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ON NUMERICAL DENSITY APPROXIMATIONS OF

SOLUTIONS OF SDES WITH UNBOUNDED COEFFICIENTS

LINGHUA CHEN, ESPEN ROBSTAD JAKOBSEN, AND ARVID NAESS

Abstract. We study a numerical method to compute probability density
functions of solutions of stochastic differential equations. The method is some-
times called the numerical path integration method and has been shown to be
fast and accurate in application oriented fields. In this paper we provide a rig-
orous analysis of the method that covers systems of equations with unbounded
coefficients. Working in a natural space for densities, L1, we obtain stability,
consistency, and new convergence results for the method, new well-posedness
and semigroup generation results for the related Fokker-Planck-Kolmogorov
equation, and a new and rigorous connection to the corresponding probabil-
ity density functions for both the approximate and the exact problems. To
prove the results we combine semigroup and PDE arguments in a new way

that should be of independent interest.

1. Introduction

Over the past decades there has been a large number of publications in the field of
stochastic dynamics and its various application areas – including physics, biology,
engineering, and finance [34, 2, 11]. In this field, the response of dynamical systems
to stochastic excitation is studied, and the typical model is a (system of) stochastic
differential equations (SDEs) of the form

{

dYt = b(t, Yt) dt+ σ(t, Yt) dBt,

Y0 = Z,

where b : R+ × R
d → R

d, σ : R+ × R
d → R

d×n, Bt is an n-dimensional Brownian
motion, and the initial data Z is a random variable in R

d independent of Bt. The
solution Yt of the SDE is a state space process in R

d.

In most cases the solutions of such problems must be computed numerically, and
various discrete approximation methods are widely used in many application areas
[24]. There are two main approaches: (i) Path-wise approximations of the SDE
based on stochastic simulation, and (ii) approximations of the statistics or distri-
butions of the SDE. The first approach is more efficient in high dimensions and the
second in low dimensions. For path-wise approximations we refer to [24] for the
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classical literature and e.g. to [31] and references therein for some promising re-
cent developments. Approach (ii) is deterministic and based on approximating the
forward or backward Kolmogorov partial differential equations. In this paper we
study a method of the second type, called the numerical path integration method
[36, 29, 39, 41, 40, 10] or density tracking method [5]. This method is an explicit
deterministic iteration scheme that produces approximate probability density func-
tions (PDFs) for the solution of the SDE. The iteration step is based on a short time
approximation of the SDE. For simplicity we use here the strong Euler-Maruyama
method, the most basic numerical method for SDEs. The convergence of our path
integration method is therefore equivalent to the convergence of the PDFs of the
Euler-Maruyama method.

The path integration/density tracking approach (i.e. simulating the PDFs) enjoys
several favorable properties. First, it introduces an extra perspective to the system,
which enables deeper insights and invites broader mathematical tools. Secondly, as
an explicit method, one can formally implement the path integration algorithm on a
vast number of scenarios. Since the formulation is deterministic, it is also free from
perturbation by extreme outcomes during stochastic simulation. Finally, the result
of the method is an explicit density function rather than bundle of random paths.
This means that many characteristics of the system become more transparent, and
can be captured and displayed by e.g. visualisation methods.

The numerical path integration method has been applied in many fields, including
financial mathematics [29, 39, 40, 10]. Many of these studies show that it can
provide highly accurate numerical solutions [36, 41, 35, 5]. Even though convergence
problems have been reported in some cases, cf. Section 7.1 in [35], little or no
emphasis has been devoted to conditions for convergence of the method in the path
integration literature. A very natural and relevant mode of convergence for this
method is strong L1-convergence of the resulting densities. Such convergence seems
not to be a direct consequence of either strong or weak convergence of the Euler-
Maruyama scheme. In fact, L1-convergence of densities implies weak convergence of
processes but the converse is not true in general. Nevertheless, very recently there
are some results for one-dimensional problems in [5], and when the coefficients are
bounded, L1-convergence results follow from some of very precise error expansions
for densities of the Euler-Maruyama method, e.g. in [4, 20, 19], or from so-called
Feynman formulas in mathematical physics [8]. More on this below. However
from an application point of view, it is important to consider also models with
unbounded coefficients, since they naturally appear in many of the papers and
applications mentioned above.1

The aim of this paper is to provide a rigorous analysis of method in the path inte-
gration setting along with the L1-convergence of the PDFs it produces in the case
of unbounded coefficients. Specifically, we obtain stability, consistency, and new
convergence results for the method, new well-posedness and semigroup generation
results for the associated Fokker-Planck-Kolmogorov (FPK) equation, and a new
and rigorous connection to the corresponding probability density functions for both

1By a change of variables, it is often possible to reduce to a problem with bounded coefficients
and then use existing L1 convergence results. However going back to the original variables, we
would then get a weaker form of convergence, one that no longer implies L1 convergence.
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the approximate and exact problems. In particular, our L1 semigroup generation
result for our rather general elliptic FKP operator seems to be new.

We also investigate in details the method applied to the Ornstein-Uhlenbeck process
which has unbounded drift. Using explicit transition densities and direct compu-
tations, we show that the method (i) converge in the general case and (ii) converge
with a linear rate if additional moment conditions are assumed. The second result
is consistent with results for bounded coefficients in e.g. [4, 20, 19]. Even though
we do not have a counter example, the very explicit proof seems to indicate that
convergence rates can only be obtained under some additional moment assumptions
on the densities.

We study the numerical path integration method from a PDE and semigroup point
of view, an approach which seems to be new to this setting at least when it comes
to the convergence results. The main idea is to show that (i) the FPK operator
corresponding to the SDE generates a semigroup, (ii) the iteration of the discrete
path integration operator does converge to this semigroup (the solution of the FPK
equation), and finally (iii) that convergence of the densities follows from these
results. For (i), we prove that the FKP operator and its adjoint are dissipative and
then use the Lumer-Phillips theorem to prove that the FPK operator generates a
strongly continuous contraction semigroup on L1(Rd). To prove the convergence
results in (ii), we use the Chernoff product formula which is a generalisation of the
well-known Kato-Trotter product formula. Note that our approach to (ii) is similar
to the approach for Feynman formulas in [8].

A main difficulty is then to prove the semigroup generation in our setting of
unbounded coefficients. Classical results usually assume the coefficients to be
bounded, cf. the discussion in Chapter 11 of [28]. Further complications comes
from the fact that we have to work in the space L1 which is not reflexive and the
adjoint space L∞ which is not separable. In fact one of the most difficult parts of
our paper is to show that the adjoint operator is dissipative on L∞. To do this we
develop a new and non-trivial argument using ideas from viscosity solution theory
[12], the weak Bony maximum principle [6, 30], and recent elliptic regularity results
from [42]. This argument could be of independent interest.

Other authors have obtained semigroup generation results for similar problems
with different techniques. Yet, most work seems to be devoted to the generation
problems for the adjoint of the FPK operator in various situations. For instance
[13] is concerned with the space of bounded (continuous) functions and unbounded
coefficients, while in [1] the authors give results in L1 for bounded coefficients. The
author in [9] considered degenerate operators where the coefficients have bounded
first and second derivatives. The result closest to our case seems to be found in [15]
where the drift term had to be dominated by the ”square root” of the diffusion term
and no zero order term is allowed. A semigroup generation result of the adjoint
operators on L1 is proved there. However, we cannot use the results in [15] in this
paper since our non-divergence form FPK operators are equivalent to divergence
form operators with additional unbounded zero order terms.

In addition to providing rigorous results for the numerical path integration method,
this paper seems to represent the first attempt to use semigroup and PDE arguments
to obtain strong convergence results for probability densities of SDE approximations
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(but see also [8]). It is an interesting question how far such methods can be pushed
compared to other methods. As far as we know, two other methods are described
in the literature: A parametrix approach of Konakov et al. [25, 26, 33], and an
approach based on Malliavin calculus developed by Talay, Bally, et al., see e.g. [4,
20, 3] and references therein. In the parametrix approach, a weighted L∞-estimate
on the convergence of (transition probability) densities, as well as non-asymptotic
bounds for the densities [33], is obtained under uniform ellipticity assumption and
boundedness of coefficients. In the Malliavin approach various error expansions and
estimates are obtained under boundedness, certain smoothness, and ellipticity or
Hörmander conditions.

Under additional assumptions, the L1-convergence of densities of the Euler-Maruyama
scheme can be obtained from some of these Malliavin results. In [4] a linear conver-
gence rate was obtained for SDEs with smooth and bounded coefficients2, but the
behavior of the estimate is unclear for small time. In [20] the estimate was improved
but it would still blow up as t→ 0. Later the authors of [19] derived very accurate
estimates that would lead to a linear rate which is uniform for small time. At
the same time they lowered the regularity requirements of the coefficients to C1,3

b .
For the Euler-Maruyama method, the estimates of [4, 20, 19] requires bounded co-
efficients and uniform ellipticity. According to Remark 2.22 of [3], the ellipticity
requirement can be relaxed to a so-called weak Hörmander condition when coeffi-
cients belong to C∞

b . In this case, the results of [3] give L1-convergence for fixed
times (but no estimates) of densities/PDFs for the Euler-Maruyama scheme.

To summarise, in our approach to study properties and convergence of the numerical
path integration method we obtain the following results: New semigroup generation
and well-posedness results for the FPK equation, allowing for coefficients with linear
growth and C4 differentiability, no invariant measure is required, the growth of drift
and diffusion terms are not necessarily related to each another, and the initial data
is not required to have any finite moments or differentiability. Under the same
conditions, we prove L1 convergence, locally uniformly in time (so no deterioration
for small time). To our knowledge, this seems to be the first general strong L1-
convergence result for densities/PDFs of SDEs with unbounded coefficients. Even
though we do not obtain any rate of convergence or error expansion in general, by
studying the Ornstein-Uhlenbeck process, we find indications that no error estimate
may exist without additional (moment) assumptions on the densities/PDFs. Hence
when the coefficients are unbounded, the best result for general densities could be
mere convergence without any rate.

We also emphasise that our results connects the mild solution of the FPK equation
and the PDF of the SDE, and that existence and convergence of the latter follows
from the existence and convergence (by semigroup methods) of the former. More
refined existence results for PDFs have been obtained by probabilistic methods, we
refer to e.g. [7, 16, 21, 22] and references therein.

Layout and Notation. The rest of this paper is laid out as follows. In Section
2 we state our assumptions and the main results. Included is a discussion of the
connection between SDEs, FPK equations and densities and the definition of the

2The coefficients are bounded in [4]. This follows from their condition (H), estimate (6), and
footnote 1. In particular, in [4] the number γ0, introduced by (1.10) in [27], is zero.



ON SOLVING SDES BY DENSITY APPROXIMATIONS 5

path integration method. At the end of the section, we discuss our results and give
some examples. The rest of the paper is then devoted to the proofs of these results.
In Section 3 we prove the well-posedness of the FPK equation, the connection
to probability densities, and the convergence result – assuming the semi-group
generation and a strong L1-consistency result for the path integration method,
which are proved in Section 4 and Section 5, respectively. At the end, Section B is
an appendix to the calculation of the convergence rate of Example 2.13.

The following notation and abbreviations are used ‖·‖1 := ‖·‖L1(Rd), ‖·‖∞ :=

‖·‖L∞(Rd), ∂t := ∂
∂t , ∇ :=

(

∂
∂x1

, · · · , ∂
∂xd

)T

=: (∂1, · · · , ∂d)T , ess inf is the essen-

tial infimum, E denotes the expectation; Ck
b , C

∞
c , D′ the spaces of functions with

bounded continuous derivatives up to k−th order, smooth compactly supported
functions, and distributions (D′ is the dual of C∞

c ) respectively, C
(

[0, T ];L1(Rd)
)

the space of functions u(x, t) such that supt∈[0,T ] ‖u(·, t)‖1 < ∞, and for all t ∈
[0, T ], ‖u(·, s)− u(·, t)‖1 → 0 as s→ t. PDF – probability density function, SDE –
stochastic differential equation, FPK – Fokker-Planck-Kolmogorov.

2. Main Results

In this section we formulate the discrete path integration method, state the as-
sumptions and main results, and provide a discussion and examples. We restrict
ourselves to time-homogeneous SDEs, i.e. equations of the form

(2.1)

{

dYt = b(Yt) dt+ σ(Yt) dBt,

Y0 = Z,

where b = (b1, · · · , bd)T : Rd → R
d and σ = (σij)d×n : Rd → R

d×n are functions,
Bt a d-dimensional Brownian motion, and Z is a random variable in R

d.

Under suitable assumptions (cf. [37] or [38]), the solution Yt of (2.1), is a Markov
process, with infinitesimal generator A∗ defined as

(2.2) A∗φ :=

d
∑

i=1

bi(x)∂iφ(x) +
1

2

d
∑

i,j=1

aij(x)∂i∂jφ(x) for all φ ∈ C∞
c (Rd),

where

a := σσT =: (aij)d×d.

Moreover, Yt has a PDF u(t, x) – a non-negative L1 function u such that

(2.3) Eφ(Yt) =

∫

Rd

φ(x)u(t, x)dx for all φ ∈ C0
b (R

d).

Via an adjoint argument, u formally satisfies the FPK equation

(2.4)







∂tu(t, x) = Au(t, x), x ∈ R
d, t > 0,

u(0, x) = u0(x), x ∈ R
d,

where u0 is the PDF of Z and A the adjoint of A∗,

(2.5) Av(x) := −
d
∑

i=1

∂i
(

bi(x)v(x)
)

+
1

2

d
∑

i,j=1

∂i∂j
(

aij(x)v(x)
)

.
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The evolution of the u can be regarded as the action of the propagation operator
(or semigroup) Ps defined by

(2.6) u(y, t+ s) = [Psu(· , t)](y) for all t, s > 0, y ∈ R
d.

Let us state our assumptions.

(C1) b : Rd → R
d and σ : R

d → R
d×n are C4 functions, and there exists a

constant K > 0 such that for all x ∈ R
d, j = 1, . . . , n, and i, k = 1, . . . , d,

|∂kσij(x)|+ |∂kbi(x)| ≤ K.

(C2) There exists α > 0 such that for all x, y ∈ R
d,

yTa(x)y ≥ α|y|2.
(C3) Z and Bt are independent, and Z has a PDF u0, i.e. u0 ≥ 0 and ‖u0‖1 = 1.

Remark 2.1. Standard strong well-posedness of the SDE (see below) requires only
Lipschitz coefficients. The additional regularity and the uniform ellipticity condi-
tion (C2) is needed to study the PDFs of the SDEs and path integration method
(cf. proofs of Proposition 2.10 and Lemma 5.8). Similar but stronger assumptions,
including bounded coefficients, are used by all other papers discussing densities of
SDE approximations, see the introduction and e.g. [19].

The following result is then classical, cf. Theorem V.7 in [38].

Proposition 2.2. Assume (C1) and (C3). Then the SDE (2.1) has a unique strong
solution Yt.

Now we give our first main result – well-posedness for the FPK equation (2.4).

Theorem 2.3. Assume (C1), (C2), and u0 ∈ L1(Rd). Then the FPK equation
(2.4) has a unique (mild) solution u ∈ C([0, T ];L1(Rd)).

The derivation of FPK equation (2.4) was formal. Yet our second main result
confirms that the probability distribution of (2.1) coincides with the (mild) solution
of FPK equation (2.4).

Theorem 2.4. Assume (C1) – (C3), and let Yt and u(t, x) be the solutions of (2.1)
and (2.4) respectively. Then (2.3) holds and u(t, ·) is the PDF of Yt.

The proofs of Theorems 2.3 and 2.4 will be given in the next section.

Remark 2.5. (a) The proof shows that Theorem 2.3 still holds if the C4 regularity
in assumption (C1) is reduced to b ∈ C1 and σ ∈ C2.

(b) A difference between Theorem 2.3 and existing results is that we allow (and
need to allow) the zero order coefficient to be unbounded, cf. e.g. Section 4 in [15].

(c) The solution u we obtain in Theorem 2.3 is a mild solution of (2.4) (cf. [14]).
In fact we have more regularity than stated since u(·, t) belongs to the domain of
A. A limit argument immediately shows that u is also a distributional solution of
(2.4). In view of uniform ellipticity of A and smoothness of its coefficients, it is
standard to prove higher regularity and that u is a classical solution.
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We now introduce and analyse the discrete path integration method. It is a method
for computing approximations of the PDF of solution process of (2.1) by:

(i) Finding a short-time approximation P̄τ of the propagator/semigroup Pτ , and

(ii) computing the approximation ūn at time t = nτ using the explicit iteration

(2.7) ūn+1(x) = (P̄τ ūn)(x) for n = 0, 1, . . . .

The most obvious way to find a P̄τ is through a time-discretization of the underlying
SDE. For simplicity, we consider here the Euler-Maruyama method [24], the most
basic and widely used SDE approximation scheme: Fix a time step τ > 0 and let
∆Bn := Bnτ − B(n−1)τ , and define the Markov chain approximation Xn of the
solution process Yt of the SDE (2.1) by

(2.8)







X0 = Z,

Xn+1 = Xn + b(Xn)τ + σ(Xn)∆Bn, n = 0, 1, . . . .

In the rest of the paper we will use the following notation.

Definition 2.6. (i) ūn is the PDF of the solution Xn of (2.8).

(ii) P̄τ is the one step propagator of ūn, i.e.

ūn+1(y) = (P̄τ ūn)(y) for all y ∈ R
d, τ > 0, n ≥ 0.

(iii) k̄(y, x, τ) is the transition kernel of P̄τ – a non-negative L1 function satisfying

(P̄τ ūn)(y) =

∫

Rd

k̄(y, x, τ)ūn(x)dx for all y ∈ R
d, τ > 0, n ≥ 0.(2.9)

Since ∆Bn is a multivariate Gaussian variable, we have the following classical result.

Lemma 2.7. Assume a := σσT is strictly positive definite, and let k̄ be given by
Definition 2.6. Then for all x, y ∈ R

d and τ > 0,

Fyk̄(ξ, x, τ) = exp

{

iξT (x+ b(x)τ) − 1

2
ξTa(x)ξ

}

,

where F denote the Fourier transform, and

k̄(y, x, τ) =
exp

{

− 1
2 (y − (x+ b(x)τ))T (τa)−1(x)(y − (x+ b(x)τ))

}

(2π)2/d| det(τa(x))|1/2 .(2.10)

Existence and uniqueness of the solution Xn come for free, since the iteration (2.8)
is explicit. In view of Lemma 2.7, we then have the following result.

Proposition 2.8 (Well-posedness). Assume (C1) – (C3). Then there exists a
unique PDF ūn of the solution Xn of (2.8). Moreover, ūn is explicitly given by
(2.7), (2.9), and (2.10).

Note that (C2) implies that a(x) is strictly positive definite. A classical computation
using (2.10) then shows that ‖k̄(·, x, τ)‖1 = 1, and hence (see the next Proposition)
that ‖P̄τ‖ = 1. Proofs can be found e.g. in the discussion of Markov operators in
[28].
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Proposition 2.9 (L1−stability). Assume (C2), τ > 0, u ∈ L1(Rd), and P̄τ is
given by Definition 2.6. Then ‖P̄τu‖1 ≤ ‖u‖1.

By linearity, we immediately get continuous dependence on the initial data,

‖P̄τ (u − v)‖1 ≤ ‖u− v‖1,
and by iteration that the discrete path integration method is L1-stable:

‖ūn‖1 ≤ ‖u0‖1 for all n = 1, 2, . . . .

Next we study the L1-consistency of the discrete scheme.

Proposition 2.10 (L1−consistency). Assume (C1), (C2), τ > 0, and u ∈ C∞
c (Rd).

Then there exists a constant C > 0 such that
∥

∥

∥

∥

P̄τu− u

τ
−Au

∥

∥

∥

∥

1

≤ Cτ.

We prove this result in Section 4. Higher regularity of b or σ will not improve
the (linear) rate in Proposition 2.10. It is the maximal rate for the problem, cf.
Proposition 2.14 and its proof.

Finally we state the third main result of this paper, the L1-convergence of the
discrete path integration method.

Theorem 2.11 (L1-convergence). Assume (C1), (C2), u0 ∈ L1(Rd), u(t, x) is the
solution of FPK equation (2.4), and define ūn(t, x) := (P̄n

t/nu0)(x). Then

(2.11) lim
n→∞

sup
t∈[0,T ]

‖u(·, t)− ūn(·, t)‖1 = 0.

Remark 2.12. (a) Since the PDFs in general are (non-negative) L1-functions, strong
L1-convergence is a very natural mode of convergence to consider.

(b) By assumption the initial PDF u0 is only required to belong to L1. It is not
required to have any finite moments or differentiability to obtain an L1-convergence,
and the convergence is uniform in time on [0, T ] for any T > 0.

(c) L1-convergence of PDFs is not a direct consequence of either strong or weak
convergence of the solution process. It is strictly stronger than weak convergence
of the corresponding process by Proposition A.1 and Example A.2 in Appendix A.

When the coefficients are also bounded, many authors have obtained not only
convergence but even error estimates and error expansions for densities of the Euler-
Maruyama scheme (see the introduction).

In the unbounded coefficients case however, there may not be any general L1 error
bound without extra moment assumptions on the density, and hence mere conver-
gence would be the best one can hope for. A first indication of this appears already
in the Gaussian bounds on the derivatives of the SDE’s transition probability den-
sity p(t, x, y) in [27]. When the coefficients are unbounded, these bounds are no
longer bounded in x, and hence can no longer be used to derive the same estimates
of approximations of p(t, x, y) as in the bounded case [4, 19]. Another indication
is given by Example 2.13 below. In this example we study the Ornstein-Uhlenbeck
process. We find both the exact and approximate transition kernels and compute
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explicitly the conditions for having either mere convergence in L1 or a linear rate
for the corresponding PDFs. In the latter case, we find that additional moment
assumptions are needed (cf. Proposition 2.14).

Example 2.13. The Ornstein-Uhlenbeck process Yt is given by

(2.12) dYt = bYtdt+ σdBt and Y0 = x,

where b, σ ∈ R and Yt, Bt are processes in R. The unique strong solution is

Yt = ebt
(

x+ σ

∫ t

0

e−bsdBs

)

.

Due to the non-stochastic integrand in the Itô-integral it is easy to see that this
process has a Gaussian law (cf. e.g. Section 11.5 in [14]),

N

(

xebt,
σ2

2b

(

e2bt − 1
)

)

,

and hence the transition kernel is given by

(2.13) k(y, x, t) =
1

√

2π σ2

2b (e
2bt − 1)

exp

{

−
(

y − xebt
)2

2σ2

2b (e
2bt − 1)

}

.

The corresponding Euler-Maruyama scheme with τ = t/n is
{

X0 = x,

Xn+1 = Xn + bXnτ + σ∆Bn,
(2.14)

and has the following one step transition kernel by Lemma 2.7,

(2.15) k̄(y, x, τ) =
1√

2πτσ2
exp

{

− (y − (1 + bτ)x)2

2τσ2

}

.

For t = τ small, it is clear that k̄(y, x, τ) is close to k(y, x, t).

For the convergence, we have the following result.

Proposition 2.14. Assume b, σ ∈ R, T > 0, and u0 ∈ L1(R). Then

lim
n→∞

sup
t∈[0,T ]

∥

∥

∥Ptu0 − P̄n
t/nu0

∥

∥

∥

1
= 0.

If in addition, either
∫

R

|xu0(x)|dx <∞ or

∫

R

|xu′0(x)|dx <∞,

then there exist C, N > 0, only depending on (b, σ, T, u0), such that
∥

∥

∥Ptu0 − P̄n
t/nu0

∥

∥

∥

1
≤ Ct

n
for all n ≥ N.

The first part of Proposition 2.14 is consistent with Theorem 2.11, while the sec-
ond part shows that a linear rate can be obtained under additional assumptions.
The rate is consistent with estimates for SDEs with bounded coefficients, see e.g.
Corollary 2.7 in [4] and Theorem 2.3 in [19].

We give a direct proof of Proposition 2.14 in Appendix B. Even though we do not
have a counter example, the very explicit proof seems to indicate that convergence
rates can only be obtained under additional assumptions on the densities.
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Remark 2.15. The Cauchy distribution u0(x) =
1

π(1+x2) has no moments, but still

satisfies
∫

R
|xu′0(x)|dx <∞ 3.

3. Proofs of Theorems 2.3, 2.4, and 2.11

We first prove Theorems 2.3 and 2.11 since the latter is needed in the proof of The-
orem 2.4. We will use semi-group theory and we refer to [14] for more information
and precise definitions of the concepts used below. A crucial step in the proof is
to obtain the new generation result, Theorem 3.1. From the generation result we
obtain a solution of the FPK equation (2.4), and Theorem 2.3 follows. Then we
prove that FPK operator A is dissipative. Armed with generation and dissipativity,
we use the Chernoff product formula to show that the solution of the discrete path
integration method converges to the solution of the FPK equation (2.4) and hence
Theorem 2.11 follows. Finally we show Theorem 2.4, that the solution of (2.4) is
just the PDF of the solution of (2.1).

In the rest of this section we let A be defined in (2.5) and take D(A) := C∞
c (Rd).

First we state the generation result.

Theorem 3.1. Assume (C1) and (C2). Then (A,D(A)) is closable and its closure
(Ā,D(Ā)) generates a contraction semigroup Pt on (L1(Rd), ‖·‖1).

This result is relatively technical, and the proof is left to Section 5.

Lemma 3.2. Assume (C1) and (C2). Then the semigroup Pt from Theorem 3.1
is a strongly continuous semigroup on (L1(Rd), ‖·‖1).

Proof. The result follows by Proposition I.5.3 in [14] with Tt = Pt if we can verify
that there exist δ > 0, M ≥ 1 and a dense subset D ⊂ X such that

(1) ‖Tt‖ ≤M for all t ∈ [0, δ],

(2) lim
t→0+

Ttx = x for all x ∈ D.

Since Pt is a contraction semigroup by Theorem 3.1, condition (1) is satisfied with
M = 1. Moreover, assumption (2) holds on the dense set D = D(A), since by the
definition of the generator A:

lim
t→0+

(Ptx− x) = lim
t→0+

t (Ptx− x) /t =

(

lim
t→0+

t

)

lim
t→0+

1

t
(Ptx− x) = 0 · Ax = 0.

Hence (1) and (2) holds, and we conclude that Pt is strongly continuous. �

Proof of Theorem 2.3. In view of Theorem 3.1 and Lemma 3.2, the closure of
(A,D(A)) generates a strongly continuous semigroup Pt on (L1(Rd), ‖·‖1). Let

u(t, x) := (Ptu0)(x), and note that u ∈ C([0, T ];L1(Rd)) by strong continuity.
Then by e.g. Proposition II.6.4 in [14], u is the unique mild solution of the FPK
equation (2.4). �

To proceed, we introduce the following definition.

3An absolutely continuous L1-functions not satisfying either of the conditions: u0(x) =
∑

k 6=0
χIk

(x)(1 − k2|x− k|), where Ik := [k − 1/k2, k + 1/k2] and k ∈ Z \ {0}.
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Definition 3.3. A linear operator (B,D(B)) on a Banach space (X, ‖·‖) is dissi-
pative if

‖(λ−B)u‖ ≥ λ ‖u‖
for all λ > 0 and all u ∈ D(B).

One can refer to Section II.3 of [14] for more discussion of this concept.

Proposition 3.4. Assume (C1). Then the operator (A,D(A)) is dissipative on
(L1(Rd), ‖·‖1).

Proof. Let u ∈ D(A) and define E± :=
{

x ∈ R
d : ±u(x) > 0

}

. Since E± ⊂ R
d,

|u| = ±u on E±, and |(λ −A)u| ≥ (λ −A)(±u),

‖(λ−A)u‖1 ≥
∫

E+∪E−
|(λ− A)u| ≥

∫

E+∪E−
(λ−A)|u|.

We claim that
∫

E±
A|u| ≤ 0,(3.1)

and hence the proposition follows since

‖(λ−A)u‖1 ≥
∫

E+∪E−
λ|u| = λ‖u‖1.

Now we prove claim (3.1) for the E+ case. If E+ 6= ∅, we can approximate it by
sets E+

εn = {x : u(x) > εn}, 0 < εn → 0, with C1 boundaries. This can be done

since by Sard’s theorem and the implicit function theorem, E+
ε has C1 boundary

for a.e. 0 < ε < maxu+. Note that E±
ε ⊂ E± ⊂ suppu which is compact.

Then we write A in divergence form, cf. (2.5),

Aφ =
1

2
div
(

a∇φ+ (div a1, · · · , div ad)Tφ− 2bφ
)

,

and use the divergence theorem. We consider first the diffusion term,
∫

E+
ε

div (a∇u) =
∫

∂E+
ε

a∇u · n,

where n the exterior unit normal vector of ∂E+
ε . Since ∂E+

ε is an ε-level set of u
and u is decreasing in the outward direction at ∂E+

ε , ∇u = −βn for some β ≥ 0.
Then since a = σσT is positive semi-definite

a∇u · n = −βnT an ≤ 0,

and hence
∫

E+
ε

div (a∇u) ≤ 0.

Next we estimate the convection part. Since u = ε on ∂E+
ε ,

∫

E+
ε

div
(

(div a1, · · · , div ad)Tu− 2bu
)

=

∫

∂E+
ε

((div a1, · · · , div ad)T − 2b)u · n

= ε

∫

∂E+
ε

((div a1, · · · , div ad)T − 2b) · n = ε

∫

E+
ε

div
(

(div a1, · · · , div ad)T − 2b
)

,
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which is bounded by Cε for some C = C(a, b, suppu) since a and b are smooth and
u has compact support. Hence

(3.2)

∫

E+
ε

Au ≤ Cε.

Note that χE+
ε

→ χE+ a.e. Since Au belongs to L1(Rd), we may then use the

dominated convergence theorem to pass to the limit in (3.2) as ε→ 0+ and obtain
(3.1). The E− case is similar and will be omitted. The proof is complete. �

Now we proceed to prove Theorem 2.11. To do that we need the Chernoff Product
Formula (e.g. Theorem III.5.2 in [14]):

Theorem 3.5. Let X be a Banach space, V : R+ → L(X) a function such that
V (0) = id and ‖V n(t)‖ ≤M for all t ≥ 0, all n ∈ N, and some M ≥ 1. Assume

(3.3) Bu := lim
t→0+

V (t)u− u

t

exists for all u ∈ D ⊂ X, where D and (λ−B)D are dense subspaces in X for some
λ > 0. Then the closure B̄ of B generates a bounded strongly continuous semigroup
{T (t) : t ≥ 0}, given by

(3.4) T (t)u = lim
n→+∞

V n (t/n)u,

for all u ∈ X uniformly for t ∈ [0, T ].

This result does not require the approximation operators V (t) to be a semigroup.
This is important since the discrete path integration operators

{

P̄τ

}

are bounded

on the Banach space L1(Rd) by Proposition 2.9. But in contrast to their continuous
counterpart, they no longer form a semigroup of operators4.

Proof of Theorem 2.11. We use Theorem 3.5 with X = L1(Rd), V (h) = P̄h, B = A,
and D = D(A). Let us verify the conditions. By Proposition 2.10,

Au = lim
h→0

P̄hu− u

h

for all u ∈ D(A). By the definition of D(A) and Theorems 3.4 and 3.1, A is densely
defined, dissipative, and the closure Ā generates a contraction semigroup Pt on
L1(Rd). Then by the Lumer-Phillips Theorem (e.g. Theorem II.3.15 in [14]), this
implies that (λ−A)D(A) is dense in L1(Rd) for some λ > 0.

Since the semigroup is strongly continuous by Lemma 3.2, we have verified all the
conditions for Theorem 3.5. Hence hence can conclude that

‖u(t, ·)− ūn‖1 =
∥

∥

∥Ptu0 − P̄n
t/nu0

∥

∥

∥

1
→ 0,

as n→ ∞ uniformly in [0, T ]. The proof is complete. �

4E.g. in Example 2.13, P̄ 2
τ 6= P̄2τ since

(P̄ 2

τ f)(y) =

∫

R

f(x)
√

4πτσ2(1 + bτ + b2τ2/2)
exp

{

− (y − (1 + 2bτ + b2τ2)x)2

4τσ2(1 + bτ + b2τ2/2)

}

dx,

(P̄2τf)(y) =

∫

R

f(x)√
4πτσ2

exp

{

− (y − (1 + 2bτ)x)2

4τσ2

}

dx.
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Now we prove Theorem 2.4, using among other things Theorem 2.11.

Proof of Theorem 2.4. We will show that (2.3) holds.

Assume first that φ ∈ C3
b (R

d). In view of the Euler-Maruyama scheme (2.8) cor-
responding to Yt with τ = t

n , the PDF of its solution Xn is ūn := P̄n
t/nu0, and

hence

(3.5) Eφ(Xn) =

∫

Rd

φ(x)ūn(x)dx for any φ ∈ C0
b (R

d).

The right hand side is close to what we want, since by Theorem 2.11,
∣

∣

∣

∣

∫

φ ūn −
∫

φu

∣

∣

∣

∣

≤ ‖φ‖∞ sup
t∈[0,T ]

‖u− ūn‖1 → 0 as n→ ∞.

To see that the left hand side of (3.5) is also close to the sought after expression,
we will use the weak convergence of the Euler-Maruyama method. Since our initial
distribution u0 is not assumed to have second moments, we need to introduce the
following auxiliary SDE and Euler-Maruyama scheme for a fixed x ∈ R:
{

dỸt = b(Ỹt) dt+ σ(Ỹt) dBt,

Ỹ0 = x,
and

{

X̃n+1 = X̃n + b(X̃n)τ + σ(X̃n)∆Bn,

X̃0 = x.

Both problems have unique (strong) solutions (Proposition 2.2), so we may define

v(t, x) := Eφ(Ỹt) and vn(x) := Eφ(X̃n).

By the strong Markov property of solutions of SDEs, cf. Theorem V.32 in [38],

Eφ(Yt) = E [E (φ(Yt)|Y0 = Z)] = E [v(t, Z)].

Similarly, since {Xn} is a Markov chain,

Eφ(Xn) = E [E (φ(Xn)|X0 = Z)] = E [vn(Z)].

Therefore

|Eφ(Yt)− Eφ(Xn)| ≤ E |v(t, Z)− vn(Z)| =
∫

Rd

|v(t, x) − vn(x)| u0(x)dx.

The latter integrand is dominated by the integrable function 2 ‖φ‖∞, and by the
weak convergence of the Euler-Maruyama scheme, cf. Theorem 14.1.5 in [24],

|v(t, x) − vn(x)| → 0 as n→ ∞ for every x ∈ R
d.

Hence by (C3) and the dominated convergence theorem, it follows that
∫

Rd

|v(t, x) − vn(x)| u0(x)dx → 0 as n→ ∞.

Note that the Theorem of [24] requires the initial probability measure to have finite
second moments which is trivially met for the auxiliary problems above.

From all of the estimates above, we can the conclude that
∣

∣

∣

∣

Eφ(Yt)−
∫

φu

∣

∣

∣

∣

≤ |Eφ(Yt)− Eφ(Xn)|+
∣

∣

∣

∣

∫

φ ūn −
∫

φu

∣

∣

∣

∣

→ 0 as n→ ∞,

and hence that

Eφ(Yt) =

∫

Rd

φ(x)u(t, x)dx for all φ ∈ C3
b (R

d).
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Now we assume φ ∈ C0
b (R

d) and conclude the proof by a regularization argument.
Let ρε ∈ C∞

c , ε > 0, be the standard mollifier and φε := ρε ∗ φ. Then by e.g.
Section 7.2 in [18], φε ∈ C∞

b (Rd), ‖φε‖∞ ≤ ‖φ‖∞, and φε → φ a.e. Observe that
∣

∣

∣

∣

∫

Rd

φ(x)u(t, x)dx − Eφ(Yt)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

φu−
∫

φεu

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

φεu− Eφε(Yt)

∣

∣

∣

∣

+ |Eφε(Yt)− Eφ(Yt)| .

The second term is zero by our result for φ ∈ C3
b (R

d), and the two remaining
terms tend to zero as ε → 0+ by the dominated convergence theorem. The proof
is complete. �

4. Proof of Proposition 2.10

This section is devoted to the proof of Proposition 2.10. The key idea comes
from the proof of Lemma 16 in [8], and we extend it to the case with unbounded
coefficients.

Proof. Since u ∈ C∞
c (Rd), there is R > 0 such that supp u ⊂ BR(0). The PDF

after one-step Euler-Maruyama scheme is P̄τu. By Lemma 2.7,

F
(

P̄τu− u− τAu
)

=

∫

Rd

u(x)eiξx
(

ˆ̄k(ξ, x, τ) − 1− τ(ib(x)ξ − 1

2
ξTa(x)ξ)

)

dx

= τ2
∫∫ 1

0

u(x)eiξx(1− θ)

(

ib(x)ξ − 1

2
ξT a(x)ξ

)2

eθτ(ib(x)ξ−
1
2 ξ

T a(x)ξ)dθdx.

Without loss of generality, we assume d = 1. Note that Dk
xe

iξx = ikξkeiξx, we have

F
(

P̄τu− u− τAu
)

= τ2
∫ 1

0

(1− θ)

∫

R

eiξx
[

D2
x

(

b(x)u(x)eθτ(ib(x)ξ−
1
2a(x)ξ

2)
)

+D3
x

(

a(x)b(x)u(x)eθτ(ib(x)ξ−
1
2a(x)ξ

2)
)

+
1

4
D4

x

(

a2(x)u(x)eθτ(ib(x)ξ−
1
2a(x)ξ

2)
)

]

dxdθ

= τ2
∫ 1

0

(1− θ)

∫

R

eiξxeθτ(ib(x)ξ−
1
2a(x)ξ

2)
4
∑

m,n=0

ψm,n(x)(iθtξ)
m(−θtξ2)ndxdθ,

where ψm,n ∈ Cc(R) and for all x ∈ R,

|ψm,n(x)| ≤ Cm,n

4
∑

k=0

∣

∣Dku(x)
∣

∣ ,

and the positive constant Cm,n depends on b, σ, their derivatives up to fourth order,
and R.
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Now we perform inverse Fourier transform and estimate it in L1-norm

∥

∥P̄τu− u− τAu
∥

∥

1

= τ2
∫

R

∣

∣

∣

∫

R

∫ 1

0

(1− θ)

∫

R

eiξxeθτ(ib(x)ξ−
1
2a(x)ξ

2)

·
4
∑

m,n=0

ψm,n(x)(iθtξ)
m(−θtξ2)ndxdθdξ

∣

∣

∣dy

≤ τ2
∫ 1

0

∫

R

∣

∣

∣

∫

R

∫

R

eiξ(x−y)eθτ(ib(x)ξ−
1
2a(x)ξ

2)

·
4
∑

m,n=0

ψm,n(x)(iθtξ)
m(−θtξ2)ndxdξ

∣

∣

∣dydθ

= τ2
∫ 1

0

∫

R

∣

∣

∣

∫

R

∫

R

e
iη x−y√

θτ eib(x)
√
θτη− 1

2a(x)η
2

·
4
∑

m,n=0

ψm,n(x)(i
√
θτη)m(−η2)n dx√

θτ
dη
∣

∣

∣dydθ

= τ2
∫ 1

0

∫

R

∣

∣

∣

∫

R

∫

R

eiηzeib(y+
√
θτz)

√
θτη− 1

2a(y+
√
θτz)η2

·
4
∑

m,n=0

ψm,n(y +
√
θτz)(i

√
θτη)m(−η2)ndzdη

∣

∣

∣dydθ.

After the above changes of variables, we continue the estimate

∥

∥P̄τu− u− τAu
∥

∥

1

≤ τ2
∫ 1

0

∫

R

∣

∣

∣

∫

R

4
∑

m,n=0

ψm,n(y +
√
θτz)(i

√
θτ )m(−1)n

·
(∫

R

eiηzηm+2neib(y+
√
θτz)

√
θτη− 1

2a(y+
√
θτz)η2

dη

)

dz
∣

∣

∣dydθ

= τ2
∫ 1

0

∫

R

∣

∣

∣

∫

R

4
∑

m,n=0

ψm,n(y +
√
θτz)(

√
θτ )m

·
(

Dm+2n
v

∫

R

ei(v+b(y+
√
θτz)

√
θτ)ηe−

1
2a(y+

√
θτz)η2

dη

)

v=z

dz
∣

∣

∣dydθ

= τ2
∫ 1

0

∫

R

∣

∣

∣

∫

R

4
∑

m,n=0

ψm,n(y +
√
θτz)(

√
θτ )m

·



Dm+2n
v

1
√

2πa(y +
√
θτz)

e
− (v+b(y+

√
θτz)

√
θτ)2

2a(y+
√

θτz)





v=z

dz
∣

∣

∣dydθ.
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Now there are no more oscillatory integrals, and therefore we can continue the
estimate as follows
∥

∥P̄τu− u− τAu
∥

∥

1

≤ τ2
4
∑

m,n=0

∫ 1

0

∫

R

∫

R

∣

∣

∣
ψm,n(y +

√
θτz)

∣

∣

∣

·

∣

∣

∣

∣

∣

∣

∣



Dm+2n
v

1
√

2πa(y +
√
θτz)

e
− (v+b(y+

√
θτz)

√
θτ)2

2a(y+
√

θτz)





v=z

∣

∣

∣

∣

∣

∣

∣

dydzdθ

= τ2
4
∑

m,n=0

∫ 1

0

∫

R

∫

R

∣

∣

∣

∣

∣

ψm,n(x)

(

Dm+2n
v

1
√

2πa(x)
e−

(v+b(x)
√

θτ)2

2a(x)

)

v=z

∣

∣

∣

∣

∣

dxdzdθ

≤ τ2
4
∑

m,n=0

∫ 1

0

∫

R

∫

R

|ψm,n(x)|

· C′
m,n

√

2πa(x)

(

1 +
(z +

√
θτb(x))2(m+2n)

am+2n(x)

)

e−
(z+

√
θτb(x))2

2a(x) dxdzdθ

≤ C1τ
2

4
∑

m,n=0

∫ 1

0

∫

R

|ψm,n(x)|

·





∫

R

1
√

2πa(x)



1 +

(

z +
√
θτb(x)

√

a(x)

)2(m+2n)


 e−
(z+

√
θτb(x))2

2a(x) dz



 dxdθ.

Finally we make a further change of variable z̃ = z+
√
θτb(x)√
a(x)

and obtain

∥

∥P̄τu− u− τAu
∥

∥

1

≤ C1τ
2

4
∑

m,n=0

∫ 1

0

∫

R

|ψm,n(x)|
(
∫

R

1√
2π

(

1 + z̃2(m+2n)
)

e−
z̃2

2 dz̃

)

dxdθ

≤ C2τ
2

4
∑

m,n=0

‖ψm,n‖1

≤ Cτ2
4
∑

k=0

∥

∥Dku
∥

∥

1
.

That is,
∥

∥

∥

P̄τu−u
τ −Au

∥

∥

∥

1
≤ C(b, σ, u)τ . The proof is complete. �

Remark 4.1. From the above proof we see that the consistency estimate is uniform
in the elliptic number α > 0 in condition (C2).

5. Proof of Theorem 3.1

To prove Theorem 3.1 we need first to show that operator A and its adjoint satisfy
certain properties, including being dissipative.



ON SOLVING SDES BY DENSITY APPROXIMATIONS 17

Proposition 5.1. Assume (C1). Then the operators A on D(A) := C∞
c (Rd) is

densely defined, dissipative, and closable (possessing a closed extension) in L1(Rd).

Remark 5.2. In view of Theorem 3.5 and Proposition 3.4 we only need A to be
closable. Alternatively we could have shown directly that A is closed with respect
to the operator norm ‖u‖A := ‖u‖1 + ‖Au‖1 as in Section 2 of [15].

Proof of Proposition 5.1. The operator A is densely defined since D(A) is dense in
L1(Rd), and it is dissipative by Proposition 3.4. Hence it is closable by Proposition
II.3.14 in [14]. �

On the dual space of (L1(Rd), ‖·‖1), (L∞(Rd), ‖·‖∞), the adjoint operator of A with

domain D(A) = C∞
c (Rd) is given by the definition below.

Definition 5.3. The adjoint of A is an operator A∗ : D(A∗) → L∞(Rd) defined as

(5.1)

∫

Rd

uA∗f =

∫

Rd

fAu for all f ∈ D(A∗) and u ∈ D(A),

where D(A∗) =
{

f ∈ L∞ : ∃ g ∈ L∞ such that
∫

fAu =
∫

gu for all u ∈ D(A)
}

.

Remark 5.4. By integration by parts in (2.5), A∗f is given by (2.2) for any f ∈
C2

b (R
d). Moreover f ∈ D(A∗) if and only if there exists a g ∈ L∞(Rd) such that

(5.2) A∗f = g in D′ (in distributions).

Proposition 5.5. Assume (C1) and (C2). Then the adjoint operator (A∗, D(A∗))
is dissipative on (L∞(Rd), ‖·‖∞).

The proof is quite technical, so we postpone it to the end of this section. Now we
can employ the following result to prove that A generates a contraction semigroup.

Proof of Theorem 3.1. Note that A with D(A) = C∞
c (Rd) is a bounded densely

defined operator on L1(Rd), and that both A and its adjoint A∗ are dissipative by
Propositions 5.1 and 5.5. Hence the closure Ā generates a contraction semigroup
on (L1(Rd), ‖·‖1) by Corollary II.3.17 in [14]. The proof is complete. �

In the rest of this section we prove Proposition 5.5.

Lemma 5.6. Assume (C1) and (C2), then

D(A∗) ⊂
{

f ∈ C1(Rd) ∩ L∞(Rd) : ∇2f ∈
⋂

1<p<∞
Lp
loc(R

d)

}

.

Remark 5.7. Under different assumptions, similar characterisations of the maximal
domain can be found in Chapter 3 of [32] and Section 3 of [15].

Proof. For any f ∈ D(A∗), there exists g ∈ L∞(Rd) such that (5.2) holds by
Remark 5.4. By the regularity of the coefficients (see (C1)), we rewrite (5.1) as

∫

f

d
∑

i,j=1

∂i

(

1

2
aij∂ju

)

=

∫



g + f

d
∑

i=1

∂ibi −
1

2
f

d
∑

i,j=1

∂i∂jaij



 u+ f

d
∑

i=1



bi −
1

2

d
∑

j=1

∂jaij



 ∂iu,
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On the right hand side, the coefficients of u and ∂iu belong to Lp
loc(R

d) for all

1 < p <∞. We can therefore apply Theorem 1.5 in [42] to show that f ∈W 1,p
loc (R

d)
for all 1 < p <∞. With this extra regularity and integration by parts,

∫

f

d
∑

i,j=1

∂i

(

1

2
aij∂ju

)

=

∫



g +
1

2

d
∑

i,j=1

∂if∂jaij −
d
∑

i=1

bi∂if



u.

On the right hand side, the coefficients of u belong to Lp
loc(R

d) for all 1 < p < ∞
while the coefficient of ∂iu is zero. By Proposition 1.1 in [42] we then have that

f ∈ W 2,p
loc (R

d) for all 1 < p <∞.

Finally, by taking p > d in the Sobolev embedding theorem, see e.g. Theorem 7.10
in [18], we find that ∇f ∈ C(Rd). The proof is complete. �

The next lemma is crucial.

Lemma 5.8. Assume f ∈ D(A∗) and m := sup
Rd

f < ∞. Then there exists a

sequence {xn} ⊂ R
d such that

lim
n
f(xn) = m, lim

n
(1 + |xn|) |∇f(xn)| = 0, and lim

n

|xn|2
n

= 0.

Moreover, ∇2f(xn) exists and

∇2f(xn) ≤
3

n
Id,

where Id is the identity matrix on R
d.

Since the second derivatives are only defined almost everywhere, we need the so-
called Bony maximum principle [6, 30] to prove the above lemma. We quote the
version given in Proposition 1.2.12 in [17].

Lemma 5.9. Suppose p ≥ d and a function w ∈ W 2,p
loc (R

d) achieves a local maxi-
mum at point x0, then for all ξ ∈ R

d,

lim
r→0



ess inf
Br(x0)

d
∑

i,j=1

ξi(∂i∂jw)ξj



 ≤ 0,

where Br(x0) denotes the ball of radius r centered at x0.

The key idea of the following proof now comes from Lemma 2.3 in [23].

Proof of Lemma 5.8. For each n ∈ N, we define

gn(x) := f(x)− |x|2
n
.

Hence gn is bounded from above and tends to −∞ when |x| → ∞. Therefore there
exists x′n for each gn such that

gn(x
′
n) = max

Rd
gn =: mn.

Now for arbitrary ǫ > 0, we can find first xǫ ∈ R
d and then N ∈ N such that

f(xǫ) > m− ǫ and
|xǫ|2
n

< ǫ for all n > N.
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Hence for all n > N ,

m ≥ mn = f(x′n)−
|x′n|2
n

= max
Rd

gn

≥ gn(xǫ) = f(xǫ)−
|xǫ|2
n

≥ m− 2ǫ.

Therefore mn → m as n→ ∞, and hence f(x′n) → m and
|x′

n|2
n → 0 as n→ ∞.

Next we analyse the derivatives. By definitions of x′n and gn,

0 = ∇gn(x′n) = ∇f(x′n)−
2

n
x′n.

Hence, as n→ ∞,

(1 + |x′n|) |∇f(x′n)| = (1 + |x′n|)
2

n
|x′n| ≤

1

n

(

1 + 3|x′n|2
)

→ 0.

Finally for the second derivatives,

∇2gn(x) = ∇2f(x)− 2

n
Id, a.e.

Since x′n is maximum point for gn, by Proposition 5.9,

lim
r→0

(

ess inf
Br(x′

n)
∇2gn

)

≤ 0, and hence lim
r→0

(

ess inf
Br(x′

n)
∇2f

)

≤ 2

n
Id.

By the definition of the infimum and regularity of f , we can find another sequence
{xn} such that ∇2f(xn) is defined, |xn − x′n| < 1/n, and

∇2f(xn) ≤
3

n
Id.

Using that f ∈ C1, we can take a further subsequence such that also

|f(xn)− f(x′n)|+ |∇f(xn)−∇f(x′n)| <
1

n
.

Combining all the above estimates, we can conclude that

lim
n
f(xn) = m, lim

n
(1 + |xn|) |∇f(xn)| = 0, lim

n

|xn|2
n

= 0,

and ∇2f(xn) ≤ 3
nId. The proof is complete. �

Proof of Proposition 5.5. Let f ∈ D(A∗). We may assume that m := ‖f‖∞ =
sup

Rd f . The case m = − infRd f follows in a similar way and is omitted.

Note that by (2.2), aij(x) =
∑n

k=1 σik(x)σjk and σ = (σ1, · · · , σn), and then

A∗f(x) =
d
∑

i=1

bi(x)∂if(x) +
1

2

n
∑

k=1

σT
k (x)∇2f(x)σk(x).

Let {xn} be the sequence corresponding to f given by Lemma 5.8. From the proof
it follows that for any fixed λ > 0, we can always take

{xn} ⊂
{

x ∈ R
d : |λf(x)−A∗f(x)| ≤ ‖λf −A∗f‖∞

}

,



20 L. CHEN, E. R. JAKOBSEN, AND A. NAESS

because the complement of the latter set has zero Lebesgue measure in R
d. By

(C1) and Lemma 5.8,

lim
n
f(xn) = m, lim

n
|bi(xn)∂if(xn)| ≤ lim

n
K(1 + |xn|) |∇f(xn)| = 0,

and

lim sup
n

σT
k (xn)∇2f(xn)σk(xn) ≤ lim

n

3

n
|σk(xn)|2 ≤ lim

n

3

n
K(1 + |xn|2) = 0.

Hence,

lim sup
n

(−A∗f(xn)) ≥ 0,

and then

λ ‖f‖∞ = λ lim
n
f(xn) ≤ lim sup

n
(λf(xn)−A∗f(xn)) ≤ ‖(λ−A∗)f‖∞ .

Since f ∈ D(A∗) and λ > 0 are both arbitrary, A∗ is a dissipative operator, and
the proof is complete. �

Appendix A. Weak Convergence and Convergence of PDFs

Now we demonstrate the relationship between L1-convergence of PDFs and weak
convergence of processes.

Proposition A.1. Assume Xn and X are random variables with PDFs un and u
satisfying

lim
n→∞

‖un − u‖1 = 0.

Then Xn converges weakly to X,

lim
n→∞

|Eφ(Xn)− Eφ(X)| = 0 for all φ ∈ C0
b (R

d).

Proof. |Eφ(Xn)− Eφ(X)| =
∣

∣

∫

Rd φ(x)(un − u)(x) dx
∣

∣ ≤ ‖φ‖∞ ‖ūn − u‖1. �

The opposite is not true in general as the following example shows.

Example A.2. For any n ∈ N, we define

vn(x) =
(

1 + sin(2nπx)
)

χ[0,1](x).

Evidently, vn ≥ 0 and
∫

R
vn = 1, and hence vn is a PDF.

For any n ∈ N, we take Xn to be a random variable with PDF vn. By the Riemann-
Lebesgue Lemma, Xn converges weakly to a random variable X with PDF

v(x) ≡ χ[0,1](x).

However, vn does not converge to v in L1 since

‖vn − v‖1 :=

∫

R

|vn − v| =
∫ 1

0

|sin(2nπx)| dx ≡ 2

π
> 0.
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Appendix B. Proof of Proposition 2.14

Fix t ∈ [0, T ] and define τ = t/n for n > |bt|. Without loss of generality, we assume
that b 6= 0. We start with deriving an expression for the iteration of operators P̄n

τ .

From the scheme (2.14) and an iteration, we find that

Xn = (1 + bτ)nX0 + σ
n−1
∑

k=0

(1 + bτ)k∆Bn−k.

Let ψn(ξ) and φ(ξ) = e−
1
2 ξ

2

be the characteristic functions of Xn and an N(0, 1)
Gaussian variable, respectively. To simplify the notations, let C = C(b, σ, T, u0) > 0
denote various positive constants depending only on b, σ, T , and u0, and define

α := ebt, αn := (1 + bτ)n; β2 :=
σ2

b
(e2bt − 1), β2

n :=
σ2

b

2
(

(1 + bτ)2n − 1
)

2 + bτ
.

By the independence of the increments, the definition of ∆Bk, and summation of
exponents,

ψn(ξ) = ψ0(αnξ)
n−1
∏

k=0

φ(αk

√
τσξ) = ψ0(αnξ)e

− 1
4β

2
nξ

2

.

Note that ψ0(ξ) =
√
2πû0(ξ) and ψn(ξ) =

√
2π ˆ̄un(ξ). Taking the inverse Fourier

transform, and after elementary computations using convolution, scaling, and change
of variables, we find that

(

P̄n
τ u0

)

(y) = ūn(y) =
1√
2π

u0(·/αn)

αn
∗
(

1
√

β2
n/2

e
− ·2

β2
n

)

(y)

=

∫

R

u0(x)
√

πβ2
n

exp

{

− (y − αnx)
2

β2
n

}

dx.

Now we estimate the L1-norm of the difference of the exact and the approximate
densities, ‖(P̄n

τ − Pt)u0‖L1 . Recall (2.13) and decompose

P̄n
τ u0(y)− Ptu0(y)

=

∫

R

u0(x)
√

πβ2
n

exp

{

− (y − αnx)
2

β2
n

}

dx−
∫

R

u0(x)
√

πβ2
exp

{

− (y − αx)2

β2

}

dx

= βn

(

1

βn
− 1

β

)∫

R

u0(x)
√

πβ2
n

exp

{

− (y − αnx)
2

β2
n

}

dx

+

∫

R

u0(x)
√

πβ2

(

exp

{

− (y − αnx)
2

β2
n

}

− exp

{

− (y − αnx)
2

β2

})

dx

+

∫

R

u0(x)
√

πβ2

(

exp

{

− (y − αnx)
2

β2

}

− exp

{

− (y − αx)2

β2

})

dx

=: E1 + E2 + E3.

We start with some observations. Let a ∈ R. By l’Hôpital’s rule and a Taylor
expansion of ln(1 + ax) about x = 0,

lim
x→0

1

x

(

ea − (1 + ax)
1
x

)

=
a2

2
ea,
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and hence there is a locally bounded function C̃(a) > 0 such that

(B.1)
∣

∣

∣ea −
(

1 +
a

n

)n∣
∣

∣ ≤ C̃(a)
a2

n
.

Now for E1, obviously

∥

∥

∥

∥

∫

R

u0(x)√
πβ2

n

exp
{

− (·−αnx)
2

β2
n

}

dx

∥

∥

∥

∥

1

≤ ‖u0‖1. We turn to anal-

yse βn

(

1
βn

− 1
β

)

. Since

(B.2) |ex − 1| ≥
{

|x|
2 , −1 ≤ x,
1
2 , x ≤ −1,

it follows that

β2 :=
σ2

b
(e2bt − 1) ≥

{

σ2t, −1 ≤ 2bt,
σ2

2|b| , 2bt ≤ −1.

In other words,

(B.3)
1

β
≤ 1 ∨

√

2|b|t√
σ2t

for all t > 0.

Moreover

(B.4) β2 − β2
n =

σ2

b

(

e2bt − (1 + bt/n)2n
)

+ β2
n

bt/n

2 + bt/n
.

Hence combining (B.4) and (B.1), we get
∣

∣

∣

∣

βn

(

1

βn
− 1

β

)∣

∣

∣

∣

=

∣

∣

∣

∣

β2 − β2
n

β(β + βn)

∣

∣

∣

∣

≤
∣

∣

∣

∣

β2 − β2
n

β2

∣

∣

∣

∣

≤ C̃(2bt)4b2t2

n

σ2

2t
=
Ct

n
.

Therefore, ‖E1‖1 ≤ Ct/n.

Next, we estimate E2. By a change of variable and the commuting property of
convolutions, we have

E2 =
1

αn

∫

R

u0

(

y−x
αn

)

√

πβ2

(

e
− x2

β2
n − e

− x2

β2

)

dx

=
1

αn

∫

R

u0

(

y−βx
αn

)

√
π

e−x2

(

e
−β2

n−β2

β2
n

x2

− 1

)

dx

First we observe with (B.1) and (B.2) that

β2
n ≥ 2σ2

3|b|
∣

∣1− (1 + bτ)2n
∣

∣ ≥ 2σ2

3|b|
∣

∣1− e2bt
∣

∣−
∣

∣e2bt − (1 + bτ)2n
∣

∣

≥ σ2

3

(

2t ∧ 1

|b|

)

− Ct2

n
≥ σ2

6

(

2t ∧ 1

|b|

)

for n > 4CT (1 ∨ |b|T ).

Hence again from (B.4) and (B.1) we have
∣

∣

β2
n−β2

β2
n

x2
∣

∣ ≤ Ct
n x

2. Therefore

e−
Ct
n

x2 − 1 ≤ e
β2
n−β2

β2
n

x2

− 1 ≤ e
Ct
n

x2 − 1.
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So
∣

∣

∣e
β2
n−β2

β2
n

x2

−1
∣

∣

∣ ≤ (1−e−Ct
n

x2

)∨(e
Ct
n

x2 −1) = e
Ct
n

x2 −1. Now we can use Fubini’s

theorem to conclude that

‖E2‖1 ≤ 1

αn

∫∫

∣

∣

∣

∣

∣

∣

u0

(

y−βx
αn

)

√
π

e−x2

(

e
− β2

n−β2

β2
n

x2

− 1

)

∣

∣

∣

∣

∣

∣

dxdy

≤ ‖u0‖1
1√
π

∫

R

e−x2(

e
Ct
n

x2 − 1
)

dx

= ‖u0‖1
(

(1− Ct/n)−1/2 − 1
)

≤ Ct

n
for n large enough.

It remains to analyse E3, and here the computations will differ according to the
assumptions on u0. We first assume that

∫

R
|xu0(x)| dx <∞. Denote γn := α−αn

β .

Combining (B.1) and (B.3), it follows that

|γn| ≤
C̃(bt)b2t2

n

(1 ∨
√

2|b|t)√
σ2t

≤ Ct3/2

n
.

Therefore by a change of variable y 7→ y + θγnx, we have

‖E3‖1 ≤
∫∫

∣

∣

∣

∣

∣

u0(x)
√

πβ2

(

exp

{

− (y − αnx)
2

β2

}

− exp

{

− (y − αx)2

β2

})

∣

∣

∣

∣

∣

dxdy

=

∫∫
∣

∣

∣

∣

u0(x)√
π

(

e−(y+γnx)
2 − e−y2

)

∣

∣

∣

∣

dydx

=

∫∫ |u0(x)|√
π

∣

∣

∣

∣

∫ 1

0

γnx 2(y + θγnx)e
−(y+θγnx)

2

dθ

∣

∣

∣

∣

dydx

≤ 2|γn|√
π

∫

R

|xu0(x)| dx
∫

R

|z|e−z2

dz

≤ Ct3/2

n
for n large enough.

For the other two cases, we write

E3 =

∫

R

(

1

αn
u0

( x

αn

)

− 1

α
u0

(x

α

)

)

1
√

πβ2
e
− (y−x)2

β2 dx

=

(

1

αn
− 1

α

)∫

R

u0

( x

αn

) 1
√

πβ2
e
− (y−x)2

β2 dx

+
1

α

∫

R

(

u0

( x

αn

)

− u0

(x

α

)

)

1
√

πβ2
e
− (y−x)2

β2 dx

=: E′
3 +

1

α
E′′

3 .

Note that αn → α > 0 and hence 0 < α/2 ≤ αn ≤ 2α for large n. Since limn αn =
α, and α, αn are bounded away from 0. Combining (B.1), it follows that

∣

∣

∣

∣

1

α
− 1

αn

∣

∣

∣

∣

=

∣

∣

∣

∣

ebt − (1 + bt/n)n

ααn

∣

∣

∣

∣

≤ 1

ααn

C̃(bt)b2t2

n
≤ Ct2

n
.
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Hence ‖E′
3‖1 ≤ Ct2

n for large n.

Regarding to E′′
3 , we assume now

∫

R
|xu′0(x)|dx <∞. Then similarly

‖E′′
3 ‖1 ≤

∫

R

∣

∣

∣

∣

u0

(x

α

)

− u0

( x

αn

)

∣

∣

∣

∣

dx

≤
∫

R

∫ 1

0

∣

∣

∣

∣

(

1

αn
− 1

α

)

xu′0

(

x

α
+ θ

(

1

αn
− 1

α

)

x

)∣

∣

∣

∣

dθdx

≤ C

∣

∣

∣

∣

1

αn
− 1

α

∣

∣

∣

∣

∫

R

|xu′0(x)|dx ≤ Ct2

n
.

Finally we consider the most general case u0 ∈ L1(R) only. We will prove a uniform
convergence to zero without any rate. For any ε > 0, there exist R > 0 and N1 > 0
such that

∫

|x|>R

∣

∣

∣u0

(x

α

)∣

∣

∣ dx <
ε

3
and

∫

|x|>R

∣

∣

∣

∣

u0

( x

αn

)

∣

∣

∣

∣

dx <
ε

3
for all n > N1.

Next, since translation is continuous in L1, i.e. limh→0

∫

R
|w(x) − w(x + h)|dx = 0

for any w ∈ L1(R), and hn(x) :=
(

1
αn

− 1
α

)

x tends to 0 uniformly for |x| ≤ R,

there exists N2 > 0 such that for n > N2,
∫

|x|≤R

∣

∣

∣

∣

u0

(x

α

)

− u0

( x

αn

)

∣

∣

∣

∣

dx =

∫

|x|≤R

∣

∣

∣
u0

(x

α

)

− u0

(x

α
+ hn(x)

)∣

∣

∣
dx <

ε

3
.

Therefore we can conclude that E′′
3 → 0 in L1:

‖E′′
3 ‖1 ≤

∫

|x|>R

(

∣

∣

∣u0

(x

α

)∣

∣

∣+

∣

∣

∣

∣

u0

( x

αn

)

∣

∣

∣

∣

)

dx+

∫

|x|≤R

∣

∣

∣

∣

u0

(x

α

)

− u0

( x

αn

)

∣

∣

∣

∣

dx

< ε for n > N1 ∨N2.

The proof is complete.
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