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A WIREBASKET PRECONDITIONER FOR THE

MORTAR BOUNDARY ELEMENT METHOD

THOMAS FÜHRER AND NORBERT HEUER

Abstract. We present and analyze a preconditioner of the additive Schwarz type for the
mortar boundary element method. As a basic splitting, on each subdomain we separate
the degrees of freedom related to its boundary from the inner degrees of freedom. The
corresponding wirebasket-type space decomposition is stable up to logarithmic terms. For
the blocks that correspond to the inner degrees of freedom standard preconditioners for the
hypersingular integral operator on open boundaries can be used. For the boundary and
interface parts as well as the Lagrangian multiplier space, simple diagonal preconditioners
are optimal. Our technique applies to quasi-uniform and non-uniform meshes of shape-
regular elements. Numerical experiments on triangular and quadrilateral meshes confirm
theoretical bounds for condition and MINRES iteration numbers.

1. Introduction

In recent years, different variants of the non-conforming boundary element method (BEM)
have been developed. The underlying boundary integral equation is of the first kind with hy-
persingular operator. Non-conformity refers to the presence of discontinuous basis functions.
(Note that, in the case of integral equations of the second kind or first kind equations with
weakly-singular operator, conforming basis functions can be discontinuous.) The first paper
on non-conforming BEM considers a Lagrangian multiplier to deal with the homogeneous
boundary condition on open surfaces [8]. This technique was extended in [9] to domain
decomposition approximations, and is usually referred to as mortar method. In this paper
we study preconditioners for the mortar BEM presented in [9]. These are the first results
on preconditioning techniques for linear systems stemming from non-conforming boundary
elements.

Our preconditioner is based on a decomposition of the approximation space and choosing
locally equivalent bilinear forms. It therefore fits the additive Schwarz framework. There is a
large amount of literature on the additive Schwarz method, mainly aiming at finite element
systems, see, e.g., [18, 20, 24] for overviews. For additive Schwarz techniques applied to
boundary elements dealing with hypersingular operators see, e.g., [11, 23, 26], cf. also [22]
for an overview. In particular, [11] considers a wirebasket-oriented splitting. Graded meshes
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on curves, locally refined and anisotropic meshes (on surfaces) have been analyzed, respec-
tively, in [7, 13, 16]. Other variants, also for hypersingular operators, consider overlapping
decompositions and multiplicative applications, see, e.g., [25, 17].

In this paper we extend the additive Schwarz technique to mortar boundary elements.
In this case, due to the presence of a Lagrangian multiplier, system matrices have a saddle
point structure. This structure can be handled by using standard arguments aiming at the
minimum residual method (MINRES). More precisely, the spectrum of the system matrix
(with or without preconditioner) is being controlled by the spectrum of the main block and
the singular values of the off-diagonal block (arising due to the presence of the Lagrangian
multiplier), see [27]. A second complication due to the non-conformity of the method is that
the bilinear form a(·, ·) representing the hypersingular operator is replaced by the weakly sin-
gular operator acting on surface differential operators (surface curl). There are no standard
preconditioners for this bilinear form. Our strategy is to split the subspace of discontinuous
basis functions X1

h from the rest of the approximation space Xh. The remainder X0
h forms

a subspace of the energy space of the hypersingular operator. It turns out that the bilinear
form a(·, ·) reduces to the standard one of the hypersingular operator when restricted to
X0

h. In this way, standard preconditioners like the ones mentioned previously can be applied
to this block (actually, there are individual blocks associated with each subdomain). Now,
the other subspace X1

h contains all the basis functions associated to interface or boundary
nodes. In domain decomposition terms, it is a wirebasket space and is related with the skele-
ton (or wirebasket) of a coarse mesh which is formed by the subdomains of the underlying
decomposition. In our case, basis functions associated to the boundary of a subdomain Γi

can be decoupled from the other elements of X1
h, they form a subspace Xi,1. It turns out

that the bilinear form a(·, ·) restricted to Xi,1 is spectrally equivalent to a diagonal matrix
(a mass matrix related to the boundary of Γi). In this way, simple diagonal matrices can
be used (for the preconditioner) to reduce the problem of preconditioning the bilinear form
a(·, ·) : Xh ×Xh → R to the standard one of hypersingular operators on each subdomain.
In our numerical examples we will use multilevel diagonal scaling from [7] for these parts.

A priori error analysis for domain-oriented non-conforming boundary elements yields
quasi-optimal error estimates which are perturbed by (poly-) logarithmic terms depending
on the mesh size, see [3, 8, 9]. These perturbations appear due to the non-existence of a well-
defined trace operator in the energy space of hypersingular operators. It is unknown whether
estimates of these perturbations are sharp. Naturally, such logarithmic perturbations also
appear in the analysis of additive Schwarz preconditioners, at least when considering non-
overlapping decompositions. Note that, in our method, we subtract a wirebasket space and
this amounts to trace operations at the boundaries of subdomains. Also in the case of finite
elements, such splitting operations cause logarithmic perturbations, see, e.g., [5]. Even-
tually, our main result considers combinations of simple diagonal and multilevel diagonal
preconditioners and proves that they are optimal up to poly-logarithmic terms. In some
cases, logarithmic perturbations of condition number bounds can be optimized by multiply-
ing terms of the preconditioner by different logarithmic weights, see again, e.g., [5]. In this
paper we consider three different weightings (Cases 1,2,3 ) where Cases 2,3 are optimized to
show a bound O(|log(h)|4) for the condition number of the preconditioned system. Here, h
denotes the minimum of the diameters of all elements. In contrast, for Case 1 (which does
not use logarithmic weights for the parts dealing with the bilinear form a(·, ·)) the theoretical
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bound is O(|log(h)|5), worse than the bounds for Cases 2,3. Our numerical experiments, on
the other hand, indicate that Case 1 is superior to Cases 2,3. This suggests that some of
the theoretical bounds used for the analysis are not sharp, at least in the particular situation
of our numerical examples.

An outline of the remainder of this paper is as follows. In the next section we present the
model problem, recall the definition of some Sobolev norms, and present a mortar discretiza-
tion for the model problem. In Section 3 we recall some results on the MINRES method,
present our subspace decompositions and corresponding preconditioners, and state the main
result (Theorem 9). Proofs are given in Section 3.3. Some numerical experiments are re-
ported in Section 4. They all confirm our theoretical estimates from Theorem 9, though
exhibit smaller logarithmic perturbations than predicted. In particular, we also study the
case of locally refined meshes driven by adaptivity, where preconditioners behave as expected.
Let us note that we do not know of any a posteriori error analysis for mortar boundary el-
ements. The only known results concerning non-conforming BEM consider two-level (or
h− h/2) estimators applied to the Nitsche coupling [4], not the mortar coupling.

Notation. We abbreviate estimates of the form A ≤ C · B with some constant C > 0 by
A . B. In particular, we use this notation if C is independent of the mesh size and the
number of elements. Analogously, we use A & B for A ≥ C · B. If both A . B and A & B
hold true, we use the notation A ≃ B. Moreover, |x| denotes the Euclidean norm for a point
x ∈ R

3.

2. Mortar boundary elements

In this section we briefly recall some results on the mortar boundary element method.

2.1. Model problem and functional analytic setting. Let Γ ⊂ R
2 × {0} denote a

plane open surface with polygonal boundary ∂Γ. For simplicity we refer to Γ as a domain
in R

2.
We recall some definitions of Sobolev spaces. Let S ⊂ R

2 be a bounded subset and define
for 0 < s < 1 the seminorm

|u|2Hs(S) :=

∫

S

∫

S

|u(x)− u(y)|2

|x− y|2(s+1)
dx dy.

Then, Hs(S) is equipped with the norm

‖u‖2Hs(S) := ‖u‖2L2(S) + |u|2Hs(S),

and H̃s(S) is defined as the completion of C∞
0 (S) with respect to the norm

‖u‖2
H̃s(S)

:= |u|2Hs(S) +

∫

S

|u(x)|2

dist(x, ∂S)2s
dx,

where dist(x, ∂S) := inf
y∈∂S

|x − y|. The dual spaces of Hs(S), resp. H̃s(S), are denoted by

H̃−s(S), resp. H−s(S). Additionally, 〈· , ·〉S denotes the L2(S) scalar product, which is

continuously extended to the duality pairing on H̃−s(S)×Hs(S), resp. H−s(S)× H̃s(S).
3



Let n ∈ R
3 denote a normal vector on Γ, e.g., n = (0, 0, 1)T . Define the hypersingular

integral operator (formally) by

Wu(x) := −
∂

∂nx

∫

Γ

u(y)
∂

∂ny

1

|y − x|
dy.

It is well known that this operator extends to a continuous mapping between H̃1/2(Γ) and
H−1/2(Γ).

Our model problem reads as follows: Given f ∈ L2(Γ) we seek for a solution u ∈ H̃1/2(Γ)
such that

〈Wu , v〉Γ = 〈f , v〉Γ ∀v ∈ H̃1/2(Γ).(1)

The usual conforming boundary element method consists in replacing H̃1/2(Γ) by a finite-

dimensional subspace X̃h ⊂ H̃1/2(Γ) and seeking for a solution ũh ∈ X̃h such that

〈Wũh , ṽh〉Γ = 〈f , ṽh〉Γ ∀ṽh ∈ X̃h.

In this paper, we study preconditioners for a non-conforming scheme that is based on a
decomposition of the surface Γ. In the next section we introduce the corresponding subspace
decomposition. The non-conforming method based on this decomposition is called mortar
method and is presented in Section 2.3.

2.2. Subspace decomposition and meshes. Let Γ1, . . . ,ΓN denote a decomposition into
non-intersecting (open) polygonal subdomains giving rise to the coarse mesh

T := {Γ1, . . . ,ΓN} with Γ =
N⋃

j=1

Γj.

Each subdomain Γi is equipped with (a sequence of) regular and quasi-uniform meshes Ti.
The minimum and maximum diameters of elements of the meshes Ti are denoted by hi and
hi, respectively. As in [9] we assume without loss of generality that hi < 1 and set

h := min
i=1,...,N

hi and h := max
i=1,...,N

hi.

Let Ki denote the set of nodes of Ti. We will also need the set of interior nodes K0
i and the

set of nodes on the boundary of Γi, K
1
i := Ki \ K

0
i . For a node zj ∈ Ki we denote by η

(i)
j the

(bi)linear basis function which satisfies η
(i)
j (zk) = δjk for all zk ∈ Ki. Introducing the space

of piecewise (bi)linear functions

Xh,i := {v ∈ C0(Γi) : v =
∑

zj∈Ki

αjη
(i)
j with αj ∈ R}

we define the product spaces

Xh :=
N∏

i=1

Xh,i ⊂ H1/2(T ) :=
N∏

i=1

H1/2(Γi).

We denote the respective degrees of freedom by Ki := #Ki = dim(Xh,i) and K :=
∑N

i=1Ki =
dim(Xh). Note that by definition of Ki, elements of Xh do not necessarily satisfy the homo-
geneous boundary condition on ∂Γ nor continuity across interfaces ∂Γi ∩ ∂Γj .
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Figure 1. Subspace decompositions with non-conforming meshes.

For the mortar BEM, we denote the interface of two neighboring subdomains Γi 6= Γj by
γij := int(Γi ∩ Γj) where “int” refers to the (relative) interior. Also, let diam(S) denote the
diameter of a set S ⊆ R

3. We will need the following assumption.

Assumption 1. Each non-empty interface γij (i, j = 1, . . . , N , i 6= j) consists of an entire
edge of Γi or Γj. If diam(∂Γ ∩ ∂Γi) > 0, then ∂Γ ∩ ∂Γi is a union of edges of Γi.

Figure 1 shows examples of two different subspace decompositions with non-conforming
meshes. Given the skeleton

γ :=
N⋃

i=1

∂Γi,

we infer from Assumption 1 that γ is covered by a set of non-intersecting interface edges and
boundary edges

τ := {γ1, . . . , γL} with γ =

L⋃

ℓ=1

γℓ.

For each interface edge γℓ, let ℓlag ∈ {1, . . . , N} resp. ℓmor ∈ {1, . . . , N} denote the indices
of the subdomains Γℓlag resp. Γℓmor

such that

γℓ = γℓlag,ℓmor
and γℓ is an edge of Γℓlag .

In particular, we set ℓlag := i if γℓ is a boundary edge, i.e., γℓ ⊆ ∂Γi ∩ ∂Γ so that we can
handle the homogeneous boundary conditions and the interface conditions simultaneously.

On each γℓ we introduce a mesh τℓ such that the following assumption is satisfied.

Assumption 2. The mesh τℓ of γℓ is a strict coarsening of Tℓlag |γℓ. In particular, any
element of τℓ covers at least two elements of Tℓlag |γℓ.

Moreover, the diameters of the elements in τℓ and Tℓlag |γℓ are comparable, i.e., there exists
a constant C > 0 such that

C−1 diam(t) ≤ diam(T ) ≤ diam(t) for all t ∈ τℓ and T ∈ Tℓlag |γℓ with T ⊂ t.

The constant C > 0 is independent of ℓ.
5



We also define the discrete spaces on edges,

Yh,ℓ := {ψ ∈ L2(γ) : ψ|t is constant for all t ∈ τℓ}, ℓ = 1, . . . , L,

and the (global) space for the Lagrangian multiplier

Yh :=
L∏

ℓ=1

Yh,ℓ.

Based on the previous definitions of decompositions, meshes, and subspaces, we next intro-
duce the mortar boundary element method.

2.3. Mortar BEM. Let v = (v1, . . . , vN) with sufficiently smooth component functions vj
defined on Γj . We define the piecewise differential operator curlH by

curlHv :=
N∑

i=1

(curlΓi
vi)

0 with curlΓi
vi = (∂yvi(x, y),−∂xvi(x, y), 0)

and (·)0 being the extension by 0 onto Γ.
We need the single layer integral operator

VΦ(x) :=

∫

Γ

Φ(y)

|x− y|
dy,

which extends to a continuous operator, mapping H̃
−1/2

t (Γ) to H
1/2
t (Γ). Here

H
1/2
t (Γ) := {(v1, v2, v3) ∈ (H1/2(Γ))3 : v3 = 0}

and H̃
−1/2

t (Γ) is its dual space. Furthermore, we define the jumps [v] across interface edges
γℓ by

[v]|γℓ :=

{
vℓlag |γℓ if γℓ ⊂ ∂Γ,

vℓlag |γℓ − vℓmor
|γℓ else.

With the definitions of the bilinear forms

â(u, v) := 〈V curlHu , curlHv〉T :=
N∑

i=1

〈V curlHu , curlΓi
v〉Γi

,

b(u, ψ) := 〈[v] , ψ〉τ :=

L∑

ℓ=1

〈[v] , ψ〉γℓ

for all u, v ∈ H1/2+ε(T ) and ψ ∈ L2(γ) for some ε > 0 and the right-hand-side functional

F (v) :=

N∑

i=1

〈f , vi〉Γi
,

we can state the mortar BEM: Find (uh, φh) ∈ Xh × Yh such that

â(uh, vh) + b(vh, φh) = F (vh),

b(uh, ψh) = 0
(2)

for all (vh, ψh) ∈ Xh × Yh. This formulation admits a unique solution.
6



Theorem 1 ([9, Theorem 2.1]). Let Assumptions 1–2 hold true. There exists a unique
solution (uh, φh) ∈ Xh × Yh of (2). Assume that the exact solution u of (1) satisfies u ∈

H̃1/2+r(Γ) for some r ∈ (0, 1/2]. Then, there holds

‖u− uh‖H1/2(T ) . |log(h)|2hr‖u‖H̃1/2+r(Γ).

Remark 2. The work [9] deals with homogeneous boundary conditions on ∂Γ. However,
the analysis can be generalized to the present situation, see [8] for the case of BEM with
Lagrangian multipliers. In particular, [9, Theorem 2.1] holds true if we do not impose ho-
mogeneous boundary conditions in Xh.

We note that the bilinear form â(·, ·) is not elliptic due to the fact that piecewise constant
functions c = (c1, . . . , cN) ∈ Xh with ci ∈ R are in the kernel of curlH(·). Therefore, for our
analysis we will use a simple stabilization of â(·, ·) which is similar to the one that is often
used for hypersingular integral equations on closed surfaces.

Lemma 3. Let 0 6= α ∈ R denote an arbitrary but fixed constant and let ξℓ ∈ Yh denote the
characteristic function on γℓ, i.e., ξℓ|γk = δℓk and define

a(u, v) := â(u, v) + α2
L∑

ℓ=1

b(u, ξℓ)b(v, ξℓ) for all u, v ∈ Xh.(3)

Then, the variational equation (2) is equivalent to: Find (uh, φh) ∈ Xh × Yh such that

a(uh, vh) + b(vh, φh) = F (vh)

b(uh, ψh) = 0
(4)

for all (vh, ψh) ∈ Xh × Yh.
Moreover, for u, v ∈ Xh, there holds

‖v‖2H1/2(T ) . |log(h)|a(v, v) and a(u, v) . |log(h)|2‖u‖H1/2(T )‖v‖H1/2(T ).(5)

The involved constants do not depend on h.

Proof. To see the equivalence, we note that b(uh, ξℓ) = 0 from the second equation of (2)
resp. (4), since ξℓ ∈ Yh. Hence, the additional stabilization terms in the definition of a(·, ·)
always vanish. Note that the solutions (uh, ψh) of (2) and (4) are in fact identical.

The upper bound in (5) follows from the continuity

â(u, v) . |log(h)|2‖u‖H1/2(T )‖v‖H1/2(T )

of â(·, ·) (see [9, Lemma 3.9]) and the continuity

b(u, ψ) . |log(h)|1/2‖u‖H1/2(T )‖ψ‖L2(γ)

of b(·, ·) (see [9, Lemma 3.14]), since

L∑

ℓ=1

b(u, ξℓ)b(v, ξℓ) . |log(h)|‖u‖H1/2(T )‖v‖H1/2(T )

L∑

ℓ=1

‖1‖2L2(γℓ)
.

To derive the lower bound in (5) we note that the analysis from [8] and [9] yields

|v|2H1/2(T ) :=
N∑

i=1

|vi|
2
H1/2(Γi)

. â(v, v) for all v ∈ Xh.(6)

7



Moreover, we apply the following result from [9, Proposition 3.5], which comes from a discrete
Poincaré-Friedrichs inequality for fractional-order Sobolev spaces proved in [10]: There exists
a constant C > 0 such that for all ε ∈ (0, 1/2] and any v ∈ H1/2+ε(T ) with v|∂Γ = 0 there
holds

C−1‖v‖2L2(Γ) ≤ ε−1|v|2H1/2+ε(T ) +
∑

ℓ∈{1,...,L} :
γℓ is interior edge

diam(γℓ)
−1−2ε

(∫

γℓ

[v] ds

)2

.(7)

Let Γ̂ ⊃ Γ denote an extension of Γ with ∂Γ ⊂ Γ̂. Moreover, let T̂ denote a subdomain

decomposition of Γ̂ with T ⊂ T̂ such that the shape regularities of T and T̂ are equivalent.

In particular, T̂ can be chosen such that each boundary edge γℓ ⊂ ∂Γ∩∂Γi is an interior edge

in T̂ . Thus, (7) holds true if we replace Γ, resp. T , with Γ̂, resp. T̂ . For each v ∈ H1/2(T )

we set v̂|T = v and v̂|T̂ \T := 0. Then, v̂ ∈ H1/2(T̂ ) and ‖v̂‖H1/2+ε(T̂ ) = ‖v‖H1/2+ε(T ). We
infer that

‖v‖2L2(Γ) = ‖v̂‖2
L2(Γ̂)

. ε−1|v̂|2
H1/2+ε(T̂ )

+
L∑

ℓ=1

diam(γℓ)
−1−2ε

(∫

γℓ

[v̂] ds

)2

= ε−1|v|2H1/2+ε(T ) +

L∑

ℓ=1

diam(γℓ)
−1−2εb(v, ξℓ)

2

≤ ε−1|v|2H1/2+ε(T ) + C ′α2

L∑

ℓ=1

b(v, ξℓ)
2

(8)

with some constant C ′ > 0 depending on α and the diameters of γℓ but not on ε. Finally,
choosing ε = |log(h)|−1, the inverse estimate

hε|v|H1/2+ε(T ) . |v|H1/2(T )

together with (8) and (6) shows ellipticity of a(·, ·). �

2.4. Discretizations. For real-valued vectors we use bold symbols, e.g., x. Each vector
x ∈ R

K is uniquely associated to a function v ∈ Xh in the following way. Let

{η
(1)
1 , . . . , η

(1)
K1
, η

(2)
1 , . . . , η

(2)
K2
, . . . , η

(N)
1 , . . . , η

(N)
KN

}

denote the basis of Xh. For simplicity we use the notation η1, . . . , ηK for the basis. Then,
x ∈ R

K (with K =
∑N

i=1Ki) corresponds to

v =

N∑

i=1

Ki∑

j=1

xj+
∑i−1

k=1
Kk
η
(i)
j =

K∑

j=1

xjηj .

We define the Galerkin matrix A ∈ R
K×K of a(·, ·) as

Ajk := a(ηk, ηj) for j, k = 1, . . . , K.

Let {χ
(ℓ)
j } denote the basis of Yh,ℓ with χ

(ℓ)
j |tk = δjk for tk ∈ τℓ. Analogously as before,

we write χ1, . . . , χM with M :=
∑L

ℓ=1Mℓ :=
∑L

ℓ=1#Yh,ℓ for the corresponding basis of Yh.
8



Then, each ψ ∈ Yh can be written as

ψ =
M∑

j=1

yjχj for some y ∈ R
M .

We define the matrix B ∈ R
M×K by

Bjk := b(ηk, χj) j = 1, . . . ,M, k = 1, . . . , K.

Denoting the right-hand side vector by f ∈ R
K with fk := F (ηk), the formulation (4) is

equivalent to the matrix-vector equation: Find (x,y)T ∈ R
K+M such that

C

(
x

y

)
:=

(
A BT

B 0

)(
x

y

)
=

(
f

0

)
.

3. Preconditioning

In this section we analyze different wirebasket preconditioners for the mortar BEM con-
sidered in Section 2. First, we recall results on the MINRES method.

3.1. Minimal residual method. Throughout we consider the preconditioned minimal
residual method (MINRES) with inner products 〈x , y〉P := yTPx induced by block-diagonal
preconditioners of the form

P =

(
PA

PB

)
,(9)

where the blocks PA ∈ R
K×K , PB ∈ R

M×M are symmetric and positive definite. (Here
and in the following, empty spaces represent null matrices of appropriate dimensions.) The
preconditioned system then reads

P−1C =

(
P−1

A A P−1
A BT

P−1
B B

)

Furthermore, define the matrix

C̃ :=

(
Ã B̃T

B̃

)
:=

(
P

−1/2
A AP

−1/2
A P

−1/2
A BTP

−1/2
B

P
−1/2
B BP

−1/2
A

)
= P−1/2CP−1/2.

We note that there holds spec(C̃) = spec(P−1C) for the respective spectra. Let

Λmin ≤ Λmax and Σ1 ≤ · · · ≤ Σm(10)

denote, respectively, the extremal eigenvalues of Ã and the nonzero singular values of B̃. Of
course, they are all positive. We also define the condition number

κ(C̃) := max{|λ|; λ ∈ spec(C̃)}/min{|λ|; λ ∈ spec(C̃)}.

The following is a well-established result, see, e.g., [27].
9



Proposition 4. Denote by r(k) := P−1(f − Cx(k)) the residual of the k-th preconditioned
MINRES iteration x(k) with inner product 〈· , ·〉P. Then there holds

‖r(k)‖2P
‖r(0)‖2P

≤ 2

(
κ(C̃)− 1

κ(C̃) + 1

)k

.

so that the number of preconditioned MINRES iterations, required to reduce the initial resid-

ual to a certain percentage, is bounded by O(κ(C̃)).

Bounds for the spectrum of C̃ can be specified in terms of the eigenvalues of Ã and singular

values of B̃.

Proposition 5 ([19, Lemma 2.1]). There holds

spec(P−1C) ⊆[1
2
(Λmin −

√
Λ2

min + 4Σ2
m,

1
2
(Λmax −

√
Λ2

max + 4Σ2
1)]

∪ [Λmin,
1
2
(Λmax +

√
Λ2

max + 4Σ2
m)]

with Λmin, Λmax, Σ1, Σm being the numbers from (10).

3.2. Preconditioner and main results. Our preconditioning technique is based on an
initial decomposition of Xh into wirebasket components related with the coarse mesh T and
the remainder. Then, individual preconditioners are applied to the three spaces of wirebasket
and interior components and the Lagrangian multiplier.

3.2.1. Wirebasket splitting. For the initial decomposition of Xh, we define for each vi ∈ Xh,i

the unique representation

vi = vi,1 + vi,0 with vi,0 ∈ Xi,0 := {w ∈ Xh,i : w|∂Γi
= 0} and vi,1 := vi − vi,0,(11)

and the preconditioning forms dj : Xh ×Xh → R (j = 1, 2, 3) defined by

d1(u, v) :=

N∑

i=1

〈ui,1|∂Γi
, vi,1|∂Γi

〉L2(∂Γi) +

N∑

i=1

〈Wiui,0 , vi,0〉Γi
,(12a)

d2(u, v) :=
N∑

i=1

〈ui,1|∂Γi
, vi,1|∂Γi

〉L2(∂Γi) +
1

|log(h)|2

N∑

i=1

〈Wiui,0 , vi,0〉Γi
,(12b)

d3(u, v) :=

N∑

i=1

|log(h)|〈ui,1|∂Γi
, vi,1|∂Γi

〉L2(∂Γi) +

N∑

i=1

〈Wiui,0 , vi,0〉Γi
.(12c)

Here, Wi is the hypersingular integral operator associated with the subdomain Γi. Note that,
with Vi being the simple-layer integral operator associated with Γi, we have

〈VicurlΓi
vi,0 , curlΓi

vi,0〉Γi
= 〈Wivi,0 , vi,0〉Γi

≃ ‖vi,0‖
2
H̃1/2(Γi)

.

Definition (12) provides, up to logarithmic terms, stable splittings.
10



Lemma 6. For all v ∈ Xh there holds

|log(h)|−3d1(v, v) . a(v, v) . |log(h)|2d1(v, v),

|log(h)|−2d2(v, v) . a(v, v) . |log(h)|2d2(v, v),

|log(h)|−3d3(v, v) . a(v, v) . |log(h)|d3(v, v).

A proof of Lemma 6 is given in Section 3.3.

3.2.2. Preconditioner for A. We now consider a preconditioner for the matrix A that corre-
sponds to the bilinear form a(·, ·) on Xh ×Xh. Having performed the initial decomposition
of Xh into wirebasket and interior components, Lemma 6 and the structure of the bilinear
forms dj defined by (12) show that it suffices to provide preconditioners for the L2(∂Γi)
terms and the terms involving the hypersingular integral operator. We use, respectively, a
simple diagonal preconditioner and an arbitrary preconditioner for the hypersingular integral
operator in the conforming case, see, e.g., [1, 2, 21, 26].

In the following, let PWi
denote such a preconditioner for the hypersingular integral op-

erator Wi with constants λ
(i)
min, λ

(i)
max such that

λ
(i)
minx

TPWi
x ≤ 〈Wivi,0 , vi,0〉Γi

≤ λ(i)maxx
TPWi

x(13)

for all vi,0 ∈ Xi,0 with vi,0 =
∑

zj∈K0
i
xjη

(i)
j . Furthermore, let P∂Γi

denote a preconditioner

with

µ
(i)
miny

TP∂Γi
y ≤ ‖vi,1|∂Γi

‖2L2(∂Γi)
≤ µ(i)

maxy
TP∂Γi

y(14)

for all vi,1 ∈ Xi,1 with vi,1 =
∑

zj∈K1
i
yjη

(i)
j . Define the preconditioner P(i) ∈ R

Ki×Ki for the

i-th subdomain by

P(i) :=





(
P∂Γi

PWi

)
if d1(·, ·) is used,

(
P∂Γi

|log(h)|−2PWi

)
if d2(·, ·) is used,

(
|log(h)|P∂Γi

PWi

)
if d3(·, ·) is used,

and the overall preconditioner PA for the matrix A, corresponding to the bilinear form a(·, ·)
on Xh, by

PA :=



P(1)

. . .

P(N)


 .

For the last two definitions we have assumed an appropriate order of the degrees of freedom in
Xh,i. The logarithmic terms in the definition of P(i) stem from the logarithmic perturbations
in the definition (12) of dj(·, ·). In the remainder of this work we will refer to

“Case j” if dj(·, ·) is used in the definition of PA (j = 1, 2, 3).
Our main result concerning the preconditioning of A is as follows.

11



Theorem 7. Set

λmin := min{λ
(1)
min, µ

(1)
min, . . . , λ

(N)
min, µ

(N)
min} and λmax := max{λ(1)max, µ

(1)
max, . . . , λ

(N)
max, µ

(N)
max}.

Then, there holds for all x ∈ R
K





|log(h)|−3λminx
TPAx . xTAx . |log(h)|2λmaxx

TPAx for Case 1,

|log(h)|−2λminx
TPAx . xTAx . |log(h)|2λmaxx

TPAx for Case 2,

|log(h)|−3λminx
TPAx . xTAx . |log(h)|λmaxx

TPAx for Case 3.

Therefore, the condition number of Ã is bounded by

κ(Ã) . |log(h)|β
λmax

λmin

with β = 5 in Case 1 and β = 4 in Cases 2,3.

Proof. The proof follows directly from Lemma 6 and Assumptions (13), (14) on the precon-
ditioners. �

3.2.3. Final preconditioner for the full matrix C. In order to define the preconditioner P (9)
for the full matrix C we assume that we have a matrix PB ∈ R

M×M such that there exist
numbers σmin, σmax > 0 with

σminy
TPBy ≤ ‖ψ‖2L2(γ) ≤ σmaxy

TPBy(15)

for all ψ =
∑M

m=1 ymχm ∈ Yh. Below, we will select PB to be diagonal with or without
logarithmic scaling.

To provide bounds for the spectrum of C̃ by means of Proposition 5 it remains to bound

the singular values Σ1, . . . ,Σm of the matrix B̃.

Lemma 8. Let 0 < Σ1 ≤ · · · ≤ Σm denote the nonzero singular values of the matrix B̃ and
let λmin, λmax be defined as in Theorem 7. Then,




λminσmin|log(h)|
−2 . Σ2

1 ≤ Σ2
m . λmaxσmax for Case 1,

λminσmin|log(h)|
−1 . Σ2

1 ≤ Σ2
m . λmaxσmax for Case 2,

λminσmin|log(h)|
−2 . Σ2

1 ≤ Σ2
m . λmaxσmax|log(h)|

−1 for Case 3.

A proof of Lemma 8 will be given in Section 3.3.
Now, let M ∈ R

M×M denote the L2(γ) mass matrix, i.e.,

Mjk := 〈χj , χk〉γ for j, k = 1, . . . ,M.

Obviously, M is diagonal and

‖ψ‖2L2(γ) = yTMy for all ψ =
M∑

m=1

ymχm ∈ Yh.

The main result of our paper is the next theorem. Its proof is immediate by combining the
previously established estimates, namely Theorem 7 and Lemma 8, together with the general
results provided by Propositions 4 and 5.

Theorem 9. Let λmin, λmax be defined as in Theorem 7 and let σmin, σmax > 0 be the numbers

from (15). Then the spectrum of the preconditioned matrix has a superset like spec(C̃) ⊆
[−a,−b] ∪ [c, d] with numbers a, b, c, d > 0 that satisfy the following estimates.

12



• Case 1: If PB = |log(h)|−1M, then σmin = σmax = |log(h)| and

λmin/max{λmax, λ
1/2
max}|log(h)|

−3 . b ≤ a . λ1/2max|log(h)|
1/2,

λmin|log(h)|
−3 . c ≤ d . max{λmax, λ

1/2
max}|log(h)|

2.

• Case 2: If PB = |log(h)|−1M, then σmin = σmax = |log(h)| and

λmin/max{λmax, λ
1/2
max}|log(h)|

−2 . b ≤ a . λ1/2max|log(h)|
1/2,

λmin|log(h)|
−2 . c ≤ d . max{λmax, λ

1/2
max}|log(h)|

2.

• Case 3: If PB = M, then σmin = σmax = 1 and

λmin/max{λmax, λ
1/2
max}|log(h)|

−3 . b ≤ a . (λmax)
1/2|log(h)|−1/2,

λmin|log(h)|
−3 . c ≤ d . max{λmax, λ

1/2
max}|log(h)|.

Therefore, the condition number of C̃ is bounded by

κ(C̃) . |log(h)|β max{λ1/2max, λ
2
max}/λmin

with β = 5 in Case 1 and β = 4 in Cases 2,3. Furthermore, the number of preconditioned
MINRES iterations, required to reduce the relative residual to a certain threshold, is bounded
like the condition number in the respective case.

3.3. Proofs and technical details. For the proof of Lemma 6 we need a trace inequality
and an inverse estimate, which are given in the following two lemmas.

Lemma 10 ([8, Lemma 4.3]). Let R ⊂ R
2 be a bounded Lipschitz domain. There exists a

constant C > 0 such that for all ε ∈ (0, 1/2) holds

‖v‖L2(∂R) ≤ Cε−1/2‖v‖H1/2+ε(R) for all v ∈ H1/2+ε(R).

Lemma 11 ([12, Lemma 4]). For a function vi ∈ Xi,h with splitting (11), vi = vi,0 + vi,1,
there holds

‖vi,0‖H̃1/2(Γi)
. |log(hi)|‖vi‖H1/2(Γi), i = 1, . . . , N.

The proof of [12, Lemma 4] uses [5, Lemma 4.5]. An alternative proof of Lemma 11 which
utilizes multilevel norms is given in [14, Theorem 3.6].

Proof of Lemma 6. We start with a proof of the upper bound. Let v = v(0) + v(1) ∈ Xh

with v
(0)
i := vi,0 and v

(1)
i := vi,1. Application of the triangle inequality, boundedness (5) of

the bilinear form a(·, ·), and equivalence 〈V · , ·〉Γ ≃ ‖ · ‖2
H̃

−1/2

t (Γ)
together with the estimate

‖ · ‖
H̃

−1/2

t (Γ)
. ‖ · ‖

H̃
−1/2

t (T )
for fractional-order Sobolev spaces, leads to

a(v, v) . a(v(0), v(0)) + a(v(1), v(1)) . a(v(0), v(0)) + |log(h)|2‖v(1)‖2H1/2(T )

.

N∑

i=1

‖curlΓi
vi,0‖

2

H̃
−1/2

t (Γi)
+ |log(h)|2

N∑

i=1

‖vi,1‖
2
H1/2(Γi)
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Then, 〈Vi· , ·〉Γi
≃ ‖·‖2

H̃
−1/2

t (Γi)
and 〈VicurlΓi

ui,0 , curlΓi
vi,0〉Γi

= 〈Wiui,0 , vi,0〉Γi
for all u, v ∈

Xh show

a(v, v) .

N∑

i=1

〈Wivi,0 , vi,0〉Γi
+ |log(h)|2

N∑

i=1

‖vi,1‖
2
H1/2(Γi)

.

Let Γ̃i denote a closed extension of the subdomain Γi and let T̃i denote an extension of
the mesh Ti such that the shape-regularities of the meshes T̃i and Ti are equivalent. For

zj ∈ K0
i we set η̃

(i)
j := η

(i)
j and for zj ∈ K1

i we define η̃
(i)
j as the (bi-)linear function with

η̃
(i)
j (zk) = δjk for all nodes zk of the mesh T̃i. Hence, η̃

(i)
j |Γi

= η
(i)
j . For an arbitrary function

vi =
∑

zj∈Ki
xjη

(i)
j ∈ Xh,i we define its extension ṽi as

ṽi :=
∑

zj∈Ki

xj η̃
(i)
j ∈ X̃h,i.

By the properties of the H1/2- and H̃1/2-norms, we have

‖vi,1‖
2
H1/2(Γi)

. ‖ṽi,1‖
2
H̃1/2(Γ̃i)

.

Set ωk := supp(η̃
(i)
k ). We note that there exists a constant Ccol > 0 that depends only on the

shape-regularity of the mesh Ti such that

‖ṽi,1‖
2
H̃1/2(Γ̃i)

≤ Ccol

∑

zk∈K
1
i

‖xkη̃
(i)
k ‖2

H̃1/2(ωk)
.

With

‖η̃
(i)
k ‖2

H̃1/2(ωk)
≃ diam(ωk) ≃ ‖η̃

(i)
k |∂Γi

‖2L2(ωk∩∂Γi)
= ‖η

(i)
k |∂Γi

‖2L2(ωk∩∂Γi)

and the locality of the L2-norms we further deduce

‖ṽi,1‖
2
H̃1/2(Γ̃i)

.
∑

zk∈K
1
i

‖xkη̃
(i)
k ‖2

H̃1/2(ωk)
.
∑

zk∈K
1
i

‖xkη
(i)
k |∂Γi

‖2L2(ωk∩∂Γi)
≃ ‖vi,1|∂Γi

‖2L2(∂Γi)
.

Thus, altogether we have

a(v, v) .

N∑

i=1

〈Wivi,0 , vi,0〉Γi
+ |log(h)|2

N∑

i=1

‖vi,1|∂Γi
‖2L2(∂Γi)

,

which proves the upper bounds.
For the lower bounds, we use Lemma 10 with R = Γi and ε = |log(h)|−1 (for h small

enough). Together with an inverse inequality this gives

‖vi,1|∂Γi
‖2L2(∂Γi)

. |log(h)|‖vi‖
2
H1/2(Γi)

.

Using the norm equivalence ‖ · ‖2
H̃1/2(Γi)

≃ 〈Wi· , ·〉Γi
and Lemma 11 shows that

〈Wivi,0 , vi,0〉Γi
≃ ‖vi,0‖

2
H̃1/2(Γi)

. |log(h)|2‖vi‖
2
H1/2(Γi)

.
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Combining the previous relations and summing over i = 1, . . . , N proves

d1(v, v) =
N∑

i=1

〈Wivi,0 , vi,0〉Γi
+

N∑

i=1

‖vi,1|∂Γi
‖2L2(∂Γi)

≤ |log(h)|2‖v‖2H1/2(T ),

d2(v, v) =

N∑

i=1

|log(h)|−2〈Wivi,0 , vi,0〉Γi
+

N∑

i=1

‖vi,1|∂Γi
‖2L2(∂Γi)

≤ |log(h)|‖v‖2H1/2(T ),

d3(v, v) =
N∑

i=1

〈Wivi,0 , vi,0〉Γi
+ |log(h)|

N∑

i=1

‖vi,1|∂Γi
‖2L2(∂Γi)

≤ |log(h)|2‖v‖2H1/2(T ).

Hence, by applying the ellipticity of a(·, ·) from Theorem 1, this shows the lower bounds. �

Proof of Lemma 8. Note that the nonzero singular values of B̃ are given by the square roots

of the eigenvalues of the matrix B̃B̃T , since B̃ has full (row) rank. Furthermore, we note
that the smallest and largest singular values are given, respectively, by the minimum and
maximum of the term

max
y∈RK

b(v, ψ)

‖y‖PA
‖x‖PB

with v =

K∑

k=1

ykηk and ψ =

M∑

m=1

xmχm.

We start with the upper bound. By the Cauchy-Schwarz and triangle inequalities we have

b(v, ψ)2 ≤ 2‖ψ‖2L2(γ)

N∑

i=1

‖vi‖
2
L2(∂Γi)

≤ ‖ψ‖2L2(γ)|log(h)|
Mjdj(v, v)

with M1 =M2 = 0 and M3 = −1. This together with dj(v, v) . λmaxy
TPAy and ‖ψ‖2L2(γ) ≤

σmaxx
TPBx from (15) proves the upper bound.

For the lower bound, we use the proof of Lemma 6 to see that

λminy
TPAy . dj(v, v) . |log(h)|mj‖v‖2H1/2(T )

with m1 = m3 = −2 and m2 = −1. This leads to the estimate

max
y∈RK\{0}

b(v, ψ)

‖y‖PA
‖x‖PB

& (λmin)
1/2|log(h)|−mj/2 max

v∈Xh\{0}

b(v, ψ)

‖v‖H1/2(T )‖x‖PB

.

By using ‖ψ‖2L2(γ) ≥ σminx
TPBx from (15) and the discrete inf-sup condition

sup
06=v∈Xh

b(v, ψ)

‖v‖H1/2(T )

≥ β‖ψ‖L2(γ) for all ψ ∈ Yh

from [9, Lemma 3.12] (with constant β > 0 independent of h) we conclude the lower bound.
�

4. Numerical Examples

In this section we present numerical examples in which we compare the different behaviors
of the preconditioned systems induced by the preconditioning forms d1(·, ·), d2(·, ·), d3(·, ·).
Note that block PA of the preconditioner P is determined by the preconditioning forms
dj(·, ·). For the second block PB we choose, up to a possible logarithmic term, the (diagonal)
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mass matrix M for the Lagrangian multiplier space. We distinguish the following cases (with
corresponding numbers σmin, σmax according to Theorem 9, cf. (15)).

Case 1a) PB = |log(h)|−1M, σmin = σmax = |log(h)|,
Case 1b) PB = M, σmin = σmax = 1,
Case 2) PB = |log(h)|−1M, σmin = σmax = |log(h)|,
Case 3) PB = M, σmin = σmax = 1.

Note that Case 1a, Case 2, Case 3 correspond to the bounds obtained in Theorem 9, whereas,
at least theoretically, we would expect worse bounds for Case 1b. Moreover, we compare the
results to a simple diagonal preconditioner with

(PA)jk = Ajjδjk and (PB)jk = Bjjδjk,

where δjk denotes the Kronecker delta symbol. In the figures and tables below, we refer to
this preconditioner as diag.

Throughout, we use the MINRES algorithm, see Section 3.1, to solve the discrete system.
We stop the algorithm if the relative residual in the k-th step satisfies

‖r(k)‖P
‖r(0)‖P

≤ 10−6.

4.1. Diagonal preconditioner and multilevel diagonal preconditioner. For the
wirebasket component we use a simple diagonal preconditioner. Indeed, it is straightforward
to prove that

‖vi,1|∂Γi
‖2L2(∂Γi)

≃
∑

zj∈K1
i

y2
j‖η

(i)
j ‖2L2(∂Γi)

≃
∑

zj∈K1
i

y2
j diam(ωj),(16)

where vi,1 =
∑

zj∈K1
i
yjη

(i)
j ∈ Xi,1 and diam(ωj) is the diameter of the node patch ωj =

supp(η
(i)
j ) of zj . For the example from Section 4.2, we define the diagonal preconditioner

(P∂Γi
)jk :=

|ωj|
1/2

12
δjk.

According to (16) it is optimal, that is, the numbers from (14) behave like

µ
(i)
min ≃ µ(i)

max ≃ 1, i = 1, . . . , N.(17)

For the example from Section 4.3 we test as preconditioner (for the wirebasket components)
the diagonal of the matrix, i.e., we set

(P∂Γi
)jk := 〈VicurlHη

(i)
k , curlHη

(i)
j 〉Γi

δjk.

Since 〈VicurlHη
(i)
j , curlHη

(i)
j 〉Γi

≃ diam(ωj) ≃ |ωj|
1/2 the constants from (14) satisfy (17) in

this case as well.
It remains to select preconditioners for the matrix blocks that belong to the interior

unknowns, i.e., the ones corresponding to the nodes K0
i , i = 1, . . . , N . As indicated by

(13), it is enough to take for each subdomain a standard preconditioner that works for the
16



hypersingular operator. In the following we use as PWi
a multilevel diagonal preconditioner,

i.e.,

P−1
Wi

:=

Li∑

ℓi=0

TℓiD
−1
ℓi
TT

ℓi
.

More precisely, we consider Ti = Ti,Li
as the finest level of a sequence of meshes Ti,ℓ (ℓ =

0, . . . , Li). Then, Dℓi is the diagonal part of the Galerkin matrix of 〈V curlH(·) , curlH(·)〉Γi

with respect to the nodal basis of Xi,0 on level ℓi and Tℓi is the matrix representation of the
embedding operator which embeds elements of the space Xi,0 on a coarse level ℓi to functions
on the fine level Li. For the examples from Section 4.2, we replace the entries of (Dℓi)jj by

|ωℓi
j |

1/2/12. Here, ωℓi
j is the support of the basis functions of level ℓi associated with node j.

It is known, see, e.g., [1], that these preconditioners are optimal on triangular meshes, i.e.,
the constants from (13) satisfy

λ
(i)
min ≃ λ(i)max ≃ 1(18)

with mesh size independent constants. Such multilevel preconditioners can be extended
to locally refined meshes with assumptions on refinement zones, see, e.g., [1], or by use of
special refinement strategies like Newest Vertex Bisection, cf. [7]. The basic idea is that
smoothing with the diagonal elements is done with respect to the degrees of freedom, where
the associated basis functions have changed.

We remark that the cited results for the multilevel diagonal preconditioners are stated for
triangular meshes only. However, for uniform refinements, the same techniques can be used
to prove optimality on quadrilateral meshes. Finally, note that (17) and (18) imply that the
numbers λmin, λmax from Theorem 7 satisfy

λmin ≃ λmax ≃ 1.

According to Theorem 9 we then expect bounds κ(C̃) = O(|log h|β) with β ≤ 5 in Case
1a and β ≤ 4 in Cases 2,3. A theoretical bound for the condition number in Case 1b
would results in an exponent β > 5 (and is not given here). But our numerical results show
that this preconditioner is as competitive as in Case 1a, and better than in Cases 2 and 3.
Our explanation is that some of the technical bounds used in proofs are not sharp, see the
discussion in the introduction.

4.2. Problem on Z-shaped domain with triangular meshes. We consider the vari-
ational formulation (4) with f = 1 and stabilization parameter α = 0.1 on the Z-shaped
domain Γ from Figure 2. In this case we consider only one subdomain, i.e., T = {Γ}, N = 1.
The stabilization parameter is chosen such that the lower order stabilization terms in the
definition (3) are not the dominating parts in the condition numbers (for large h).

For the definition of the Lagrangian multiplier space Yh, we combine two adjacent bound-
ary edges to one element of the mesh τℓ. Mesh refinement is driven by Newest Vertex Bisec-
tion, see, e.g., [15]. In particular, we note that each triangle T is divided into 4 son elements
T1, . . . , T4, with |Tj | = |T |/4. Moreover, this refinement rule preserves shape-regularity, i.e.

sup
T∈Tℓ

diam(T )2

|T |
. sup

T∈T0

diam(T )2

|T |
,
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Figure 2. Initial triangulation of Z-shaped domain for the example from Section 4.2.
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Figure 3. Condition numbers of the preconditioned systems and number of
iterations in the MINRES algorithm for the example of Section 4.2 and uniform
refinements.

which also holds for adaptive mesh refinements. For details we refer the interested reader
to [15] and references therein. We remark that the initial triangulation does not satisfy
Assumption 2 since, for instance, the boundary edge (−1, 0)×{0}× {0} of T0 contains only
one boundary element. We use a uniform refinement in the first step, which ensures that
Assumption 2 holds true.

Figure 3 shows the condition numbers (left) as well as the numbers of iterations (right)
needed to reduce the relative residual in the MINRES method by 10−6 in the case of uniform
refinements. Additionally, the condition numbers are listed in Table 1.
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step dof h h no prec. 1a 1b 2 3 diag.

1 49 1/2 1/2 25.19 6.09 6.52 8.03 6.44 6.60
2 153 1/4 1/4 26.33 7.97 7.51 9.56 8.31 10.77
3 529 1/8 1/8 46.68 9.70 8.66 27.66 13.50 21.95
4 1953 1/16 1/16 94.46 11.22 9.76 59.18 21.41 45.98
5 7489 1/32 1/32 192.36 12.60 10.77 104.18 30.11 97.20
6 29313 1/64 1/64 392.15 13.88 11.75 162.97 39.24 206.00
7 115969 1/128 1/128 799.48 15.12 12.77 235.40 48.56 436.41

Table 1. Condition numbers of the preconditioned systems for the example
of Section 4.2 and uniform refinements.
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Figure 4. Logarithmic behavior of condition numbers for example of Sec-
tion 4.2 and uniform refinements.

In the following let us refer to Pj as the preconditioner of “Case j” (j ∈ {1a, 1b, 2, 3}). The
numerical results indicate that the preconditioners P1a and P1b are better than the others,
and that P3 is better than P2. In contrast, Theorem 9 predicts better bounds for P2 and
P3. Nevertheless, all the results confirm the theoretical estimates. Indeed, Figure 4 indicates

that κ(C̃) is bounded by O(|log(h)|3) even in Case 2.
In the next example we consider adaptive mesh refinements, where we use a simple ZZ-

type estimator, see, e.g., [6], to mark elements for refinement and additionally refine all
elements that share a boundary edge. We note that this estimator is not analyzed in [6]
for the present (non-conforming) situation, but is heuristically used to obtain adaptively
refined meshes. Condition numbers of the preconditioned systems and numbers of iterations
needed in the MINRES algorithm are plotted in Figure 5. Moreover, the condition numbers
are listed in Table 2. We observe similar results as in the case of uniform refinements. In
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Figure 5. Condition numbers of the preconditioned systems and number
of iterations in the MINRES algorithm for the example of Section 4.2 and
adaptive refinements.

step dof h h no prec. 1a 1b 2 3 diag.

1 49 5.00e-01 1/2 25.19 6.09 6.52 8.03 6.44 6.60
2 98 5.00e-01 1/4 22.51 6.09 5.73 8.17 6.40 6.88
3 202 5.00e-01 1/8 23.05 7.09 6.46 26.00 12.58 8.49
4 444 5.00e-01 1/16 23.74 8.37 7.91 57.98 20.98 11.35
5 939 5.00e-01 1/32 44.60 9.40 8.69 95.06 27.59 14.42
6 1961 3.54e-01 1/64 75.78 10.31 9.42 158.09 38.06 18.36
7 4038 2.50e-01 1/128 107.28 11.21 10.71 245.60 50.67 24.21
8 8289 1.77e-01 1/256 168.65 12.13 11.62 345.67 62.42 30.52
9 16939 1.25e-01 1/512 240.84 13.20 12.46 470.05 75.43 43.72
10 34516 1.25e-01 1/1024 408.58 14.28 13.15 612.52 88.46 57.62
11 70278 8.84e-02 1/2048 755.93 17.34 15.54 882.78 115.87 79.32

Table 2. Condition numbers of the preconditioned systems for the example
of Section 4.2 and adaptive refinements.

particular, our theoretical results are confirmed also for adaptively refined meshes. Again,
the results for the weakest of the domain decomposition preconditioners, P2, indicate that

κ(C̃) . O(|log(h)|3) also in this case, cf. Figure 6.

4.3. Problem with four subdomains and quadrilateral meshes. We consider the
variational formulation (4) with f = 1 and stabilization parameter α = 0.1 on the quadratic
domain Γ := (0, 2)2 × {0} with a decomposition into four subdomains Γ1 = (0, 1)2 × {0},
Γ2 = (1, 2) × (0, 1) × {0}, Γ3 = (0, 1) × (1, 2) × {0}, and Γ4 = (1, 2)2 × {0} sketched in
Figure 7. For the intersections Γ1 ∩ Γ2 and Γ1 ∩ Γ3, we define Γ1 to be the Lagrangian side
and for the intersections Γ4 ∩ Γ2 and Γ4 ∩ Γ3, we define Γ4 to be the Lagrangian side. We
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Figure 6. Logarithmic behavior of condition numbers for example of Sec-
tion 4.2 and adaptive refinements.

define the Lagrangian elements that come from Γ1 and Γ4 as the union of two adjacent edges
that lie in ∂Γi. For the Lagrangian elements that come from Γ2 and Γ3 we take the union of
three adjacent boundary edges.
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Figure 7. Subspace decomposition of Γ = (0, 2)2 × {0} and their initial
meshes for the example from Section 4.3.
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Figure 8. Condition numbers of the preconditioned systems and number
of iterations in the MINRES algorithm for the example of Section 4.3 with
different refinement levels of subdomain meshes.

step dof h1 h2 h3 h4 no prec. 1a 1b 2 3 diag.

1 172 1/4 1/6 1/6 1/4 34.77 13.97 12.94 17.72 13.96 17.43
2 360 1/4 1/12 1/6 1/8 63.62 17.67 15.95 43.41 21.77 27.83
3 948 1/4 1/24 1/12 1/8 194.24 21.10 18.70 85.29 31.43 50.64
4 2804 1/8 1/48 1/12 1/8 446.57 25.27 22.39 156.85 46.10 97.47
5 10532 1/8 1/96 1/24 1/16 1545.48 32.08 28.76 279.10 69.07 204.58
6 39492 1/16 1/192 1/24 1/32 3661.95 40.65 37.04 476.84 101.74 436.13
7 45316 1/32 1/192 1/48 1/64 1948.27 47.65 43.99 572.20 122.29 477.40

Table 3. Condition numbers of the preconditioned systems for the example
of Section 4.3 with different refinement levels of subdomain meshes.

We consider uniform refinements where each element of Tj is divided into four elements.
For the experiment we refine each of the subdomain meshes separately, which leads to differ-
ent mesh sizes h1, h2, h3, h4. Note that for our problem configuration there holds hj = hj .
The results are given in Figure 8 and Table 3. As in Section 4.2 we observe that the pre-
conditioners P1a, P1b corresponding to the preconditioning form d1(·, ·) behave best in terms
of condition numbers and numbers of iterations. The preconditioners P2 and P3 stemming,
respectively, from d2(·, ·) and d3(·, ·) show a stronger dependence on the mesh size. Neverthe-
less, theoretical bounds are confirmed also for this example. In particular, Figure 9 suggests

that κ(C̃) . O(|log(h)|3) for all domain decomposition preconditioners.
Let us also remark that the condition number of the un-preconditioned system gets smaller

from Step 6 to Step 7, see Table 3. The condition number κ(C) is bounded (up to logarithmic

terms) by λ
1/2
max/λmin and this term depends on the ratio h1/2/h. Since h gets smaller and h

stays constant from Step 6 to Step 7 (as we refine all subdomains except Γ2), this explains
the observation.

22



10
3

10
4

10
2

 

 

PSfrag replacements

degrees of freedom

c
o
n
d
it
io

n
n
u
m

b
e
rs

Case 2

Case 3

|log(h)|3

|log(h)|2

Figure 9. Logarithmic behavior of condition numbers for example of Sec-
tion 4.3 with different refinement levels of subdomain meshes.
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