√
γ

β

)[

‖(u− uN)′‖2 + γ‖u− uN‖2
]

1
2

(4.8)

.
(

1 +
β2

4γ

)

(βN)−1/2‖u− uN‖w−1 ×
(

1 +
2
√
γ

β

)2

(βN)1/2−r/2‖u‖r,−1,β

(4.5)

.
(

1 +
β2

4γ

)(

1 +
2
√
γ

β

)2

(βN)−
r
2 ‖u− uN‖w−1‖u‖r,−1,β,

which ends the proof of (4.6). �

Next, we present the main theorem on the generalized Laguerre spectral method for the Robin

boundary value problem (3.1).

Theorem 4.3. Let u and uN be the solutions to (3.1) and (3.3), respectively. If u ∈ Hr
wr−1(Λ) and

integer r ≥ 1, then for sufficiently large N ,

µ
∣

∣u(0)− uN (0)
∣

∣

2
+ ‖(u− uN )′‖2 + γ‖u− uN‖2 .

(

1 +
4γ

β2

)

(βN)1−r‖u‖2r,−1,β, (4.11)

and

‖u− uN‖(1+w)−1 .
(

1 +
1√
2µ

)(

1 +
β2

4γ

)(

1 +
2
√
γ

β

)2

(βN)−
r
2 ‖u‖r,−1,β. (4.12)

Proof. By (4.1) and (3.2),

µπ−1,β
N u(0)vN (0) + ((π−1,β

N u)′, v′N ) + γ(π−1,β
N u, vN )

= µu(0)vN (0) + (u′, v′N ) + γ(u, vN ) + ((π−1,β
N u− u)′, v′N ) + γ(π−1,β

N u− u, vN)

= (f, vN ) + ηvN (0) + ((π−1,β
N u− u)′, v′N ) + γ(π−1,β

N u− u, vN ), vN ∈ Xβ
N .

Substracting the above equation by (3.3) yields

µ(π−1,β
N u(0)− uN(0))vN (0) + ((π−1,β

N u− uN)′, v′N ) + γ(π−1,β
N u− uN , vN )

= ((π−1,β
N u− u)′, v′N ) + γ(π−1,β

N u− u, vN ).

Then a similar argument as in the proof of (4.5) gives (4.11).
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We next verify the inequality (4.12) using a duality argument. For any g ∈ L2
w−1+w−2(Λ), we

consider the auxiliary problem

− xv′′(x) + γxv(x) = g(x) in Λ, −v′(0) + µv(0) = 0. (4.13)

Its weak form is

µϕ(0)v(0) + (ϕ′, v′) + γ(ϕ, v) = (ϕ, g)w−1 , ∀ϕ ∈ H1(Λ),

which admits a unique solution v ∈ H1(Λ). Taking ϕ = u− uN , we have

µ(u(0)− uN (0))v(0) + (u′ − u′
N , v′) + γ(u− uN , v) = (u − uN , g)w−1 . (4.14)

Moreover, by (3.2) and (3.3) we get

µ(u(0)− uN (0))vN (0) + (u′ − u′
N , v′N ) + γ(u− uN , vN ) = 0, ∀vN ∈ Xβ

N . (4.15)

Let vN = π−1,β
N v in (4.15). Then by (4.14), (4.15) and (4.3) we deduce

((u − uN)′, (v − π−1,β
N v)′) + γ(u− uN , v − π−1,β

N v) = (u− uN , g)w−1 . (4.16)

Further by integration by parts, (4.13) yields

‖g‖2w−2 = (−v′′ + γv,−v′′ + γv) = ‖v′′‖2 + γ2‖v‖2 + 2γ‖v′‖2 + 2γµv2(0), (4.17)

and

‖g‖2w−1 = (−xv′′ + γxv,−v′′ + γv) = ‖v′′‖2w + γ2‖v‖2w + 2γ‖v′‖2w − γv2(0). (4.18)

Hence

‖v‖22,−1,2
√
γ = ‖v′′‖2w + γ2‖v‖2w + 2γ‖v′‖2w ≤ ‖g‖2w−1 +

1

2µ
‖g‖2w−2 ≤ (1 +

1

2µ
)‖g‖2w−1+w−2 . (4.19)

Thus, a similar argument as (4.10) gives

|(u− uN , g)w−1 | (4.16)= |((u − uN)′, (v − π−1,β
N v)′) + γ(u− uN , v − π−1,β

N v)|
(4.10)

.
(

1 +
β2

4γ

)

(βN)−1/2‖v‖2,−1,2
√
γ ×

(

1 +
2
√
γ

β

)[

‖(u− uN)′‖2 + γ‖u− uN‖2
]

1
2

(4.19)

.
(

1 +
1√
2µ

)(

1 +
β2

4γ

)

(βN)−1/2‖g‖w−1+w−2 ×
(

1 +
2
√
γ

β

)2

(βN)1/2−r/2‖u‖r,−1,β

.
(

1 +
1√
2µ

)(

1 +
β2

4γ

)(

1 +
2
√
γ

β

)2

(βN)−
r
2 ‖g‖w−1+w−2‖u‖r,−1,β.

Finally, we obtain

‖u− uN‖(1+w)−1 = ‖ x

1 + x
(u− uN)‖w−1+w−2 = sup

g∈L2
w−1+w−2(Λ), g 6=0

|( x
1+x(u − uN), g)w−1+w−2 |

‖g‖w−1+w−2

= sup
g∈L2

w−1+w−2 (Λ), g 6=0

|(u− uN , g)w−1 |
‖g‖w−1+w−2

.
(

1 +
1√
2µ

)(

1 +
β2

4γ

)(

1 +
2
√
γ

β

)2

(βN)−
r
2 ‖u‖r,−1,β,

which ends the proof of (4.12). �

5. Numerical experiments

In this section, we examine the effectiveness and the accuracy of the fully diagonalized Laguerre

spectral method for solving second order elliptic equations on the half line. The righthand terms

{(f,Rβ
k )}Nk=0 or {(f,Sβ

k )}Nk=1, as well as the discrete errors, are evaluated through the Laguerre-

Gauss quadrature with 2N + 1 nodes (cf. [30]).
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5.1. Dirichlet boundary value problems. We first examine the fully diagonalized Laguerre

spectral method for the Dirichlet boundary value problem (3.6). We take γ = 1, η = 1 in (3.6) and

consider the following three cases of the smooth solutions with different decay properties.

• u(x) = e−x(sin(2x)+η), which is exponential decay with oscillation. In Figures 5.1, 5.2 and

5.3, we plot the log10 of the discrete L2-, H1- and L2
w−1-errors vs. N with various values of

β. Clearly, the approximate solutions converge at exponential rates. We also see that for

fixed N , the scheme with β = 4 produces better numerical results than that with β = 1, 2.

However, the choice of the optimal scaling factor β for a given differential equation is still

an open problem. Generally speaking, the choice of β depends on the asymptotic behavior

of solutions.

• u(x) = (x + η)(1 + x)−h with h > 1, which is algebraic decay. In Figures 5.4, 5.5 and 5.6,

we plot the log10 of the discrete L2-, H1- and L2
w−1-errors vs. log10(βN) with fixed β = 4

and various values of h. They show that the faster the exact solution decays, the smaller

the numerical errors would be. Clearly,

‖(x+ η)(1 + x)−h‖r,−1,β < ∞, ∀0 ≤ r < 2h− 2.

According to Theorem 4.2, the expected L2- andH1-errors can be bounded by c(βN)3/2−h+ε

for any ε > 0, and the expected L2
w−1-error can be bounded by c(βN)1−h+ε for any ε > 0.

The observed convergence rates plotted in Figures 5.4, 5.5 and 5.6 agree well with the

theoretical results.

• u(x) = (sin(2x) + η)(1 + x)−h, which is algebraic decay with oscillation. In Figures 5.7, 5.8

and 5.9, we plot the log10 of the discrete L2-, H1- and L2
w−1-errors vs. log10(βN) with fixed

β = 4 and various values of h. Since

‖(sin(2x) + η)(1 + x)−h‖r,−1,β < ∞, ∀0 ≤ r < 2h,

the expected L2-, H1- (resp. L2
w−1-) errors given by Theorem 4.2 can be bounded by

c(βN)1/2−h+ε (resp. c(βN)−h+ε) for any ε > 0. The observed convergence rates plotted in

Figures 5.7, 5.8 and 5.9 also agree well with the theoretical results.
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Figure 5.1: L2-errors.
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Figure 5.2: H1-errors.

5.2. Robin boundary value problems. We take µ = 1, γ = 1 and η = 0 for the Robin boundary

value problem (3.1) and consider two examples with different decay properties for the exact solutions.
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Figure 5.3: L2
w

−1 -errors.
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Figure 5.4: L2-errors with β = 4.
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Figure 5.5: H1-errors with β = 4.
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Figure 5.6: L2
w

−1 -errors with β = 4.
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Figure 5.7: L2-errors with β = 4.
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Figure 5.8: H1-errors with β = 4.
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Figure 5.9: L2
w

−1 -errors with β = 4.
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Figure 5.10: L2-errors.

• u(x) = e−x(sin(2x) + cos(2x)), which is exponential decay with oscillation. In Figures 5.10,

5.11 and 5.12, we plot the log10 of the discrete L2-, H1- and L2
(1+w)−1-errors vs. N with

various values of β. Clearly, the approximate solutions converge at exponential rates.

• u(x) = (sin(2x) + cos(2x))(h + x)−h, which is algebraic decay with oscillation. In Figures

5.13, 5.14 and 5.15, we plot the log10 of the discrete L2-, H1- and L2
(1+w)−1-errors vs.

log10(βN) with fixed β = 4 and various values of h. Since

‖(sin(2x) + cos(2x))(h+ x)−h‖r,−1,β < ∞, ∀0 ≤ r < 2h,

the expected L2- and H1- (resp. L2
(1+w)−1-) errors given by Theorem 4.3 can be bounded

by c(βN)1/2−h+ε (resp. c(βN)−h+ε) for any ε > 0. Again, the observed convergence rates

plotted in Figures 5.13, 5.14 and 5.15 agree well with the theoretical results.
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Figure 5.11: H1-errors.
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Figure 5.12: L2
(1+w)−1 -errors.

5.3. On the condition numbers. To demonstrate the essential superiority of our diagonalized

Laguerre spectral method to the classic Laguerre methods, we finally examine the issue on condition

numbers for the resulting algebraic systems. The diagonalized Laguerre spectral method use the

Sobolev-orthogonal Laguerre functions {Sβ
k (x)/

√
̺k}Nk=1 and {Rβ

k (x)/
√
ρk}Nk=0 as the basis func-

tions for (3.8) and (3.3), respectively. All the condition numbers of the corresponding total stiff
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Figure 5.13: L2-errors with β = 4.

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6
−10

−9

−8

−7

−6

−5

−4

−3

log
10

(βN)

lo
g 10

(H
1 −

E
rr

or
s)

 

 

h=4
h=5
h=6

slope: −4.5

slope: −3.5

slope: −5.5

Figure 5.14: H1-errors with β = 4.
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Figure 5.15: L2
(1+w)−1 -errors with β = 4.

matrices are equal to 1. While in the classical Laguerre spectral method, the basis functions for

(3.8) and (3.3) are chosen as {xl0,βk (x)}N−1
k=0 and {l0,βk (x)}Nk=0, respectively. The corresponding total

stiff matrices have off-diagonal entries.

In Table 5.1 below, we list the condition numbers of the total stiff matrices of the classical

Laguerre spectral method for (3.6) with γ = 1 versus various N and β. The condition numbers of

the classical Laguerre spectral method for (3.1) with γ = 1 and µ = 1 are tabulated in Table 5.2.

We note that the condition numbers of the resulting systems increase asymptotically as O(N2).
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