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Abstract
We consider the Bessel functions Jν(z) and Yν(z) for <ν > −1/2 and <z ≥ 0. We

derive a convergent expansion of Jν(z) in terms of the derivatives of (sin z)/z, and a
convergent expansion of Yν(z) in terms of derivatives of (1 − cos z)/z, derivatives of
(1− e−z)/z and Γ(2ν, z). Both expansions hold uniformly in z in any fixed horizontal
strip and are accompanied by error bounds. The accuracy of the approximations is
illustrated with some numerical experiments.
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1 Introduction
The power series expansions of the Bessel function Jν(z) is well known [4, Sec. 2, eq.
(10.2.2)], (

2

z

)ν
Jν(z) =

n−1∑
k=0

(−z2/4)k

k!Γ(ν + k + 1)
+R(J,0)

n (ν, z). (1)

For non integer ν, the power series expansions of the Bessel function Yν(z) follows straightfor-
wardly from this formula and the connection formula Yν(z) = [Jν(z) cos(πν)−J−ν(z)]/ sin(πν)
[4, Sec. 2, eq. (10.2.3)]:(

2

z

)ν
Yν(z) =

1

sin(πν)

n−1∑
k=0

(−z2/4)k

k!

[
cos(πν)

Γ(ν + k + 1)
− (2/z)2ν

Γ(k + 1− ν)

]
+R(Y,0)

n (ν, z). (2)
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For integer ν, the power series expansions of Yν(z) follows from the limiting value of this
formula [4, Sec. 2, eq. (10.2.4)]. The asymptotic expansions of the Bessel function Jν(z) in
terms of inverse powers of z is also well known [4, Sec. 17, eq. (10.17.3)],

√
πz

2
Jν(z) = cos

(
z − νπ

2
− π

4

) n−1∑
k=0

a2k(ν)

(−z2)k
− sin

(
z − νπ

2
− π

4

) n−1∑
k=0

a2k+1(ν)

z(−z2)k
+R(J,∞)

n (ν, z),

(3)
with a0(ν) = 1 and, for k = 1, 2, 3, ...,

ak(ν) =
(4ν2 − 12)(4ν2 − 32) · · · (4ν2 − (2k − 1)2)

k!8k
.

The asymptotic expansions of Yν(z) is similar [4, Sec. 17, eq. (10.17.4)]:

√
πz

2
Yν(z) = sin

(
z − νπ

2
− π

4

) n−1∑
k=0

a2k(ν)

(−z2)k
+ cos

(
z − νπ

2
− π

4

) n−1∑
k=0

a2k+1(ν)

z(−z2)k
+R(Y,∞)

n (ν, z),

(4)
A good property of these expansions is that they are given in terms of elementary func-

tions. On the other hand, they have an inconvenience: they are not uniformly valid for all
values of z; the remainders R(J,0)

n (ν, z) and R(Y,0)
n (ν, z) are unbounded for large values of |z|,

whereas the remainders R(J,∞)
n (ν, z) and R(Y,∞)

n (ν, z) are unbounded for small values of |z|.
In this paper we derive convergent expansions of Jν(z) and Yν(z) in terms of elementary

functions that hold uniformly in z in any fixed horizontal strip. The starting point is the
following Poisson’s integral representation of the Bessel functions [4, Sec. 9, eqs. (10.9.4)
and (10.9.5)], valid for <ν > −1/2:

Jν(z) =
2(z/2)ν√
πΓ(ν + 1/2)

J̄ν(z); J̄ν(z) :=
∫ 1

0
(1− t2)ν−1/2 cos(zt)dt, (5)

Yν(z) =
2(z/2)ν√
πΓ(ν + 1/2)

(Y 1
ν (z)− Y 2

ν (z)); | arg z| < π

2
,

Y 1
ν (z) :=

∫ 1

0
(1− t2)ν−1/2 sin(zt)dt; Y 2

ν (z) :=
∫ ∞
0

e−zt(1 + t2)ν−1/2dt.

(6)

Taking into account the analytic continuation formulas [4, Sec. 11, eqs. (10.11.1), (10.11.2)],

Jν(e
imπz) = eimνπJν(z), m = 0,±1,±2, ...

Yν(e
imπz) = e−imνπYν(z) + 2i sin(mπν) cot(πν)Jν(z),

without loss of generality, we may consider the approximation of these functions only for
<z ≥ 0.

The power series expansion of (1) (and similarly (2)) may be derived from the integral
representation (5) by replacing the cosine in the integrand by its Taylor series expansion

2



at the origin and interchanging series and integral. The Taylor expansion converges for
t ∈ [0, 1], but the convergence is not uniform in |z|. Therefore, the remainders R(J,0)

n (ν, z)
and R(Y,0)

n (ν, z) are not uniformly bounded in |z|.
The asymptotic expansion (3) (and similarly (4)) may be derived from the integral (5) by

using Cauchy’s theorem to transform the integration path into a vertical line in the complex
plane and then applying Watson’s lemma [7, Chap. 1, p. 24, Example 4]:

2
∫ 1

0
(1− t2)ν−1/2 cos(zt)dt =

∫ 1

−1
(1− t2)ν−1/2 cos(zt)dt =

∫ −1+i∞
−1

(1− t2)ν−1/2eiztdt−
∫ 1+i∞

1
(1− t2)ν−1/2eiztdt.

After a straightforward change of variables in the last two integrals we get

2
∫ 1

0
(1− t2)ν−1/2 cos(zt)dt = 22ν [e−i(z−νπ/2−π/4)I−(z) + ei(z−νπ/2−π/4)I+(z)],

with
I±(z) :=

∫ ∞
0

tν−1/2(1± it)ν−1/2e−2ztdt.

The asymptotic expansion (3) is obtained by applying Watson’s lemma to the above integral.
Roughly speaking, Watson’s lemma consists of a replacement of the factor (1±it)ν−1/2 of the
above integrand by its Taylor series at t = 0 and an interchange of series and integral. Now,
the situation with respect to the convergence is worse than in the case of the power series
expansion. The Taylor expansion of (1± it)ν−1/2 is not convergent in the whole integration
interval (0,∞), but only in (0, 1). This translates into the fact that the expansion that we
obtain after interchanging series and integral is not convergent; although it is asymptotic [7,
Chap. 1, p. 24, eq. (5.32)]. As the remainder R(J,∞)

n (ν, z) is unbounded for small |z|, the
expansion (3) is not uniform in |z|. Similarly, the remainder R(Y,∞)

n (ν, z) is unbounded for
small |z| and the expansion (4) is not uniform in |z|.

In this paper we propose a different approach that avoids the lack of uniformity in |z|:
we consider the Taylor expansion at the origin of the factor (1 − t2)ν−1/2 instead of the
factor cos(zt) in (5) or the factor sin(zt) in (6). This Taylor expansion is convergent for t
in the integration interval of the integral (5) and of the first integral (6) and, obviously, it
is independent of z. After the interchange of series and integral, this fact, the independence
of z, translates into a remainder that may be bounded independently of |z|. The same idea,
a Taylor expansion of the factor (1 + t2)ν−1/2 in the second integral of (6) does not work
as it is not convergent in the whole integration interval. Then, we divide appropriately the
integration interval in order to have convergent Taylor expansions of the factor (1 + t2)ν−1/2

in both intervals.
As an illustration of the type of approximations that we are going to obtain (see Theorem

2 below), we derive, for example, the following approximation valid for x > 0:

15π

2x3
J3(x) =

[
3x4 − 140x2 + 360

8x6
+ θ1(x)

]
x sinx+

[
5(x2 − 18)

2x4
+ θ2(x)

]
cosx, (7)

3



with |θ1(x)| < 0.0062 and |θ2(x)| < 0.051.
The paper is organized as follows. In Theorem 1 in the following section we derive the

expansion of Jν(z) for complex z and ν with error bounds. We specialize to real z and
ν in Theorem 2, where we obtain more accurate error bounds. In Section 3 we derive
the expansion of Yν(z) for complex z and ν with error bounds. Section 4 contains some
numerical experiments and a few remarks. Through the paper we use the principal argument
arg z ∈ (−π, π] for any complex number z and assume that <ν > −1/2 and <z ≥ 0. The
formulas derived throughout the paper may be extended to <ν ≤ −1/2 using the recurrence
relations [4, Sec. 6, eq. 10.6.1],

Jν−1(z) + Jν+1(z) =
2ν

z
Jν(z), Yν−1(z) + Yν+1(z) =

2ν

z
Yν(z). (8)

2 A convergent expansion of Jν(z) uniformly valid in z in
any fixed horizontal strip

A convergent expansion of Jν(z) in terms of elementary functions and uniformly valid in z
in any fixed horizontal strip is given in the following theorem.

Theorem 1. For n = 1, 2, 3, ..., the Bessel function Jν(z) may be written in the form:
√
πΓ(ν + 1/2)

2(z/2)ν
Jν(z) = Pn−1(z, ν)

sin z

z
−Qn−1(z, ν) cos z +Rn(z, ν), (9)

where Pn(z, ν) and Qn(z, ν) are the following rational functions:

Pn(z, ν) :=
n∑

m=0

an,m(ν)

(−z2)m
, an,m(ν) :=

n∑
k=m

(1/2− ν)k(2k)!

k!(2(k −m))!
,

Qn(z, ν) :=
n∑

m=1

bn,m(ν)

(−z2)m
, bn,m(ν) :=

n∑
k=m

(1/2− ν)k(2k)!

k!(2(k −m) + 1)!

(10)

and (ν)k is the Pochhammer symbol: (ν)k := Γ(µ + k)/Γ(µ). The functions Pn(z, ν) and
Qn(z, ν) may be computed recursively in the following form:

Pn(z, ν) = Pn−1(z, ν) +
(1/2− ν)n(2n)!

n!(−z2)n
cn(z), P0(z, ν) = 1,

Qn(z, ν) = Qn−1(z, ν) +
(1/2− ν)n(2n)!

n!(−z2)n
sn(z) Q0(z, ν) = 0,

(11)

with

cn(z) :=
n∑
k=0

(−z2)k

(2k)!
, sn(z) :=

n−1∑
k=0

(−z2)k

(2k + 1)!
.
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For n > <ν − 1/2, the remainder Rn(z, ν) is bounded in the form:

|Rn(z, ν)| ≤ 2|(1/2− ν)n|
(n− 1)!(2n− 1)(2<ν + 1)

e|=z| (12)

where =z represents the imaginary part of z and 3F2 is a generalized hypergeometric function
[1, Sec. 2, eq. (16.2.1)]. The remainder Rn(z, ν) behaves as n−<ν−1/2 as n→∞ uniformly
in z in any fixed horizontal strip. For real ν > 1/2 and n ≥ ν − 1/2 we also have

|Rn(z, ν)| ≤ 4|(1/2− ν)n|
(n− 1)!(2ν − 1)|z|

e|=z|. (13)

Proof. Consider the Taylor expansion at the origin of the function (1− t2)ν−1/2:

(1− t2)ν−1/2 =
n−1∑
k=0

(1/2− ν)k
k!

t2k + rn(t, ν), t ∈ [0, 1), (14)

where rn(t, ν) is the Taylor remainder:

rn(t, ν) :=
∞∑
k=n

(1/2− ν)k
k!

t2k, t ∈ [0, 1).

After straightforward manipulations we obtain

rn(t, ν) =
(1/2− ν)nt

2n

n!

∞∑
k=0

(n+ 1/2− ν)k
(n+ 1)k

t2k

=
(1/2− ν)nt

2n

n!
2F1

 n+ 1/2− ν, 1

n+ 1

∣∣∣∣∣∣∣ t2
 , t ∈ [0, 1),

(15)

where 2F1 is the Gauss hypergeometric function [3, Sec. 2, eq. (15.2.1)]. Substituting (14)
into the integral representation of J̄ν(z) given in (5) and interchanging sum and integral we
obtain

J̄ν(z) =
n−1∑
k=0

(1/2− ν)k
k!

Ak(z) +Rn(z, ν), (16)

with

Ak(z) :=
∫ 1

0
t2k cos(zt)dt = (−1)k

d2k

dz2k

(
sin z

z

)
=

(−1)k
(2k)!

z2k+1

sin z
k∑
j=0

(−z2)j

(2j)!
− z cos z

k−1∑
j=0

(−z2)j

(2j + 1)!

 (17)

and
Rn(z, ν) :=

∫ 1

0
rn(t, ν) cos(zt)dt. (18)
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When we introduce (17) into (16) and rearrange terms, we obtain (9)-(10).
It is straightforward to see that, for n = 0, 1, 2, ..., the functions An(z) satisfy the recur-

rence relation:

An+1(z) =
1

z

[
sin z + 2(n+ 1)

cos z

z

]
− 2(n+ 1)(2n+ 1)

z2
An(z), A0(z) =

sin z

z
.

Recurrences (11) follow from this one after straightforward manipulations.
In order to get the bounds (12) and (13) we write, from (18),

|Rn(z, ν)| ≤ e|=z|
∫ 1

0
|rn(t, ν)|dt.

Replacing the hypergeometric function in the second line of (15) by its integral representation
[3, Sec. 6, eq. (15.6.1)],

2F1

 a, b

c

∣∣∣∣∣∣∣ t2
 =

Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
ub−1(1− u)c−b−1(1− t2u)−adu, <c > <b > 0, (19)

taking the bound |(1 − t2u)−a| ≤ (1 − t2u)−<a, and using (19) again, we find that, for
n > <ν − 1/2,

|rn(t, ν)| ≤ |(1/2− ν)n|t2n

n!
2F1

 n+ 1/2−<ν, 1

n+ 1

∣∣∣∣∣∣∣ t2
 , t ∈ [0, 1).

Then,

|Rn(z, ν)| ≤ e|=z|
|(1/2− ν)n|

n!

∫ 1

0
t2n2F1

 n+ 1/2−<ν, 1

n+ 1

∣∣∣∣∣∣∣ t2
 dt =

e|=z|
|(1/2− ν)n|
n!(2n+ 1)

3F2

 n+ 1/2−<ν, 1, n+ 1/2

n+ 1, n+ 3/2

∣∣∣∣∣∣∣ 1
 .

(20)

From [1, Sec. 4, Eq. (16.4.11)] we have that

3F2

 n+ 1/2−<ν, 1, n+ 1/2

n+ 1, n+ 3/2

∣∣∣∣∣∣∣ 1
 =

Γ(n+ 3/2)Γ(1/2 + <ν)

Γ(n+ 1/2)Γ(3/2 + <ν)
3F2

 1, 1/2 + <ν, 1/2

n+ 1, 3/2 + <ν

∣∣∣∣∣∣∣ 1
 .

(21)
Using the following obvious bound valid for e > c ≥ 0 and a, b, d > 0:

3F2

 a, b, c

d, e

∣∣∣∣∣∣∣ 1
 ≤ 2F1

 a, b

d

∣∣∣∣∣∣∣ 1
 , (22)
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and formula [3, Sec. 4(ii), eq. (15.4.20)]

2F1

 a, b

c

∣∣∣∣∣∣∣ 1
 =

Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

, <(c− a− b) > 0, (23)

in the right hand side of (21), and then introducing (21) in (20), we obtain the bound (12).
On the other hand, integrating by parts in (18) we obtain

Rn(z, ν) = rn(1, ν)
sin z

z
− 1

z

∫ 1

0
r′n(t, ν) sin(zt)dt.

It is straightforward to check from (15) that, for real ν and n ≥ ν − 1/2, rn(t, ν)/(1/2− ν)n
and r′n(t, ν)/(1/2− ν)n are positive for t ∈ [0, 1). Then,

Rn(z, ν) ≤ |(1/2− ν)n|
(1/2− ν)n

[
rn(1, ν) +

∫ 1

0
r′n(t, ν)dt

]
e|=z|

|z|
= 2
|(1/2− ν)n|
(1/2− ν)n

rn(1, ν)
e|=z|

|z|
.

Bound (13) follows from the last line of formula (15), the observation that rn(t, ν) is contin-
uous at t = 1 for <ν > 1/2 and (23). •

When z is positive and ν > −1/2 is real, we can derive more accurate error bounds for
the expansion (9) than the ones given in (12) and (13). It is given in Theorem 2. The proof
of that theorem requires the following lemma.

Lemma 1. For x ≥ 0 and a ≥ 1/2,∣∣∣∣∣∣∣1F2

 1

a+ 2, a+ 3/2

∣∣∣∣∣∣∣
−x2

4


∣∣∣∣∣∣∣ ≤ 1 (24)

and, for x ≥ 1 and a ≥ 1,∣∣∣∣∣∣∣1F2

 1

a+ 2, a+ 3/2

∣∣∣∣∣∣∣
−x2

4


∣∣∣∣∣∣∣ ≤ 2(a+ 1)(2a+ 1)

σ(x)

x2
, (25)

with 0 < σ(x) ≤ 2. Numerical experiments suggest that we can replace σ(x) by the most
accurate bound 1 + 1/x.

Proof. From [6, Sec. 9] we have that

Fa(x) := 1F2

 1

a+ 2, a+ 3/2

∣∣∣∣∣∣∣
−x2

4

 =
2(a+ 1)(2a+ 1)

x2a+3/2
S2a+1/2,1/2(x),
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where Sµ,ν(x) is the Lommel’s function [6, Sec. 9, eqs. (11.9.3) and (11.9.4)]. Then, from
[2, eq. (1)], that is valid for x > 0, ν ≥ 0, µ+ ν > −1,

∫ x

0
J(µ−ν+1)/2(t)t

(ν−µ+1)/2

(
1− t2

x2

)(µ+ν−1)/2

dt =
2(ν−µ+1)/2x1−µ

Γ((µ− ν + 1)/2)
Sµ,ν(x),

we find the following integral representation valid for a ≥ 1/2:

Fa(x) =
2a+3/2(a+ 1)Γ(a+ 3/2)

x2

∫ x

0
Ja+1/2(t)t

1/2−a
(

1− t2

x2

)a
dt

= 2a+3/2(a+ 1)Γ
(
a+

3

2

) ∫ 1

0

Ja+1/2(xt)

(xt)a+1/2
t(1− t2)adt.

(26)

Using formula [4, Sec. 4, eq. (10.14.4)]: |x−νJν(x)| ≤ 1/(2νΓ(ν+ 1)), in the integrand in the
second line above, and after some simplifications, we find (24).

Using the formula [4, Sec. 6, eq. (10.6.6)]: (x−νJν(x))′ = −x−νJν+1(x), with ν = a−1/2,
in the integral in the first line of (26), we can integrate by parts to get

Fa(x) =
2a+3/2(a+ 1)Γ(a+ 3/2)

x2

[
21/2−a

Γ(a+ 1/2)
− 2a

∫ 1

0

Ja−1/2(xt)

(xt)a−1/2
t
(
1− t2

)a−1
dt

]
.

Using again the bound x−νJν(x) ≥ −1/(2νΓ(ν + 1)) in the above integrand we get, after
simplifications,

Fa(x) ≤ 21/2−a

Γ(a+ 1/2)
σ(x),

with σ(x) = 2. Numerical experiments suggest that we can replace σ(x) by 1 + 1/x. Intro-
ducing this bound in the first line of (26) we get (25). •

Theorem 2. For ν > −1/2, x ≥ 0 and n ≥ max{1, ν − 1/2},
√
πΓ(ν + 1/2)

2(x/2)ν
Jν(x) =

[
Pn−1(x, ν)

x2
+RP

n (x, ν)

]
x sinx−

[
Qn−1(x, ν) +RQ

n (x, ν)
]

cosx, (27)

where Pn(z, ν) and Qn(z, ν) are the rational functions given in Theorem 1. Write m :=
bν − 1/2c and α := ν − 1/2−m, where the symbol bνc stands for the biggest integer smaller
than or equal to ν. Then, the remainders RP

n (x, ν) and RQ
n (x, ν) are uniformly bounded in

the form:

|RP
n (x, ν)| ≤ (α)m+1(1− α)n−m−1

n!(2n− 1)(2ν + 3)
(28)

and
|RQ

n (x, ν)| ≤ 2(α)m+1(1− α)n−m−1
(n− 1)!(2n− 1)(2ν + 1)

. (29)
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Also, for ν > 3/2 and x ≥ 1, the remainders are bounded in the form:

|RP
n (x, ν)| ≤ 2(α)m+1Γ(n− ν + 1/2)

(2ν − 1)Γ(1− α)(n− 1)!

σ(x)

x2
(30)

and

|RQ
n (x, ν)| ≤ 4(α)m+1Γ(n− ν + 1/2)

(2ν − 3)Γ(1− α)(n− 2)!

σ(x)

x2
, (31)

with 1 +
1

x
≤ σ(x) ≤ 2.

Proof. We use that

n∑
k=0

(−z2)k

(2k)!
= cos z +

(−1)nz2n+2

(2n+ 2)!
1F2

 1

n+ 2, n+ 3/2

∣∣∣∣∣∣∣−
z2

4


and

n−1∑
k=0

(−z2)k

(2k + 1)!
=

sin z

z
− (−1)nz2n

(2n+ 1)!
1F2

 1

n+ 1, n+ 3/2

∣∣∣∣∣∣∣−
z2

4


in the second line of (17). Rearranging terms we find, after straightforward computations,
that J̄ν(x) may be written in the form (27) with

RP
n (x, ν) :=

∞∑
k=n

(1/2− ν)k
k!(2k + 1)(2k + 2)

1F2

 1

k + 2, k + 3/2

∣∣∣∣∣∣∣−
x2

4

 ,

RQ
n (x, ν) := −

∞∑
k=n

(1/2− ν)k
k!(2k + 1)

1F2

 1

k + 1, k + 3/2

∣∣∣∣∣∣∣−
x2

4

 .
We will find bounds for these two series by using Lemma 1 and also the fact that, for
k ≥ m+ 1 (n ≥ ν − 1/2) and α := ν − 1/2−m,

(1/2− ν)k = (−1)m(α)m+1(1− α)k−m−1. (32)

From this identity and bound (24) with a = k or a = k − 1/2 we find that, for n ≥ 1,

|RP
n (x, ν)| ≤ (α)m+1

∞∑
k=n

(1− α)k−m−1
k!(2k + 1)(2k + 2)

=

(α)m+1(1− α)n−m−1
n!(2n+ 1)(2n+ 2)

3F2

 n+ 1/2, n−m− α, 1

n+ 3/2, n+ 2

∣∣∣∣∣∣∣ 1

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and

|RQ
n (x, ν)| ≤ (α)m+1

∞∑
k=n

(1− α)k−m−1
k!(2k + 1)

=

(α)m+1(1− α)n−m−1
n!(2n+ 1)

3F2

 n+ 1/2, n−m− α, 1

n+ 3/2, n+ 1

∣∣∣∣∣∣∣ 1
 .

Bounds (28) and (29) follow from these inequalities, formula [1, Sec. 4, Eq. (16.4.11)],
inequality (22) and formula (23).

From (32) and bound (25) with a = k or a = k − 1/2 we find that

|RP
n (x, ν)| ≤ σ

(α)m+1

x2

∞∑
k=n

(1− α)k−m−1
k!

=
2(α)m+1Γ(n− ν + 1/2)

(2ν − 1)Γ(1− α)(n− 1)!

σ(x)

x2

and

|RQ
n (x, ν)| ≤ 2σ

(α)m+1

x2

∞∑
k=n

(1− α)k−m−1
(k − 1)!

=
4(α)m+1Γ(n− ν + 1/2)

(2ν − 3)Γ(1− α)(n− 2)!

σ(x)

x2
.

•

Formula (7) is a rewriting of formulas (27)-(29) for ν = n = 3. From (28) we find that
RP

3 (x, 3) ≤ 0.00615 and from (29) we find that RQ
3 (x, 3) ≤ 0.0508.

3 A convergent expansion of Yν(z) uniformly valid in z in
any fixed horizontal strip

The expansion of Yν(z) is derived in Theorem 3 below. It is achieved in three steps detailed
in the respective propositions 1, 2 and 3. In Proposition 1 we derive an expansion for Y 1

ν (z);
the derivation is similar to that of J̄ν(z) in Theorem 1, just replacing cos(zt) by sin(zt)
in the proof of that theorem. The expansion of Y 2

ν (z) is a little bit more cumbersome as
the integration interval is unbounded and then, just the use of the Taylor expansion of
(1 + t2)ν−1/2 does not work. To overcome this problem we write Y 2

ν (z) = Fν(z) +Gν(z) with

Fν(z) :=
∫ 1

0
e−zt(1 + t2)ν−1/2dt, Gν(z) :=

∫ ∞
1

e−zt(1 + t2)ν−1/2dt, (33)

and approximate both integrals independently in propositions 2 and 3 respectively.

Proposition 1. For n = 1, 2, 3, ..., the function Y 1
ν (z) may be written in the form:

Y 1
ν (z) = Sn−1(z, ν)

1

z
− Pn−1(z, ν)

cos z

z
−Qn−1(z, ν) sin z +R1

n(z, ν), (34)

10



where Pn(z, ν) and Qn(z, ν) are given in Theorem 1 and Sn(z, ν) is the following rational
function:

Sn(z, ν) :=
n∑
k=0

(1/2− ν)k(2k)!

k!(−z2)k
. (35)

The remainder R1
n(z, ν) has the same bounds (12) and (13) as the remainder Rn(z, ν) in

Theorem 1 and under the same conditions.

Proof. It is identical to the proof of Theorem 1, except for the fact that now, equation (17)
reads

An(z, ν) :=
∫ 1

0
t2n sin(zt)dt = (−1)n

d2n

dz2n

(
1− cos z

z

)
=

(−1)n
(2n)!

z2n+1

[
1

z
− cos z

n∑
k=0

(−z2)k

(2k)!
− z sin z

n−1∑
k=0

(−z2)k

(2k + 1)!

]
and

R1
n(z, ν) :=

∫ 1

0
rn(t, ν) sin(zt)dt.

•

Proposition 2. For n = 1, 2, 3, ..., the function Fν(z) may be written in the form:

Fν(z) = Sn−1(z, ν)
1

z
− Tn−1(z, ν)

e−z

z
+RF

n (z, ν), (36)

where Sn(z, ν) is given in (35) and Tn(z, ν) is the following rational function:

Tn(z, ν) :=
n∑
k=0

(1/2− ν)k(2k)!

k!(−z2)k
e2k(z), ek(z) :=

k∑
j=0

zj

j!
=
ez

k!
Γ(k + 1, z). (37)

For n > <ν − 1/2, the remainder term may be bounded in the following forms:

|RF
n (z, ν)| ≤ |(1/2− ν)n|

(2n+ 1)n!
and |RF

n (z, ν)| ≤ |(1/2− ν)n|
n!<z

(1− e−<z). (38)

Proof. It is similar to the proof of Theorem 1. Consider the Taylor expansion at the origin
of the function (1 + t2)ν−1/2:

(1 + t2)ν−1/2 =
n−1∑
k=0

(1/2− ν)k
k!

(−t2)k + rFn (t, ν), t ∈ [0, 1), (39)

where rFn (t, ν) is the Taylor remainder:

rFn (t, ν) :=
∞∑
k=n

(1/2− ν)k
k!

(−t2)k, t ∈ [0, 1).

11



After straightforward manipulations we obtain

rFn (t, ν) =
(1/2− ν)n(−t2)n

n!
2F1

 n+ 1/2− ν, 1

n+ 1

∣∣∣∣∣∣∣− t2
 , t ∈ [0, 1). (40)

Substituting (39) into (33) and interchanging sum and integral we obtain

Fν(z) =
n−1∑
k=0

(1/2− ν)k
k!

(−1)kCk(z, ν) +RF
n (z, ν), (41)

with

Cn(z, ν) :=
∫ 1

0
t2ne−ztdt =

d2n

dz2n

(
1− e−z

z

)
=

(2n)!

z2n+1

[
1− e−z · e2n(z)

]
(42)

and
RF
n (z, ν) :=

∫ 1

0
rFn (t, ν)e−ztdt.

Introducing (42) in (41) and rearranging terms we obtain (36)-(37).
For n ≥ <ν − 1/2 and t ∈ [0, 1], we derive easily from the integral representation (19)

that the hypergeometric function in (40) is bounded by 1. Therefore,

|RF
n (z, ν)| ≤ |(1/2− ν)n|

n!

∫ 1

0
t2ne−t<zdt.

The first bound in (38) follows from this equation straightforwardly. Integrating by parts in
the above integral we obtain the second bound in (38). •

In general, for arbitrary values of ν, we have no means to approximate Gν(z) uniformly
in z in any fixed horizontal strip in terms of elementary functions, as we did for Jν(z), Y 1

ν (z)
and Fν(z). But it is possible when ν is a positive integer. In the following proposition we
give a uniform approximation of Gν(z) for general values of ν in terms of incomplete gamma
functions. In Corollary 1 we give a uniform approximation of Gm(z) for m ∈ N (natural
numbers) in terms of elementary functions.

Proposition 3. For n = 1, 2, 3, ..., the function Gν(z) may be written in the form:

Gν(z) =
1

z2ν

n−1∑
k=0

(1/2− ν)k
k!

(−z2)kΓ(2ν − 2k, z) +RG
n (z, ν), (43)

where, for n > <ν, the remainder term may be bounded in the form

|RG
n (z, ν)| ≤ |(1/2− ν)n|

2(n−<ν)n!
e−<z. (44)

Also, for n > <ν − 1/2 it is bounded in the form

|RG
n (z, ν)| ≤ 2|(1/2− ν)n|

n!<z
e−<z. (45)

12



Proof. The integral defining Gν(z) in (33) may be written in the form

Gν(z) :=
∫ ∞
1

e−ztt2ν−1(1 + t−2)ν−1/2dt. (46)

Then, we consider the Taylor expansion at the infinity of the function (1 + t−2)ν−1/2:

(1 + t−2)ν−1/2 =
n−1∑
k=0

(1/2− ν)k
k!

(−t2)−k + rGn (t, ν), t ∈ [1,∞), (47)

where rGn (t, ν) is the Taylor remainder:

rGn (t, ν) :=
∞∑
k=n

(1/2− ν)k
k!

(−t2)−k, t ∈ [1,∞). (48)

After straightforward manipulations we obtain

rGn (t, ν) =
(1/2− ν)n
n!(−t2)n 2F1

 n+ 1/2− ν, 1

n+ 1

∣∣∣∣∣∣∣−
1

t2

 , t ∈ [1,∞). (49)

Substituting (47) into (46) and interchanging sum and integral we obtain (43) with

RG
n (z, ν) :=

∫ ∞
1

t2ν−1rGn (t, ν)e−ztdt. (50)

For n ≥ <ν−1/2 and t ∈ [1,∞), we derive easily from the integral representation (19), that
the hypergeometric function in (49) is bounded by 1. Therefore,

|RG
n (z, ν)| ≤ |(1/2− ν)n|

n!

∫ ∞
1

t2<ν−2n−1e−t<zdt.

Bound (44) follows from this equation straightforwardly. Integrating by parts in the above
integral we obtain the bound (45). •

Observation 1. The terms of the expansion (43) may be computed recursively [5, Sec. 8,
eq. (8.8.2)] starting from Γ(2ν, z): Γ(a + 1, z) = aΓ(a, z) + zae−z. For n = 0, 1, 2, ... and
ν /∈ Z (integer numbers), the incomplete gamma functions satisfy the recurrence relation:

Γ(2ν − 2n− 2, z) =
Γ(2ν − 2n, z) + (2n+ 1− 2ν − z)z2ν−2n−2e−z

2(ν − n− 1)(2ν − 2n− 1)
. (51)

From propositions 1, 2 and 3 we find the following expansion of the Bessel function Yν(z)
uniformly valid in z in any fixed horizontal strip:

13



Theorem 3. For n = 1, 2, 3, ..., the Bessel function Yν(z) may be written in the form:
√
πΓ(ν + 1/2)

2(z/2)ν
Yν(z) =

n−1∑
k=0

{
(1/2− ν)k

k!

[
Γ(2k + 1, z)

z(−z2)k
− (−z2)kΓ(2ν − 2k, z)

z2ν

]
−

an−1,k(ν) cos z + bn−1,k(ν)z sin z

z(−z2)k

}
+RY

n (z, ν),

(52)

with

an−1,k(ν) :=
n−1∑
j=k

(1/2− ν)j(2j)!

j!(2(j − k))!
, bn−1,k(ν) :=

n−1∑
j=k

(1/2− ν)j(2j)!

j!(2(j − k) + 1)!
,

for k = 0, 1, 2, ..., n, except bn−1,0(ν) = 0. For n > <ν, the remainder RY
n (z, ν) is bounded in

the form:

|RY
n (z, ν)| ≤ |(1/2− ν)n|

n!

[
2n e|=z|

(2n− 1)(2<ν + 1)
+

1

2n+ 1
+

e−<z

2(n−<ν)

]
, (53)

and behaves as n−<ν−1/2 as n → ∞ uniformly in z in any fixed horizontal strip. For real
ν > 1/2 and n > ν − 1/2 it is bounded in the form:

|RY
n (z, ν)| ≤ |(1/2− ν)n|

n!

[
4n e|=z|

(2ν − 1)|z|
+

1 + e−<z

<z

]
. (54)

Observation 2. When ν = m ∈ N we have that recurrence (51) is valid for n ≥ m. On
the other hand, from the definition [5, Sec. 2, eq. (8.2.2)],

Γ(a, z) :=
∫ ∞
z

ta−1e−tdt,

we find that, for n = 0, 1, 2, ...,m− 1,

Γ(2m− 2n, z) = −z2m−2n d
2m−2n−1

dz2m−2n−1

(
e−z

z

)
= (2m− 2n− 1)!e−ze2m−2n−1(z),

with ek(z) given in (37). Therefore, when ν = m ∈ N , the m-th order approximation of
Ym(z) given in Theorem 3 is given in terms of elementary functions.

4 Final remarks and numerical experiments
Observe that the function Y 1

ν (z) defined in (6) is related to the Struve function Hν(z) [6,
Sec. 5, eq. (11.5.1)]:

Hν(z) =
21−νzν√

πΓ(ν + 1/2)
Y 1
ν (z).

14



Therefore, the expansion (34) multiplied by the above factor is a convergent expansion of
Hν(z) uniformly in z in any fixed horizontal strip.

From the recurrence relations (8) and the special values [4, Sec. 16, eqs. (10.16.1)],

J1/2(z) = Y−1/2(z) =

√
2

πz
sin z, J−1/2(z) = −Y1/2(z) =

√
2

πz
cos z,

we know that, for half-integer values of ν, Jν(z) and Yν(z) are elementary functions of z.
This is confirmed by all the expansions given in the above theorems: when ν = k + 1/2,
k = 0, 1, 2, ..., the presence of the factor (1/2−ν)n in the bounds for the remainders Rn(z, ν)
shows that the remainders vanish for n ≥ k+ 1, and then the approximations are exact (and
given in terms of elementary functions). More precisely, for half-integer values of ν:

Jν(z) =
2(z/2)ν√
πΓ(ν + 1/2)

[
1 +

d2

dz2

]ν−1/2
sin z

z

and

Yν(z) = − 2(z/2)ν√
πΓ(ν + 1/2)

[
1 +

d2

dz2

]ν−1/2
cos z

z
.

From the Poisson’s integral representations (5) and (6) we see that these expressions are
formally valid for any real ν. This is so because when we replace t2 cos(zt) by −d2 cos(zt)/dz2

in (5) we find

∫ 1

0
(1− t2)ν−1/2 cos(zt)dt =

[
1 +

d2

dz2

]ν−1/2 ∫ 1

0
cos(zt)dt =

[
1 +

d2

dz2

]ν−1/2
sin z

z
.

And similarly when we replace t2 sin(zt) by −d2 sin(zt)/dz2 in the first integral of (6) and
t2e−zt by d2e−zt/dz2 in the second integral of (6), we find:

[
1 +

d2

dz2

]ν−1/2
1− cos z

z
and −

[
1 +

d2

dz2

]ν−1/2
1

z
respectively.

Therefore, for half-integer values of ν, z−νJν(z) is an elementary function of z. For other
values of ν it is not, but at least, it is an infinite expansion of elementary functions of z
uniformly valid in z in any fixed horizontal strip.

Figures 1 and 2 illustrate the accuracy of the expansions given in theorems 1 and 2
for Jν(z), with ν = 2, several values of z and different orders n of the approximation; the
situation is similar for other values of ν. The accuracy of the expansion given in theorem 3
for Yν(z) is similar. The Figures have been obtained by using the program Mathematica 7.

The convergent expansions of the Bessel functions given in (9) and (52) are alternative
formulas to the convergent power expansions given in (1) and (2), or to the asymptotic
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Figure 1: Plot of the function J̄2(x) and the right hand side of (16) for n = 10, n = 15 (top) and
n = 20, n = 25 (bottom) in the real interval [0, 50].
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Figure 2: Plot of the real part of the function J̄2((1 + 0.1i)x) and the real part of the right hand
side of (16) for n = 10, n = 15 (top) and n = 20, n = 25 (bottom) for 0 < x < 50.
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Figure 3: Approximations of (2/z)νJν(z) (thicker graphics) given by the expansions (1) (left), (3)
(middle) and (9) (right) for ν = 1, z ∈ [0, 10] and five degrees of approximation n = 1, 2, 3, 4, 5
(thinner graphics). The approximations are similar for complex z and other values of ν.

inverse power expansions given in (3) and (4). All of these expansions are given in terms
of elementary functions, but the character of the approximation is different. At a given
order n of the approximation, the remainder terms in the power expansions (1) and (2)
are proportional to |z|n; the remainder terms in the asymptotic expansions (3) and (4) are
proportional to |z|−n. On the other hand, the remainder terms of the expansions given
in theorems 1 or 2 and in Theorem 3 are independent of z in any fixed horizontal strip.
Therefore, when we want to compute the Bessel functions within a prescribed accuracy with
(1) or (2), the number of terms n needed increases as |z| increases. When we want to compute
the Bessel functions within a prescribed accuracy with (3) or (4), the number of terms n
needed increases as |z| decreases; or even worse, it is not possible to get that accuracy for
any value of n. On the other hand, the number of terms n required to compute the Bessel
functions within a prescribed accuracy using theorems 1, 2 or 3 is fixed independently of z in
any fixed horizontal strip. Figures 3 and 4 illustrate these facts for the Bessel function Jν(z);
the situation is similar for the approximations (2), (4) and (52) of the Bessel function Yν(z).
Then, in general, expansions (1) and (2) are more accurate for small |z| and expansions (3)
and (4) are more accurate for large |z|1. On the other hand, expansions (9) and (52) are
more uniform approximations in |z| in any fixed horizontal strip.
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