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Abstract

Recently, the alternating direction method of multipliers (ADMM) has found many efficient ap-

plications in various areas; and it has been shown that the convergence is not guaranteed when it is

directly extended to the multiple-block case of separable convex minimization problems where there

are m ≥ 3 functions without coupled variables in the objective. This fact has given great impetus to

investigate various conditions on both the model and the algorithm’s parameter that can ensure the

convergence of the direct extension of ADMM (abbreviated as “e-ADMM”). Despite some results

under very strong conditions (e.g., at least (m − 1) functions should be strongly convex) that are

applicable to the generic case with a general m, some others concentrate on the special case of m = 3

under the relatively milder condition that only one function is assumed to be strongly convex. We

focus on extending the convergence analysis from the case of m = 3 to the more general case of m ≥ 3.

That is, we show the convergence of e-ADMM for the case of m ≥ 3 with the assumption of only

(m−2) functions being strongly convex; and establish its convergence rates in different scenarios such

as the worst-case convergence rates measured by iteration complexity and the asymptotically linear

convergence rate under stronger assumptions. Thus the convergence of e-ADMM for the general case

of m ≥ 4 is proved; this result seems to be still unknown even though it is intuitive given the known

result of the case of m = 3. Even for the special case of m = 3, our convergence results turn out to

be more general than the exiting results that are derived specifically for the case of m = 3.

Keywords: Convex Programming, Alternating Direction Method of Multipliers, Multiple-block, Con-

vergence Analysis.

1 Introduction

We consider a canonical convex minimization model with separable structure and linear constraints,

whose objective function is the sum of m functions without coupled variables:

min

{

m
∑

i=1

θi(xi)
∣

∣

∣

m
∑

i=1

Aixi = b, xi ∈ Xi, i = 1, 2, . . . ,m

}

, (1.1)

where θi : ℜni → ℜ (i = 1, 2, · · · ,m) are closed proper convex functions (not necessarily smooth);

Ai ∈ ℜl×ni (i = 1, 2, · · · ,m); Xi ⊆ ℜni (i = 1, 2, · · · ,m) are nonempty closed convex sets; b ∈ ℜl and
∑m

i=1 ni = n. The solution set of (1.1) is assumed to be nonempty throughout our discussion.

Let the augmented Lagrangian function of (1.1) be

Lβ(x1, x2, . . . , xm, z) :=
m
∑

i=1

θi(xi)− z⊤(
m
∑

i=1

Aixi − b) + β
2

∥

∥

∥

∥

m
∑

i=1

Aixi − b

∥

∥

∥

∥

2

(1.2)
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with z ∈ ℜl the Lagrange multiplier and β > 0 the penalty parameter. We focus on the following iterative

scheme with m ≥ 3:


































































xk+1
1 = argmin

{

Lβ(x1, x
k
2 , . . . , x

k
m, zk) | x1 ∈ X1

}

, (1.3a)

xk+1
2 = argmin

{

Lβ(x
k+1
1 , x2, . . . , x

k
m, zk) | x2 ∈ X2

}

, (1.3b)

· · · · · · · · ·
xk+1
i = argmin

{

Lβ(x
k+1
1 , . . . , xk+1

i−1 , xi, x
k
i+1, . . . , x

k
m, zk) | xi ∈ Xi

}

, (1.3c)

· · · · · · · · ·
xk+1
m = argmin

{

Lβ(x
k+1
1 , xk+1

2 , . . . , xk+1
m−1, xm, zk) | xm ∈ Xm

}

, (1.3d)

zk+1 = zk − β

(

m
∑

i=1

Aix
k+1
i − b

)

, (1.3e)

which starts from an given iterate (xk
2 , . . . , x

k
m, zk). When m = 2, the scheme (1.3a)-(1.3e) reduces to

the alternating direction method of multipliers (ADMM) originally proposed in [10]. The convergence

of ADMM has been well studied in the literature, see [8, 9, 13, 14]. Recently, ADMM has found many

applications in a wide range of areas; we refer to, e.g., [2, 6, 11] for its review. For the generic case of

m ≥ 3, the scheme (1.3a)-(1.3e) can be regarded as a direct extension of the alternating direction method

of multipliers (abbreviated as “e-ADMM”). Despite the inertia in algorithmic design and the numerical

efficiency in empirical implementation (e.g., in [20, 22, 23]), it was shown in [3] that the e-ADMM (1.3a)-

(1.3e) is not necessarily convergent when m = 3. By mathematical induction, it is easy to prove that the

same conclusion for the general case of m ≥ 3. This rather surprising fact has immediately given impetus

to investigate various conditions to ensure the convergence of the scheme (1.3a)-(1.3e) with m ≥ 3.

In the literature, there are some results for the generic case with a general m > 3, it was shown in

[12] that the scheme (1.3a)-(1.3e) is convergent if all the functions θi are strongly convex. In [17], the

global convergence of (1.3a)-(1.3e) was shown under the conditions that (m − 1) of the functions θi are

strongly convex. In [18], the linear convergence of (1.3a)-(1.3e) was shown under the condition that at

least (m − 1) of the functions θi are strongly convex together with other assumptions such as ∇θi are

Lipschitz continuous and Ai are full row/column rank. In addition, the authors of [15] showed that the

linear convergence can be guaranteed if the step size of the last step (1.3e) for updating the multiplier

zk+1 is shrank by a sufficiently small factor and a certain error bound condition is satisfied.

For the special case of m = 3, there is a richer set of literature. The first one is [4], which shows the

convergence of (1.3) under the assumption that two functions of θi are strongly convex. Still requiring

the strong convexity of two functions, the work [17] proves some refined convergence results such as

the O(1/t) ergodic convergence rate and o(1/t) non-ergodic convergence rate measured by the iteration

complexity, where t is the iteration number. Later, the results in [4, 17] were improved in [1, 16], in which

the convergence of (1.3a)-(1.3e) was obtained with only one strongly convex function for the case m = 3.

According to the results in [3], the strong convexity of at least one function seems minimal for the special

case of m = 3 of (1.1) to ensure the convergence of (1.3a)-(1.3e); and the work in [1, 16] verifies this

conclusion positively.

Given the mentioned results for the case of m = 3, by analogy, can we claim that we need (m − 2)

strongly convex functions amid θi’s to ensure the convergence of the scheme (1.3a)-(1.3e) for the generic

case with a general m that can be larger than 3? Our main goal in this paper is to answer this question

affirmatively. As we shall show, though the answer seems to be intuitive because of the known result for

the special case of m = 3, technically the extension from m = 3 to m ≥ 3 is highly nontrivial. One may

ask if we can only require (m − 3) of the functions θi to be strongly convex to ensure the convergence

of (1.3) when m ≥ 4. In Section 6.2, we give an example to show that in general it is not guaranteed

and thus verify the rationale of considering the convergence of (1.3) with m ≥ 3 with the assumption

of (m − 2) functions being strongly convex. We also refer to the recent work [5] for a more general

study in the operator context and it includes the case of (1.1) with m− 2 strongly convex functions as a

special case. But the resulting algorithm (see Algorithm 9 in [5]) for this special case is not the same as

2



the e-ADMM (1.3) under our consideration, e.g., for the subproblems accompanying the strongly convex

functions, their objectives do not involve augmented Lagrangian terms and they are solved in parallel.

In addition to the strong convexity of some or all the functions in the objective of (1.1), it is worthwhile

to mention that the penalty parameter β in (1.3) should be appropriately restricted to theoretically ensure

the convergence, see, e.g., all the work [1, 4, 12, 16, 17, 18]1. According to Theorem 4.1 in [3], even all

the functions θi’s in the objective of (1.1) are strongly convex, the scheme (1.3a)-(1.3e) with m = 3 may

be divergent if the penalty parameter β is not well restricted. Similarly, in Section 6.3, we show that

the scheme (1.3) could be divergent even when (m− 2) functions are strongly convex while the β is not

restricted appropriately. Therefore, to discuss the more difficult case where only some of the functions

θi’s are assumed to be strongly convex, we shall also restrict the penalty parameter into certain intervals

when discussing the the convergence of e-ADMM (1.3a)-(1.3e) with m ≥ 3. Indeed, as we shall elucidate,

the range of β, which is eligible to the case with a generic m, is even larger than those in [1, 16] when it

reduces to the special case of m = 3. That is, we shall prove the convergence for the e-ADMM (1.3) by

requiring only (m − 2) strongly convex functions and a larger range of β for m ≥ 3. Moreover, we shall

establish the worst-case O(1/t) convergence rate in the ergodic sense for m ≥ 3, where t is the iteration

counter; and explore some stronger conditions that can ensure the asymptotically linear convergence for

m ≥ 3. Thus, compared with existing work in the same category such as [1, 4, 12, 16, 17, 18], the

convergence results in this paper are more general and they are proved under weaker conditions.

The rest of this paper is organized as follows. We summarize some notation, present the assumptions

for future discussion and recall some known results in Section 2. In Section 3, we prove the convergence of

e-ADMM (1.3a)-(1.3e) under certain assumptions; this is the main result of this paper. Then, we establish

the worst-case convergence rate measured by the iteration complexity in Section 4. In Section 5, we show

that the scheme (1.3a)-(1.3e) can be guaranteed to be globally linear convergent if further conditions are

posed. In Section 6, we show that the convergence of e-ADMM (1.3) may not be guaranteed if there are

no appropriate assumptions on the model (1.1) or the penalty parameter β in (1.3). Some examples are

also constructed. Finally, we draw some conclusions in Section 7.

2 Preliminaries

In this section, we define some notation to be used; present some assumptions on the model (1.1) under

which our convergence analysis will be conducted; show the optimality condition of the model (1.1) in

the variational inequality context.

2.1 Notation

The domain of a function f is denoted by dom(f) and the set of all relative interior points of a given

nonempty convex set Ω by ri(Ω). Given a vector x ∈ ℜn, the notation x[i:j] (1 ≤ i ≤ j ≤ n) denotes

the subvector of x consisting of the i-th up to the j-th entries of x. If i = j, x[i] just denotes the i-th

entry of x. For any given vector x and a symmetric positive semi-definite matrix M with appropriate

dimensionality, we use ‖x‖2M to denote x⊤Mx. For an symmetric matrixM , let ‖M‖ denote its 2-norm. If

M is nonsymmetric, we use ‖M‖ :=
√

‖M⊤M‖ and ρ(M) to denote its spectral radius, i.e., the maximal

absolute value of its eigenvalues. A function f : ℜn → (−∞,∞] is strongly convex with modulus µ > 0

if it satisfies

f(tx+ (1 − t)y) ≤ tf(x) + (1− t)f(y)− µ

2
t(1 − t)‖x− y‖2, ∀x, y ∈ ℜn; (2.1)

where t ∈ [0, 1].

1Note that such a requirement of the penalty parameter is usually conservative because it is used to sufficiently ensure

the convergence. In numerical implementation, it can be appropriately relaxed to result in faster convergence.
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Then, based on the coefficient matrices Ai in (1.1) and the penalty parameter β in (1.3), we define

some matrices to simplify our notation in later analysis. More specifically, for m ≥ 3, let the block

triangular matrices M , N and block diagonal matrix Q be respectively defined as:

M =





















0 A⊤
1 A2 A⊤

1 A3 · · · A⊤
1 Am 0

0 0 A⊤
2 A3 · · · A⊤

2 Am 0
... · · · . . .

...
... 0

0 0 0 0 A⊤
m−1Am 0

0 0 0 0 0 0

0 0 0 0 0 0





















, N =

















0 0 0 · · · 0

0 A⊤
2 A2 · · · · · ·

...
...

...
. . .

...
...

0 A⊤
mA2 · · · A⊤

mAm 0

0 0 0 0 0

















, (2.2)

and

Q :=

















βA⊤
2 A2 0 · · · 0 0

0 βA⊤
3 A3 · · · 0 0

...
...

. . .
...

...

0 · · · · · · βA⊤
mAm 0

0 · · · · · · 0 1
β
I

















. (2.3)

Note that both M and N are in the space (n+ l)× (n+ l); and Q in (
∑m

i=2 ni + l)× (
∑m

i=2 ni + l). Also,

the matrix Q defined in (2.3) is positive definite if Ai (i = 2, . . . ,m) are assumed to be full column rank

and β > 0.

2.2 Assumptions

Then, we present the assumptions on the model (1.1) to conduct the convergence analysis for the e-ADMM

(1.3) with a general m ≥ 3.

Assumption 2.1. In (1.1) with m ≥ 3, the functions θ1 and θ2 are convex; the functions θ3, . . . θm are

strongly convex with the modulus µi > 0 (i = 3, . . . ,m); Ai (i = 1, . . . ,m) are full column rank matrices.

Assumption 2.2. There exists u′ = (x′
1, . . . , x

′
m) ∈ ri(dom(θ1)× dom(θ2)× · · · × dom(θm)) ∩ F , where

F :=

{

u = (x1, . . . , xm) ∈ X1 × · · · × Xm|
m
∑

i=1

Aixi = b

}

.

Note that both θ1 and θ2 are assumed to be convex; but we also say that they both satisfy the

inequality (2.1) with µ = 0 as long as there is no confusion. This helps us present the analysis in a unified

notation.

2.3 Optimality condition of (1.1) as a variational inequality

In the following, we characterize the optimality condition of the model (1.1) as a variational inequality.

The variational inequality representation plays a crucial role in our convergence analysis to be conducted.

First, let W := X1 ×X2 × · · · × Xm ×Z and the Lagrangian function of (1.1) be

L(x1, x2, . . . , xm, z) :=
m
∑

i=1

θi(xi)− z⊤(
m
∑

i=1

Aixi − b),

with z the Lagrange multiplier. Under Assumption 2.2, it follows from [21, Corollary 28.2.2] and [21,

Corollary 28.3.1] that the set of saddle points of L(x1, x2, . . . , xm, z), denoted by W∗, is nonempty due

to the nonempty assumption on the solution set of (1.1). Then, solving (1.1) amounts to finding a saddle

4



point of L(x1, x2, . . . , xm, z). Therefore, the optimality condition of the model (1.1) can be characterized

by finding w∗ ∈ W∗ such that:











































θ1(x1)− θ1(x
∗
1) + (x1 − x∗

1)
⊤(−A⊤

1 z
∗) ≥ 0,

θ2(x2)− θ2(x
∗
2) + (x2 − x∗

2)
⊤(−A⊤

2 z
∗) ≥ 0,

· · · · · · · · · · · ·
θi(xi)− θi(x

∗
i ) + (xi − x∗

i )
⊤(−A⊤

i z
∗) ≥ µi

2 ‖xi − x∗
i ‖2,

· · · · · · · · · · · ·
θm(xm)− θm(x∗

m) + (xm − x∗
m)T (−A⊤

mz∗) ≥ µm

2 ‖xm − x∗
m‖2,

∑m
i=1 Aix

∗
i − b = 0,

∀ w ∈ W , (2.4)

where µi is the strongly convex modulus of θi for i = 3, . . . ,m. More compactly, the system (2.4) can be

written as the variational inequality:

VI(W , F, θ) θ(u)− θ(u∗) + (w − w∗)⊤F (w∗) ≥
m
∑

i=3

µi

2
‖xi − x∗

i ‖2, ∀ w ∈ W , (2.5a)

where

u =











x1

x2

...

xm











, w =















x1

x2

...

xm

z















and θ(u) =

m
∑

i=1

θi(xi), F (w) =















−A⊤
1 z

−A⊤
2 z
...

−A⊤
mz

∑m
i=1 Aixi − b















. (2.5b)

Note that u collects all the primal variables in (1.1) and it is a sub-vector of w. Since the variable x1 is

not involved in the iteration of e-ADMM (1.3), we denote by

v = (x2, x3, · · · , xm, z)

all the primal and dual variables that are essentially involved in the iteration (1.3). Moreover, the

solution set of VI(W , F, θ), i.e., W∗, is also convex due to Theorem 2.3.5 in [7]. Accordingly, we also use

the notation

V∗ = {(x∗
2, . . . , x

∗
m, λ∗) | (x∗

1, x
∗
2, . . . , x

∗
m, λ∗) ∈ W∗}.

2.4 Two elementary lemmas

In the following, we present two elementary lemmas. The first one is trivial and its proof is omitted.

Lemma 2.1. The mapping F (w) defined in (2.5b) satisfies

(w′ − w)⊤(F (w′)− F (w)) = 0, ∀w′, w ∈ ℜn+l. (2.6)

The second lemma shows that the spectral radius is a continuous function with respect to the 2-norm

of a matrix. We shall use this property in Section 6.

Lemma 2.2. Given two matrices A ∈ ℜn×n and ∆ ∈ ℜn×n that are not necessarily symmetric. Suppose

that ‖∆‖ < 1. Then, there exists a positive constant C depending only on the matrix A such that

|ρ(A+∆)− ρ(A)| ≤ C‖∆‖. (2.7)

Proof. First, using the triangle inequality, we have

∣

∣‖(A+∆)⊤(A+∆)‖ − ‖A⊤A‖
∣

∣ ≤ ‖∆⊤A+A⊤∆+∆⊤∆‖ ≤ (2‖A‖+ ‖∆‖)‖∆‖ ≤ (2‖A‖+ 1)‖∆‖.

5



Then, it follows from the definition of the spectral radius ρ(·) that

|ρ(A+∆)− ρ(A)| =

∣

∣

∣

∣

√

‖(A+∆)⊤(A+∆)‖ −
√

‖A⊤A‖
∣

∣

∣

∣

=

∣

∣

∣

∣

∣

‖(A+∆)⊤(A+∆)‖ − ‖A⊤A‖
√

‖(A+∆)⊤(A+∆)‖ +
√

‖A⊤A‖

∣

∣

∣

∣

∣

≤ 1
√

‖A⊤A‖
(2‖A‖+ 1)‖∆‖. (2.8)

Thus, the inequality (2.7) holds with C := 1√
‖A⊤A‖

(2‖A‖ + 1) which is positive and only dependent on

the matrix A.

3 Convergence

In this section, we prove the convergence of the e-ADMM (1.3) for m ≥ 3 under the mentioned assump-

tions on the model (1.1) with a certain restriction on the penalty parameter β. This is the main result

of this paper. As mentioned, the proof is highly nontrivial. So we organize the discussion into several

subsections. The roadmap of the proof is also reflected by the titles of these subsections.

3.1 Discerning the difference of an iterate from a solution point

We intend to observe the iterate wk+1 generated by the e-ADMM (1.3) and quantity its difference from a

solution point in W∗ in terms of the variational inequality representation (2.5) of the optimality condition.

Since the iterate wk+1 generated by the scheme (1.3) can be expressed in the variational inequality form,

it is possible to compare it with the variational inequality representation (2.5) of the optimality condition

of the model (1.1) and so discern the difference of the iterate wk+1 from a solution point in W∗. More

precisely, we can show that this difference can be measured by some crossing terms and hence we need

to carefully analyze these crossing terms. The following lemma follows from the first-order optimality

conditions of the subproblems in the e-ADMM (1.3).

Lemma 3.1. Suppose Assumptions 2.1 and 2.2 hold. Let {wk} be the sequence generated by the e-ADMM

(1.3). Then, we have xk+1
i ∈ Xi (i = 1, . . . ,m) and

θi(xi)− θi(x
k+1
i )− (xi − xk+1

i )⊤A⊤
i [z

k+1 − β

m
∑

j=i+1

Aj(x
k
j − xk+1

j )] ≥ µi

2
‖xi − xk+1

i ‖2, (3.1)

with µ1 = 0, µ2 = 0 and µi > 0 for i = 3, . . . ,m.

Proof. According to the optimality condition of the xi-subproblem (1.3c), we have xk+1
i ∈ Xi such that

θi(xi)− θi(x
k+1
i )− (xi − xk+1

i )⊤A⊤
i [z

k − β(

i
∑

j=1

Ajx
k+1
j +

m
∑

j=i+1

Ajx
k
j − b)] ≥ µi

2
‖xi − xk+1

i ‖2, ∀ xi ∈ Xi.

Substituting the equation (1.3e) into the last inequality, we obtain the assertion (3.1).

Recall the characterization of W∗ in (2.5). The following lemma reflects the discrepancy of wk+1 from

a solution point in W∗.

Lemma 3.2. Suppose Assumptions 2.1 and 2.2 hold. Let {wk} be the sequence generated by the e-ADMM

(1.3a)-(1.3e). Then, we have

θ(u)− θ(uk+1) + (w − wk+1)⊤F (wk+1) +
1

β
(z − zk+1)⊤(zk+1 − zk) + β(w − wk+1)⊤M(wk − wk+1)

≥
m
∑

i=3

µi

2
‖xk+1

i − xi‖2, ∀w ∈ W . (3.2)

6



Proof. First, it follows from (1.3e) that

(z − zk+1)⊤[
m
∑

i=1

Aix
k+1
i − b− 1

β
(zk − zk+1)] ≥ 0, ∀z ∈ ℜl. (3.3)

Combining the inequalities (3.1) for i = 1, . . . ,m, with the above inequality, we have


































θ1(x1)− θ1(x
k+1
1 )− (x1 − xk+1

1 )⊤A⊤
1 [z

k+1 − β
∑m

j=2 Aj(x
k
j − xk+1

j )] ≥ 0,

θ2(x2)− θ2(x
k+1
2 )− (x2 − xk+1

2 )⊤A⊤
2 [z

k+1 − β
∑m

j=3 Aj(x
k
j − xk+1

j )] ≥ 0,

· · · · · · · · · · · · · · · · · ·
θi(xi)− θi(x

k+1
i )− (xi − xk+1

i )⊤A⊤
i [z

k+1 − β
∑m

j=i+1 Aj(x
k
j − xk+1

j )] ≥ µi

2 ‖xi − xk+1
i ‖2,

· · · · · · · · · · · · · · · · · · i = 3, . . . ,m,

(z − zk+1)⊤[
∑m

i=1 Aix
k+1
i − b− 1

β
(zk − zk+1)] ≥ 0.

∀ w ∈ W .(3.4)

Adding all these inequalities together and using the definitions of F in (2.5b) and M in (2.2), we imme-

diately obtain the assertion (3.2).

3.2 Replacing the crossing terms by summable quadratic terms

According to Lemma 3.2 and the optimality condition (2.5), it is clear that our emphasis should be

analyzing the crossing term

1

β
(z − zk+1)⊤(zk+1 − zk) + β(w − wk+1)⊤M(wk − wk+1) (3.5)

which gives the difference of the iterate wk+1 from a solution point in W∗. As we shall show later, the

first term in (3.5) can be handled easily, whereas the second one should be sophisticatedly treated. This

is indeed the most technical part in the paper. We start from the following lemma.

Lemma 3.3. Suppose Assumptions 2.1 and 2.2 hold. For the iterative sequence {wk} generated by the

e-ADMM (1.3), we have

〈

zk+1 − zk, Aix
k+1
i −Aix

k
i

〉

≥ −β(Aix
k+1
i −Aix

k
i )

⊤[
m
∑

j=i+1

Aj(x
k+1
j − xk

j )−
m
∑

j=i+1

Aj(x
k
j − xk−1

j )]

+µi‖xk
i − xk+1

i ‖2, i = 1, . . . ,m, (3.6)

where µ1 = 0, µ2 = 0 and µi > 0 (i = 3, . . . ,m).

Proof. Setting xi := xk
i in (3.1), we get

θi(x
k
i )− θi(x

k+1
i )− (xk

i − xk+1
i )⊤A⊤

i [z
k+1 + β

m
∑

j=i+1

Aj(x
k+1
j − xk

j )] ≥
µi

2
‖xk+1

i − xk
i ‖2.

Setting xi := xk+1
i in (3.1) with k := k − 1, we have

θi(x
k+1
i )− θi(x

k
i )− (xk+1

i − xk
i )

⊤A⊤
i [z

k + β
m
∑

j=i+1

Aj(x
k
j − xk−1

j )] ≥ µi

2
‖xk+1

i − xk
i ‖2.

Adding the above two inequalities, we obtain that for i = 1, . . . ,m, it holds

〈Aix
k+1
i −Aix

k
i , z

k+1−zk〉 ≥ µi‖xk
i−xk+1

i ‖2−β(Aix
k+1
i −Aix

k
i )

⊤[
m
∑

j=i+1

Aj(x
k+1
j −xk

j )−
m
∑

j=i+1

Aj(x
k
j−xk−1

j )].

(3.7)

Note we use the convention
∑m

i=m+1 ai = 0. The assertion (3.6) is proved.
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Lemma 3.4. Suppose Assumptions 2.1 and 2.2 hold. For the iterative sequence {wk} generated by the

e-ADMM (1.3), we have

〈zk − zk+1,

m
∑

i=2

Ai(x
k
i − xk+1

i )〉 ≥ −β

m−1
∑

i=2

(Aix
k+1
i −Aix

k
i )

⊤[
m
∑

j=i+1

Aj(x
k+1
j − xk

j )−
m
∑

j=i+1

Aj(x
k
j − xk−1

j )]

+

m
∑

i=3

µi‖xk+1
i − xk

i ‖2 (3.8)

Proof. Adding inequalities (3.7) from i = 2 to m together, the assertion (3.8) follows immediately.

In the following lemma, we use the results in Lemmas 3.2 and 3.4; and represent the difference

between the iterate wk+1 from a solution point in W∗ by some quadratic terms (see (3.10) and (3.11))

and crossing terms in terms of only Aix
k+1
i (see (3.12) and (3.13)). This refined treatment turns out to

be more convenient for successive operations over different subproblems; and it is the key to the proof of

the main convergence results to be conducted.

Lemma 3.5. Suppose Assumptions 2.1 and 2.2 hold. Let {wk} be the sequence generated by the e-ADMM

(1.3). Then, for any w ∈ W, we have

θ(u)− θ(uk+1) + (w − wk+1)⊤F (w) + β(

m
∑

i=1

Aixi − b)⊤
m
∑

i=1

Ai(x
k
i − xk+1

i )

≥ β

2

m
∑

i=2

△(xk+1
i , xk

i , xi) +
1

2β
△(zk+1, zk, z) +

m
∑

i=3

(

µi‖xk+1
i − xk

i ‖2 +
µi

2
‖xk+1

i − xi‖2
)

+Υk+1
1 (xk+1

i , xk
i , x

k−1
i ) + Υk+1

2 (xk+1
i , xk

i , xi),

(3.9)

where

△(xk+1
i , xk

i , xi) := ‖Aix
k+1
i −Aixi‖2 − ‖Aix

k
i −Aixi‖2 + ‖Aix

k
i −Aix

k+1
i ‖2, (3.10)

△(zk+1, zk, z) := ‖zk+1 − z‖2 − ‖zk − z‖2 + ‖zk − zk+1‖2, (3.11)

Υk+1
1 (xk+1

i , xk
i , x

k−1
i ) := −β

m−1
∑

i=2

(Aix
k+1
i −Aix

k
i )

⊤





m
∑

j=i+1

Aj(x
k+1
j − xk

j )−
m
∑

j=i+1

Aj(x
k
j − xk−1

j )



 ,

(3.12)

Υk+1
2 (xk+1

i , xk
i , xi) := β

m
∑

i=3

i−1
∑

j=2

(Aix
k+1
i −Aixi)

⊤(Ajx
k+1
j −Ajx

k
j ). (3.13)

Proof. First, using the definitions of M and N in (2.2), it holds that

β(w − wk+1)⊤M(wk − wk+1) + β(w − wk+1)⊤N(wk − wk+1)

= β

(

m
∑

i=1

(Aixi − b)− (Aix
k+1
i − b))

)⊤ m
∑

i=2

(Aix
k
i −Aix

k+1
i ). (3.14)
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Substituting (3.14) into the left-hand side of (3.2), we obtain

θ(u)− θ(uk+1) + (w − wk+1)⊤F (wk+1) +
1

β
(z − zk+1)⊤(zk+1 − zk)

+β(

m
∑

i=1

Aixi − b)⊤
m
∑

i=2

(Aix
k
i −Aix

k+1
i )− β(

m
∑

i=1

Aix
k+1
i − b)⊤

m
∑

i=2

(Aix
k
i −Aix

k+1
i )

−β(w − wk+1)⊤N(wk − wk+1) ≥
m
∑

i=3

µi

2
‖xk+1

i − xi‖2, ∀w ∈ W . (3.15)

On the other hand, using the definition of △(zk+1, zk, z) in (3.11), we have

1

β
(z − zk+1)⊤(zk+1 − zk) = − 1

2β
△(zk+1, zk, z).

Substituting the above identity into (3.15) and using (1.3d), we obtain

θ(u)− θ(uk+1) + (w − wk+1)⊤F (wk+1) + β(

m
∑

i=1

Aixi − b)⊤
m
∑

i=2

(Aix
k
i −Aix

k+1
i )

≥
m
∑

i=3

µi

2
‖xi − xk+1

i ‖2 + β(w − wk+1)⊤N(wk − wk+1) +
1

2β
△(zk+1, zk, z)

+(zk − zk+1)⊤
m
∑

i=2

(Aix
k
i −Aix

k+1
i ), ∀ w ∈ W . (3.16)

Next, substituting (3.8) into the last term of the right-hand of (3.16), it yields

θ(u)− θ(uk+1) + (w − wk+1)⊤F (wk+1) + β(

m
∑

i=1

Aixi − b)⊤
m
∑

i=2

(Aix
k
i −Aix

k+1
i )

≥
m
∑

i=3

[µi

2
‖xi − xk+1

i ‖2 + µi‖xk+1
i − xk

i ‖2
]

+ β(w − wk+1)⊤N(wk − wk+1)

+
1

2β
△(zk+1, zk, z)− β

m−1
∑

i=2

(Aix
k+1
i −Aix

k
i )

⊤





m
∑

j=i+1

Aj(x
k+1
j − xk

j )−
m
∑

j=i+1

Aj(x
k
j − xk−1

j )



 , ∀ w ∈ W .

(3.17)

On the other hand, it follows from (3.10) and the definition of the matrix N in (2.2) that

β(w − wk+1)⊤N(wk − wk+1)

=
β

2

m
∑

i=2

△(Aix
k+1
i , Aix

k
i , Aixi) + β

m
∑

i=3

i−1
∑

j=2

(Aix
k+1
i −Aixi)

⊤(Ajx
k+1
j −Ajx

k
j ). (3.18)
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Substituting (3.18) into (3.17), we get

θ(u)− θ(uk+1) + (w − wk+1)⊤F (wk+1) + β(

m
∑

i=1

Aixi − b)⊤
m
∑

i=2

(Aix
k
i −Axx

k+1
i )

≥
m
∑

i=3

[µi

2
‖xi − xk+1

i ‖2 + µi‖xk+1
i − xk

i ‖2
]

+
β

2

m
∑

i=2

△(Aix
k+1
i , Aix

k
i , Aixi) +

1

2β
△(zk+1, zk, z)

−β

m−1
∑

i=2

(Aix
k+1
i −Aix

k
i )

⊤





m
∑

j=i+1

Aj(x
k+1
j − xk

j )−
m
∑

j=i+1

Aj(x
k
j − xk−1

j )





+β

m
∑

i=3

i−1
∑

j=2

(Aix
k+1
i −Aixi)

⊤(Ajx
k+1
j −Ajx

k
j ), ∀ w ∈ W .

(3.19)

Finally, the assertion (3.9) follows from Lemma 2.1 and inequality (3.19) immediately.

For succinctness, we temporarily skip the superscripts and the variables for Υi (i = 1, 2). The next

lemma focuses on analyzing the crossing terms Υ1 and Υ2 in the right-hand side of (3.9); and finding their

lower bounds representable by negative quadratic terms. The purpose of doing so is that the difference

between the iterate wk+1 and a solution point in W∗ can be completely represented by quadratic terms

in a unified way. More specially, we decompose Υ1 and Υ2 into following several terms:

Υ
(1)
1 := −β(A2x

k+1
2 −A2x

k
2)

⊤





m
∑

j=3

Aj(x
k+1
j − xk

j )−
m
∑

j=3

Aj(x
k
j − xk−1

j )



 (3.20)

Υ
(21)
1 := −β

m−1
∑

i=3

(Aix
k+1
i −Aix

k
i )

⊤
m
∑

j=i+1

Aj(x
k+1
j − xk

j ) (3.21)

Υ
(22)
1 := β

m−1
∑

i=3

(Aix
k+1
i −Aix

k
i )

⊤
m
∑

j=i+1

Aj(x
k
j − xk−1

j ) (3.22)

Υ
(1)
2 := β(A2x

k+1
2 −A2x

k
2)

⊤
m
∑

i=3

(Aix
k+1
i −Aixi) (3.23)

Υ
(2)
2 := β

m−1
∑

j=3

m
∑

i=j+1

(Aix
k+1
i −Aixi)

⊤(Ajx
k+1
j −Ajx

k
j ). (3.24)

Then, we take a further analysis for each smaller term to get their lower bounds.

Lemma 3.6. Suppose Assumptions 2.1 and 2.2 hold. Let {wk} be the sequence generated by the e-ADMM

(1.3). Then, for any w ∈ W, we have the following assertions:

1) For any scalars a, b > 0, it holds

Υ
(1)
1 ≥ β

(

−(a+ b)‖A2x
k
2 −A2x

k+1
2 ‖2 − 1

4a
‖

m
∑

i=3

(Aix
k+1
i −Aix

k
i )‖2 −

m− 2

4b

m
∑

i=3

‖Aix
k
i −Aix

k−1
i )‖2

)

.

(3.25)

2) The following identity holds:

Υ
(21)
1 = −β

2

(

‖
m
∑

i=3

(Aix
k+1
i −Aix

k
i )‖2 −

m
∑

i=3

‖Aix
k+1
i −Aix

k
i ‖2
)

. (3.26)
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3) It holds that

Υ
(22)
1 ≥ −β

2

m−1
∑

i=3

(m− i)‖Aix
k+1
i −Aix

k
i ‖2 −

β

2

m
∑

i=4

(i− 3)‖Aix
k
i −Aix

k−1
i ‖2. (3.27)

4) For any scalar δ > 0, it holds

Υ
(1)
2 ≥ −β

(

m− 2

2δ

m
∑

i=3

‖Aix
k+1
i −Aixi‖2 +

δ

2
‖A2x

k+1
2 −A2x

k
2‖2
)

. (3.28)

5) It holds that

Υ
(2)
2 ≥ −β

2

(

m
∑

i=3

(i− 3)‖Aix
k+1
i −Aixi‖2 +

m−1
∑

i=3

(m− i)‖Aix
k+1
i −Aix

k
i ‖2
)

. (3.29)

6) Υ1 and Υ2 defined respectively in (3.12) and (3.13) satisfy the equations

Υ1 = Υ
(1)
1 +Υ

(21)
1 +Υ

(22)
1 and Υ2 = Υ

(1)
2 +Υ

(2)
2 . (3.30)

Proof. 1) Using Cauchy-Schwarz inequality, for any positive scalars a and b, we have

Υ
(1)
1 = −β(A2x

k+1
2 −A2x

k
2)

⊤
m
∑

j=3

Aj(x
k+1
j − xk

j ) + β(A2x
k+1
2 −A2x

k
2)

⊤
m
∑

j=3

Aj(x
k
j − xk−1

j )

≥ β

(

−a‖A2x
k
2 −A2x

k+1
2 ‖2 − 1

4a
‖

m
∑

i=3

(Aix
k+1
i −Aix

k
i )‖2

)

+β

(

−b‖A2x
k
2 −A2x

k+1
2 ‖2 − m− 2

4b

m
∑

i=3

‖Aix
k
i −Aix

k−1
i ‖2

)

.

Then, the inequality (3.25) follows directly.

2) Invoking the identity x⊤y = 1
2 (‖x+ y‖2 − ‖x‖2 − ‖y‖2), we know

Υ
(21)
1 = −β

2

m−1
∑

i=3







∥

∥

∥

∥

∥

∥

m
∑

j=i

(Ajx
k+1
j −Ajx

k
j )

∥

∥

∥

∥

∥

∥

2

−
∥

∥Aix
k+1
i −Aix

k
i

∥

∥

2 −

∥

∥

∥

∥

∥

∥

m
∑

j=i+1

(Ajx
k+1
j −Ajx

k
j )

∥

∥

∥

∥

∥

∥

2






= −β

2

(

‖
m
∑

i=3

(Aix
k+1
i −Aix

k
i )‖2 −

m
∑

i=3

‖Aix
k+1
i −Aix

k
i ‖2
)

.

Then, the inequality (3.26) is proved.

3) Using Cauchy-Schwarz inequality, we have

Υ
(22)
1 ≥ −β

2

m−1
∑

i=3

m
∑

j=i+1

(

‖Aix
k+1
i −Aix

k
i ‖2 + ‖Ajx

k
j −Ajx

k−1
j ‖2

)

= −β

2

m−1
∑

i=3

(m− i)‖Aix
k+1
i −Aix

k
i ‖2 −

β

2

m
∑

i=4

(i− 3)‖Aix
k
i −Aix

k−1
i ‖2.

Thus, we obtain the inequality (3.27).
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4) Using Cauchy-Schwarz inequality, for any positive scalar δ, we have

Υ
(1)
2 ≥ −β

(

1

2δ
‖

m
∑

i=3

(Aix
k+1
i −Aixi)‖2 +

δ

2
‖A2x

k+1
2 −A2x

k
2‖2
)

≥ −β

(

m− 2

2δ

m
∑

i=3

‖Aix
k+1
i −Aixi‖2 +

δ

2
‖A2x

k+1
2 −A2x

k
2‖2
)

.

Then, the inequality (3.28) follows directly.

5) Again, using Cauchy-Schwarz inequality, it yields

Υ
(2)
2 ≥ −β

2

m−1
∑

j=3

m
∑

i=j+1

(

‖Ajx
k+1
j −Ajx

k
j ‖2 + ‖Aix

k+1
i −Aixi‖2

)

= −β

2

(

m
∑

i=3

(i − 3)‖Aix
k+1
i −Aixi‖2 +

m−1
∑

i=3

(m− i)‖Aix
k+1
i −Aix

k
i ‖2
)

.

Thus, the inequality (3.29) is proved.

6) The assertion (3.30) follows from the definitions of Υ1, Υ2, Υ
(1)
1 , Υ

(21)
1 , Υ

(22)
1 , Υ

(1)
2 and Υ

(2)
2 (see

(3.12), (3.13) and (3.20-3.24)), and some elementary calculations.

With the previously proved lemmas, we can derive a favorable relationship for two consecutive iterates

about their respective differences from a solution point in W∗. This relationship is reflected by an

inequality that is completely representable by quadratic terms without any crossing terms. It is thus easy

to show that the sequence generated by the e-ADMM (1.3) is Fejèr monotone with respect to W∗.

Lemma 3.7. Suppose Assumptions 2.1 and 2.2 hold. Let {wk} be the sequence generated by the e-ADMM

(1.3). For arbitrary positive scalars a, b, δ, and any w∗ ∈ W∗, we have

β

2

m
∑

i=2

‖Aix
k+1
i −Aix

∗
i ‖2 +

1

2β
‖zk+1 − z∗‖2 + β

m
∑

i=3

[

(i− 3)

2
+

m− 2

4b

]

‖Aix
k+1
i −Aix

k
i ‖2

≤ β

2

m
∑

i=2

‖Aix
k
i −Aix

∗
i ‖2 +

1

2β
‖zk − z∗‖2 + β

m
∑

i=3

[

(i − 3)

2
+

m− 2

4b

]

‖Aix
k
i −Aix

k−1
i ‖2

−
m
∑

i=2

Ci‖Aix
k+1
i −Aix

k
i ‖2 −

1

2β
‖zk − zk+1‖2 −

m
∑

i=3

ζi‖Aix
k+1
i −Aix

∗
i ‖2,

(3.31)

where

C2 := (
1

2
− (a+ b)− δ

2
)β, (3.32)

Ci :=
µi

‖A⊤
i Ai‖

− β

(

(
1

4a
+

1

4b
)(m− 2) +

3m− i− 7

2

)

, i = 3, . . . ,m, (3.33)

and

ζi :=
µi

‖A⊤
i Ai‖

− β

[

m− 2

2δ
+

(i − 3)

2

]

, i = 3, . . . ,m. (3.34)
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Proof. First, substituting (3.25)-(3.29) into (3.9) and invoking (3.30), we derive that

β

2

m
∑

i=2

‖Aix
k+1
i −Aix

∗
i ‖2 +

1

2β
‖zk+1 − z∗‖2 + β

m
∑

i=3

[

(i− 3)

2
+

m− 2

4b

]

‖Aix
k+1
i −Aix

k
i ‖2

≤ β

2

m
∑

i=2

‖Aix
k
i −Aix

∗
i ‖2 +

1

2β
‖zk − z∗‖2 + β

m
∑

i=3

[

(i − 3)

2
+

m− 2

4b

]

‖Aix
k
i −Aix

k−1
i ‖2

−C2‖A2x
k+1
2 −A2x

k
2‖2 −

1

2β
‖zk − zk+1‖2 + β

2
(1 +

1

2a
)‖

m
∑

i=3

(Aix
k+1
i −Aix

k
i )‖2

−
m
∑

i=3

{

µi‖xk
i − xk+1

i ‖2 − β

2

[

m− 2

2b
+ 2m− i− 5

]

‖Aix
k
i −Aix

k+1
i ‖2

}

−
m
∑

i=3

{

µi

2
‖xi − xk+1

i ‖2 − β

[

m− 2

2δ
+

(i− 3)

2

]

‖Aix
k+1
i −Aixi‖2

}

+

{

θ(u)− θ(uk+1) + (w − wk+1)⊤F (w) + β(

m
∑

i=1

Aixi − b)⊤
m
∑

i=1

Ai(x
k
i − xk+1

i )

}

.

(3.35)

Invoking the Cauchy-Schwarz inequality and a > 0, we have

β

2
(1 +

1

2a
)‖

m
∑

i=3

(Aix
k+1
i −Aix

k
i )‖2 ≤ β

2
(1 +

1

2a
)(m− 2)

m
∑

i=3

‖Aix
k+1
i −Aix

k
i ‖2. (3.36)

Then, using (2.5a), we get

θ(u∗)− θ(uk+1) + (w∗ − wk+1)⊤F (w∗) + β(

m
∑

i=1

Aix
∗
i − b)⊤

m
∑

i=1

Ai(x
k
i − xk+1

i ) ≤ −
m
∑

i=3

µi

2
‖x∗

i − xk+1
i ‖2.

(3.37)

Setting w := w∗ ∈ W∗ in (3.35) and combining (3.36) and (3.37), we obtain the assertion (3.31)-(3.34)

directly.

3.3 Main result

In this subsection, we prove the convergence of the e-ADMM (1.3) with m ≥ 3 under Assumptions 2.1

and 2.2. This is the main result of this paper. As mentioned, it has been shown in [3] that the penalty

parameter β must be appropriately restricted to guarantee the convergence of the e-ADMM (1.3) even

all functions are assumed to be strongly convex. Therefore, in the following theorem we first present

a range of β to ensure the convergence of the e-ADMM (1.3) with m ≥ 3 under our assumptions. We

target a larger range of β while ensuring that all the coefficients Ci (i = 2, . . . ,m) and ζi (i = 3, . . . ,m)

defined in (3.32)-(3.34) are positive. With the positiveness of these coefficients, as we shall show in the

proof, it becomes possible to measure the difference of distance to a solution point for two consecutive

iterates. It is noticed that determining the range of β via the inequalities (3.32)-(3.34) relies on the free

variables a, b, δ and m; thus it seems to be unclear to know what the theoretically largest range is. In

the following proof, we provide a heuristics and probe a favorable range of β which can be shown to be

a better choice than those in the existing literature.

Lemma 3.8. Suppose Assumptions 2.1 and 2.2 hold. When β is restricted by

β ∈
(

0, min
3≤i≤m

µi

max{4m− 10, 3m− 6.5}‖A⊤
i Ai‖

)

, (3.38)

we have
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i) Ci > 0, i = 2, . . . ,m,

ii) ζi > 0, i = 3, . . . ,m,

where C2, Ci (i = 3, · · · ,m) and ζi (i = 3, · · · ,m) are defined in (3.32), (3.33) and (3.34), respectively.

Proof. Let us first explain our heuristics to find the range (3.38). With the purpose of finding a larger

range of β while enduring the positiveness of all the coefficients in (3.32)-(3.34), and mainly motivated

by (3.33), we choose a = b and thus we should ensure the following inequalities:

C2 := (
1

2
− 2a− δ

2
)β > 0, (3.39)

Ci :=
µi

‖A⊤
i Ai‖

− β

(

m− 2

2a
+

3m− i− 7

2

)

> 0, i = 3, . . . ,m, (3.40)

ζi :=
µi

‖A⊤
i Ai‖

− β

[

m− 2

2δ
+

(i − 3)

2

]

> 0, i = 3, . . . ,m. (3.41)

To ensure (3.39) and simplify (3.41), we probe the choice of δ as

δ = (1 − 4a)
m− 2

m− (2− ǫ′)
with ǫ′ > 0

so that the numerator m− 2 in (3.41) can be canceled. This particular choice also makes us to derive a

range of β whose upper bound can be represented by some linear terms of m. Indeed, with the mentioned

probe, we have

C2 :=
1− 4a

2

ǫ′

m− 2 + ǫ′
, (3.42)

Ci :=
µi

‖A⊤
i Ai‖

− β

(

m− 2

2a
+

3m− i− 7

2

)

, i = 3, . . . ,m, (3.43)

ζi :=
µi

‖A⊤
i Ai‖

− β

[

m− 2 + ǫ′

2(1− 4a)
+

i− 3

2

]

, i = 3, . . . ,m. (3.44)

Further probing different values of a, we choose a = 1
5 in (3.42). Also, we choose i = 3 in (3.43) and

i = m in (3.44). Then, the definitions in (3.42)-(3.44) can be accordingly specified as

C2 :=
ǫ′

10(m− 2 + ǫ′)
, (3.45)

Ci :=
µi

‖A⊤
i Ai‖

− β(4m− 10), i = 3, . . . ,m, (3.46)

ζi :=
µi

‖A⊤
i Ai‖

− β(3m− 6.5 + 2.5ǫ′), i = 3, . . . ,m. (3.47)

Letting ǫ′ → 0 in (3.47), we obtain the range (3.38) that can ensure the positiveness of all the coefficients

defined in (3.32)-(3.34).

Now, we are in the stage to prove the convergence of the e-ADMM (1.3) with the restriction (3.38)

on β. Let us define a potential function Φ(vk+1, vk, v) as

Φ(vk+1, vk, v) :=
1

2
‖vk+1 − v‖2Q + β

m
∑

i=3

[

(i− 3)

2
+

5(m− 2)

4

]

‖Aix
k+1
i −Aix

k
i ‖2, (3.48)

with β satisfying (3.38); and a block diagonal matrix as

Q̃ = diag

(

2C2A
⊤
2 A2, · · · , 2CmA⊤

mAm,
1

β
I

)

. (3.49)
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Then, Q̃ is positive definite because Ci > 0 (i = 2, · · · ,m) according to Lemma 3.8. It thus follows from

(3.31) that

Φ(vk+1, vk, v∗) ≤ Φ(vk, vk−1, v∗)− 1

2
‖vk − vk+1‖2

Q̃
. (3.50)

Theorem 3.1. Suppose Assumptions 2.1 and 2.2 hold. Let {wk} be the sequence generated by the e-

ADMM (1.3) with β restricted in (3.38). Then, the sequence {wk} converges to a solution point in

W∗.

Proof. It follows from (3.50) that the sequence defined by

{1

2
‖vk+1 − v∗‖2Q + β

m
∑

i=3

[

(i − 3)

2
+

5(m− 2)

4

]

‖Aix
k+1
i −Aix

k
i ‖2
}

is non-increasing. It implies that the sequence {vk} is bounded under the assumption that Ai (i =

2, . . . ,m) are full column rank. The relationship (1.3e) and the fact that A1 is full column rank further

imply that the sequence {xk
1} is also bounded. Hence, the iterative sequence {wk} generated by the

scheme (1.3a)-(1.3e) is bounded.

Summarizing (3.50) for all k and rearranging the terms, we get

1

2

∞
∑

k=1

‖vk − vk+1‖2
Q̃
≤
(

1

2
‖v1 − v∗‖2Q + β

m
∑

i=3

[

(i− 3)

2
+

5(m− 2)

4

]

‖Aix
0
i −Aix

1
i ‖2
)

, (3.51)

which implies

lim
k→∞

‖zk − zk+1‖ = 0 and lim
k→∞

‖Aix
k
i −Aix

k+1
i ‖ = 0, i = 2, . . . ,m. (3.52)

Moreover, the boundedness of the sequence indicates that the sequence {wk} has at least one cluster

point. Let w∞ be an arbitrary cluster point of {wk} and {wkj} be the subsequence converging to w∞.

Then, the sequence {vkj} converges to v∞; and the whole sequence {vk} has only one cluster point v∞

because of (3.50). On the other hand, it follows from (1.3e) and the fact that A1 is full column rank that

xk+1
1 = (A⊤

1 A1)
−1A⊤

1

(

b−
m
∑

i=2

Aix
k+1
i +

zk − zk+1

β

)

.

Then, the sequence {xk
1} has only one cluster point, say x∞

1 := (A⊤
1 A1)

−1A⊤
1 (b−∑m

i=2 Aix
∞
i ), by

combining the above equation with vk → v∞. Thus, the sequence {wk} converges to w∞. Taking limit

along the subsequence {wkj} in (3.4) and using (3.52), we have



































θ1(x1)− θ1(x
∞
1 ) + (x1 − x∞

1 )⊤(−A⊤
1 z

∞) ≥ 0,

θ2(x2)− θ2(x
∞
2 ) + (x2 − x∞

2 )⊤(−A⊤
2 z

∞) ≥ 0,

· · · · · · · · · · · ·
θi(xi)− θi(x

∞
i ) + (xi − x∞

i )⊤(−A⊤
i z

∞) ≥ µi

2 ‖xi − x∞
i ‖2, i = 3, . . . ,m,

· · · · · · · · · · · ·
∑m

i=1 Aix
∞
i − b = 0.

∀ w ∈ W .

According to the optimality condition (2.5), we know w∞ ∈ W∗. Consequently, the sequence {wk}
generated by the e-ADMM (1.3) with β restricted in (3.38) converges to a solution point in W∗.

Remark 3.1. It can be seen from (3.50) that the sequence {Aix
k
i } (i = 1, . . . ,m) converges to {Aix

∞
i }

(i = 1, . . . ,m) even without the full column rank assumptions on Ai’s (i = 1, . . . ,m).
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Remark 3.2. We have shown the convergence of the e-ADMM (1.3) when β is restricted in the range

(3.38), for the generic case with a general m ≥ 3. Indeed, when the special case of m = 3 is considered,

the range (3.38) reduces to

β ∈
(

0,
2

5‖A⊤
3 A3‖

)

,

which is still larger than some ones in the literature that are only eligible to the special case of m = 3,

e.g., the range
(

0, 6
17‖A⊤

3 A3‖

)

proposed in [1].

4 Ergodic convergence rate

In [13, 14], some worst-case O(1/t) convergence rates measured by the iteration complexity were estab-

lished for the original ADMM scheme which corresponds to the scheme (1.3) with m = 2. Since then,

there are some works focusing on investigating the convergence rates in the same nature for various

splitting methods in the literature. This kind of convergence rates provides a global, though perhaps

not sharp, estimate on the convergence speed for the algorithm under discussion. In this section, we

establish a worst-case O(1/t) convergence rate measured by iteration complexity for the e-ADMM (1.3)

with m ≥ 3 under Assumptions 2.1 and 2.2. Compared with (3.38), the restriction on β to ensure the

O(1/t) convergence rate is slightly more restrictive. In order to establish the ergodic convergence rate,

we require the positiveness of C2 defined in (3.32), Ci (i = 3, . . . ,m) in (3.33) and ζ̃i (i = 3, . . . ,m) in

(4.7). Note that ζ̃i (i = 3, . . . ,m) is deferent from ζi (i = 3, . . . ,m); and the difference results in a more

restrictive range of β as to be shown later.

We first prove a lemma that will be used to prove a worst-case O(1/t) convergence rate for the

e-ADMM (1.3) with m ≥ 3.

Lemma 4.1. Suppose Assumptions 2.1 and 2.2 hold. Let {wk} be the sequence generated by the e-ADMM

(1.3) with m ≥ 3. If β is restricted by

β ∈
(

0, min
3≤i≤m

µi

(13+
√
33

4 m− 17+
√
33

2 )‖A⊤
i Ai‖

)

, (4.1)

then we have

Θ(vk+1, vk, v) ≤ Θ(vk, vk−1, v) + Ξ(wk+1 , wk, w), (4.2)

where

Θ(vk+1, vk, v) :=
1

2
‖vk+1 − v‖2Q + β

m
∑

i=3

τi‖Aix
k+1
i −Aix

k
i ‖2, (4.3)

τi :=
(i − 3)

2
+

(7 +
√
33)(m− 2)

8
. (4.4)

and

Ξ(wk+1, wk, w) := θ(u)− θ(uk+1) + (w − wk+1)⊤F (w) + β(
m
∑

i=1

Aixi − b)⊤
m
∑

i=2

Ai(x
k
i − xk+1

i ). (4.5)
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Proof. First, substituting (3.36) into (3.35), we get

β

2

m
∑

i=2

‖Aix
k+1
i −Aixi‖2 +

1

2β
‖zk+1 − z‖2 + β

m
∑

i=3

{

(i− 3)

2
+

(m− 2)

4b

}

‖Aix
k+1
i −Aix

k
i ‖2

≤ β

2

m
∑

i=2

‖Aix
k
i −Aixi‖2 +

1

2β
‖zk − z‖2 + β

m
∑

i=3

{

(i− 3)

2
+

(m− 2)

4b

}

‖Aix
k
i −Aix

k−1
i ‖2

−
m
∑

i=2

Ci‖Aix
k+1
i −Aix

k
i ‖2 −

1

2β
‖zk − zk+1‖2 −

m
∑

i=3

ζ̃i‖Aix
k+1
i −Aixi‖2 + Ξ(wk+1, wk, w),

(4.6)

where Ξ(wk+1, wk, w) is defined in (4.5) and

ζ̃i :=
µi

2‖A⊤
i Ai‖

− β

[

m− 2

2δ
+

(i− 3)

2

]

, i = 3, . . . ,m. (4.7)

The heuristics of the following part is similar as that of Lemma 3.8. We skip the detail for succinctness.

Setting a = b = 7−
√
33

8 and δ =
√
33−5
2

(m−2)
(m−2+ǫ′) (ǫ′ > 0), we get

C2 =

√
33− 5

4

ǫ′

(m− 2 + ǫ′)
,

Ci =
µi

‖A⊤
i Ai‖

− (
13 +

√
33

4
m− 14 + i+

√
33

2
)β, i = 3, . . . ,m,

and

ζ̃i =
µi

2‖A⊤
i Ai‖

− (
5 +

√
33

8
m− 5 +

√
33

4
+

i− 3

2
+

5 +
√
33

8
ǫ′)β, i = 3, . . . ,m.

Let ǫ′ → 0+. Then, we derive that Ci > 0, (i = 2, . . . ,m) and ζ̃i > 0 (i = 3, . . . ,m) when β satisfies

(4.1). Thus, the assertion (4.2) follows from (4.6) immediately.

Based on Lemma 4.1, we now establish a worst-case O(1/t) convergence rate in the ergodic sense

for the e-ADMM (1.3a)-(1.3e). For this analysis, the quality of an iterate is measured by the feasibility

violation and the decrease of the objective function. Let us define

xk+1
i,t :=

1

t

t
∑

k=1

xk+1
i , i = 1, . . . ,m; uk+1

t :=
1

t

t
∑

k=1

uk+1, and wk+1
t :=

1

t

t
∑

k=1

wk+1. (4.8)

Obviously, wk+1
t ∈ W because of the convexity of Xi (i = 1, . . . ,m). Note that we are considering the

case of m ≥ 3. Hence, the interval (4.1) is included in the restriction of β (3.38). Then, invoking Theorem

3.1, the sequence { 1
2‖vk − v∗‖2Q} is bounded and thus there exists a constant κ such that

‖Aix
k
i ‖ ≤ κ, ∀ i = 1, . . . ,m, and ‖zk‖ ≤ κ, ∀ k ≥ 0. (4.9)

Theorem 4.1. Suppose Assumptions 2.1 and 2.2 hold. For t iterations generated by the e-ADMM (1.3)

with β restricted in (4.1), the following assertions holds.

1) For C̄ := β
∑m

i=3 τi‖Aix
1
i −Aix

0
i ‖2 and τi is defined in (4.4), we have

θ(uk+1
t )− θ(u) + (wk+1

t − w)⊤F (w) ≤ 1

t

[

2βκ(m− 1)‖
m
∑

i=1

Aixi − b‖+ 1

2
‖v1 − v‖2Q + C̄

]

. (4.10)
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2) There exists a constant c̄1 > 0 such that

‖
m
∑

i=1

Aix
k+1
i,t − b‖2 ≤ c̄1

t2
. (4.11)

3) There exists a constant c̄2 > 0 such that

|θ(uk+1
t )− θ(u∗)| ≤ c̄2

t
. (4.12)

Proof. 1) First, it follows from the assertion (4.2) that for all w ∈ W , we have

θ(u)− θ(uk+1) + (w − wk+1)⊤F (w) + β(
m
∑

i=1

Aixi − b)⊤
m
∑

i=2

Ai(x
k
i − xk+1

i )

≥ Θ(vk+1, vk, v)−Θ(vk, vk−1, v). (4.13)

Summarizing both sides of the above inequality from k = 1, 2, · · · , t, we have

tθ(u)−
t
∑

k=1

θ(uk+1) + (tw −
t
∑

k=1

wk+1)⊤F (w) + β(

m
∑

i=1

Aixi − b)⊤
m
∑

i=2

Ai(x
1
i − xt+1

i )

≥ Θ(vt+1, vt, v)−Θ(v1, v0, v). (4.14)

Then, it follows from the convexity of θi (i = 1, . . . ,m) that

θ(uk+1
t ) ≤ 1

t

t
∑

k=1

θ(uk+1). (4.15)

Combining (4.9), (4.14) and (4.15), we have

θ(uk+1
t )− θ(u) + (wk+1

t − w)⊤F (w) ≤ 1

t

(

Θ(v1, v0, v) + 2βκ(m− 1)‖
m
∑

i=1

Aixi − b‖
)

. (4.16)

Thus, the assertion (4.10) follows from the above inequality and the defintion of Θ(v1, v0, v) directly.

2) Let us define c̄1 := 2
β2

(

‖z1 − z∗‖2 + ‖zk+1 − z∗‖2
)

. Then, we have

‖
m
∑

i=1

Aix
k+1
i,t − b‖2 =

∥

∥

∥

∥

∥

1

t

t
∑

k=1

[

m
∑

i=1

Aix
k+1
i − b

]∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

1

t

t
∑

k=1

[

1

β
(zk − zk+1)

]

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

1

t

1

β

(

z1 − zt+1
)

∥

∥

∥

∥

2

≤ 1

t2
2

β2

(

‖z1 − z∗‖2 + ‖zk+1 − z∗‖2
)

=
c̄1
t2
,

where the first equality follows from (4.8), the second follows from (1.3e) and the last follows from

Cauchy-Schwarz inequality. The assertion (4.11) is proved immediately.

3) It follows from L(uk+1
t , z∗) ≥ L(u∗, z∗) that

θ(uk+1
t )− θ(u∗) ≥ 〈z∗,

m
∑

i=1

Aix
k+1
i,t − b〉 ≥ −1

2

(

1

t
‖z∗‖2 + t‖

m
∑

i=1

Aix
k+1
i,t − b‖2

)

≥ − 1

2t
(‖z∗‖2 + c̄1),

(4.17)

where the second inequality is because of the Cauchy-Schwarz inequality and the last is due to (4.11).

On the other hand, setting w := w∗ in (4.16), we obtain

θ(uk+1
t )− θ(u∗) + (wk+1

t − w∗)⊤F (w∗) ≤ 1

t
Θ(v1, v0, v∗).
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Invoking the definition of F in (2.5b), we have

(wk+1
t − w∗)⊤F (w∗) = −〈z∗,

m
∑

i=1

Aix
k+1
i,t − b〉 ≥ − 1

2t
(‖z∗‖2 + c̄1),

where the proof of the last inequality is similar to (4.17). Combining these two inequalities above, we get

θ(uk+1
t )− θ(u∗) ≤ 1

t
Θ(v1, v0, v∗) +

1

2t
(‖z∗‖2 + c̄1). (4.18)

The inequalities (4.17) and (4.18) indicate that the assertion (4.12) holds by setting c̄2 := Θ(v1, v0, v∗)+
1
2 (‖z∗‖2 + c̄1).

For a compact set D ⊂ W containing a solution point of the variational inequality (2.5), let us define

d̃ := sup{2βκ(m− 1)‖
m
∑

i=1

Aixi − b‖+ 1

2
‖v1 − v‖2Q|w ∈ D}. (4.19)

Then, for the first t iterations of the e-ADMM (1.3), the point wk+1
t defined in (4.8) satisfies

sup
w∈D

{θ(uk+1
t )− θ(u) + (wk+1

t − w)⊤F (w)} ≤ d̃+ C̄

t
. (4.20)

On the other hand, invoking Theorem 3.1 and Stolz-Cesàro Theorem (see, e.g. [19]), the sequence {wk+1
t }

converges to the same saddle point w∞ as the sequence {wk} does. Therefore, it implies that wk+1
t is

an approximated solution of (1.1) with an accuracy of O(1/t) in sense of (4.20). Note that Theorem 4.1

also indicates a worst-case O(1/t) convergence rate of the e-ADMM (1.3) in sense of that the accuracy is

measured by both the feasibility violation (4.11) and the decrease of the objective function (4.12).

Remark 4.1. For the special case of m = 3, the restriction of β (4.1) reduces to

β ∈ (0,

√
33− 5

2‖A⊤
3 A3‖

),

which is larger than that in [1] for the special case of m = 3:

β ∈ (0,
6

17‖A⊤
3 A3‖

).

For m ≥ 4, we can derive a less restrictive range for β:

β ∈
(

0, min
3≤i≤m

µi

max{4.5m− 11}‖A⊤
i Ai‖

)

. (4.21)

Indeed, setting a = b = 1
6 and δ = 1

3
(m−2)

(m−2+ǫ′) (ǫ′ > 0). Let ǫ′ → 0+, we know that Ci > 0, (i = 2, . . . ,m)

and ζ̃i > 0 (i = 3, . . . ,m) when β satisfies (4.21). Thus, the inequality (4.2) holds with τi =
(i−3)

2 + 3(m−2)
2

when β is restricted to (4.21). Thus, Theorem 4.1 also holds and it ensures a worst-case O(1/t) ergodic

convergence rate in senses of both the variational inequality characterization (4.10) and the combination

of the feasibility violation (4.11) and the decrease of the objective function (4.12).

19



5 Asymptotically linear convergence under stronger conditions

In this section, we show that it is possible to theoretically derive the globally linear convergence in the

asymptotical sense for the e-ADMM (1.3) with m ≥ 3. The results in Section 3 are useful for this purpose.

Note that the asymptotically linear convergence is a very strong result and thus more general assumptions

are needed to ensure this result. We refer to [18] for some existing results about the linear convergence

of the e-ADMM (1.3) under some conditions stronger than what we shall present now. Our assumptions

to ensure the asymptotically linear convergence of the e-ADMM (1.3) are listed below.

Assumption 5.1. In (1.1), θ1 is convex and θi (i = 2, . . . ,m) are strongly convex with modulus µi.

Moreover, one of the following conditions hold:

1) One of ∇θi (i = 2, . . . ,m) is Lipschitz continuous with constant Li, the corresponding Ai is full

row rank and the corresponding Xi = ℜni ;

2) ∇θ1 is Lipschitz continuous with constant L1, A1 is nonsingular and X1 = ℜn1 .

First of all, under Assumption 5.1, we can prove a result similar to (3.31), i.e.,

Φ(vk+1, vk, v∗) ≤ Φ(vk, vk−1, v∗)−
m
∑

i=2

Ci‖Aix
k+1
i −Aix

k
i ‖2 −

1

2β
‖zk − zk+1‖2

−
m
∑

i=3

ζi‖Aix
k+1
i −Aix

∗
i ‖2 − µ2‖xk+1

2 − x∗
2‖2 − µ2‖xk+1

2 − xk
2‖2,

(5.1)

where Φ(vk+1, vk, v) is defined in (3.48). Recall that when the penalty parameter β is restricted into

(3.38), we know that all the constants C2 in (3.32), Ci (i = 3, . . . ,m) in (3.33) and ζi in (3.34) are

positive. Thus, there exists a constant

ς := min

{

min
3≤i≤m

{ζi}, min
2≤i≤m

{Ci},
1

2
max

1≤i≤m

max{4m− 10, 3m− 6.5}‖A⊤
i Ai‖

µi

, µ2

}

> 0

such that

Φ(vk+1, vk, v∗) ≤ Φ(vk, vk−1, v∗)

−ς

(

m
∑

i=2

‖Aix
k+1
i −Aix

k
i ‖2 + ‖zk − zk+1‖2 +

m
∑

i=3

‖Aix
k+1
i −Aix

∗
i ‖2 + ‖xk+1

2 − x∗
2‖2 + ‖xk+1

2 − xk
2‖2
)

.

(5.2)

Indeed, according to (5.2) and the definition of Φ(vk+1, vk, v) in (3.48), it is clear that we only need to

bound the terms ‖zk+1− z∗‖2 in terms of the minus term in (5.2). As we show below, this is exactly why

we need to assume Assumption 5.1.

Lemma 5.1. Suppose Assumption 5.1 holds. Let w∗ be a saddle point in W∗ and {wk} be the sequence

generated by the e-ADMM (1.3) with m ≥ 3. Then, there exists a constant σ1 > 0 such that

‖zk+1 − z∗‖2 ≤ σ1

(

m
∑

i=2

‖Aix
k+1
i −Aix

k
i ‖2 +

m
∑

i=3

‖Aix
k+1
i −Aix

∗
i ‖2

+‖zk − zk+1‖2 + ‖xk+1
2 − x∗

2‖2 + ‖xk+1
2 − xk

2‖2
)

. (5.3)

Proof. We consider two cases.
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Case I: “ One of ∇θi (i = 2, . . . ,m) is Lipschitz continuous with constant Li, the corresponding Ai is

full row rank and the corresponding Xi = ℜni”. The optimality conditions for the xi- and x∗
i -subproblems

are respectively:

A⊤
i z

k+1 = ∇θi(x
k+1
i ) + βA⊤

i

m
∑

j=i+1

(Ajx
k
j −Ajx

k+1
j ),

and

−A⊤
i z

∗ = −∇θi(x
∗
i ).

Adding these two equalities, we get

√

λmin(AiA⊤
i )‖zk+1 − z∗‖ ≤ ‖A⊤

i z
k+1 −A⊤

i z
∗‖ ≤ ‖∇θi(x

k+1
i )−∇θi(x

∗
i )‖+ β‖Ai‖

m
∑

j=i+1

‖Ajx
k
j −Ajx

k+1
j ‖

≤ Li‖xk+1
i − x∗‖+ β‖Ai‖

m
∑

j=i+1

‖Ajx
k
j −Ajx

k+1
j ‖, i = 2, . . . ,m. (5.4)

Then, there exists a constant σ1 > 0 such that conclusion (5.3) follows.

Case II: “∇θ1 is Lipschitz continuous with constant L1, A1 is nonsingular and X1 = ℜn1”. It follows

from (1.3e) and the last equation in (2.4) that

A1x
k+1
1 −A1x

∗
1 =

1

β
(zk − zk+1)−

m
∑

i=2

(Aix
k+1
i −Aix

∗
i ).

Then, because A1 is nonsingular, we have

√

λmin(A⊤
1 A1)‖xk+1

1 − x∗
1‖ ≤ 1

β
‖zk − zk+1‖+

m
∑

i=2

‖Aix
k+1
i −Aix

∗
i ‖

≤ 1

β
‖zk − zk+1‖+

m
∑

i=3

‖Aix
k+1
i −Aix

∗
i ‖+

√

‖A⊤
2 A2‖‖xk+1

2 − x∗
2‖.

On the other hand, similarly as (5.4), we get

√

λmin(A1A⊤
1 )‖zk+1 − z∗‖ ≤ L1‖xk+1

1 − x∗‖+ β‖A1‖
m
∑

j=2

‖Ajx
k
j −Ajx

k+1
j ‖.

Combining these two inequalities, the conclusion (5.3) follows immediately.

Now, we can derive the asymptotically linear convergence of the e-ADMM (1.3) under Assumptions

5.1. To compare with Theorems 3.1-3.3 in [18], we just show the linear convergence of the sequence

{(A1x
k+1
1 , A2x

k+1
2 , . . . , Amxk+1

m , zk+1)}. If further assumptions are assumed such as that all Ai (i =

1, · · · ,m) are assumed to be full column rank, it is trivial to derive the linear convergence of the sequence

{(xk+1
1 , xk+1

2 , . . . , xk+1
m , zk+1)}. We skip the detail for succinctness.

Theorem 5.1. Suppose Assumptions 5.1. Let {(xk+1
1 , xk+1

2 , . . . , xk+1
m , zk+1)} be the sequence generated

by the e-ADMM (1.3) with m ≥ 3 and the restriction of β (3.38). Then the sequence {(A1x
k+1
1 , A2x

k+1
2 ,

. . . , Amxk+1
m , zk+1)} converges linearly to a point in {(A1x

∗
1, A2x

∗
2, . . . , Amx∗

m, z∗)|w∗ ∈ W∗}.

Proof. Let w∗ be a saddle point in W∗. It follows from (5.3) that there exists a positive scalar σ′ such
that

Φ(vk+1, vk, v∗)

≤ σ′
(

m
∑

i=2

‖Aix
k+1
i −Aix

k
i ‖2 + ‖zk − zk+1‖2 +

m
∑

i=3

‖Aix
k+1
i −Aix

∗
i ‖2 + ‖xk+1

2 − x∗
2‖2 + ‖xk+1

2 − xk
2‖2
)

.
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Table 1: Comparison of assumptions and restrictions on β with [18]

Scenario Assumptions in [18] Assumption 5.1
Xi = ℜni (i = 1, . . . , n) General nonempty closed convex sets

1. θ2, · · · , θm are strongly convex; θ2, · · · , θm are strongly convex;
∇θm is Lipschitz continuous One of ∇θi (i = 2, · · · ,m) is Lipschitz continuous,
Am is full row rank and Ai is full row rank with Xi = ℜni .
(

0,min

{

min2≤i≤m−1
4µi

(2m−i)(i−1)‖A⊤
i

Ai‖
,

4µm

(m+1)(m−2)‖A⊤
mAm‖

}) (

0, min3≤i≤m{ µi

max{4m−10,3m−6.5}‖A⊤
i

Ai‖
}
)

2. θ1, · · · , θm are strongly convex; θ2, · · · , θm are strongly convex;
∇θ1, · · · ,∇θm are Lipschitz continuous ∇θ1 is Lipschitz continuous,

and A1 is nonsingular with Xi = ℜni
(

0,min

{

min2≤i≤m−1
4µi

3(2m−i)(i−1)‖A⊤
i

Ai‖
,

4µm

3m2−3m−2‖A⊤
mAm‖

}) (

0, min3≤i≤m{ µi

max{4m−10,3m−6.5}‖A⊤
i

Ai‖
}
)

3. θ2, · · · , θm are strongly convex;
∇θ1, · · · ,∇θm are Lipschitz continuous
A1 is full column rank.
(

0,min

{

min2≤i≤m−1
4µi

3(2m−i)(i−1)‖A⊤
i

Ai‖
,

4µm

3m2−3m−2‖A⊤
mAm‖

})

Then, combining (5.2) and the above inequality, we obtain

Φ(vk+1, vk, v∗) ≤ σ′

ζ + σ′Φ(v
k, vk−1, v∗).

It implies the Q-linearly convergence rate of the sequence {Φ(vk+1, vk, v∗)}. Thus, we know that the

sequences {‖Aix
k+1
i − Aix

∗
i ‖2} (i = 2, . . . ,m), {‖zk+1 − z∗‖2} and {‖Aix

k+1
i − Aix

k
i ‖2} (i = 3, . . . ,m)

all converges R-linearly. Recall that

‖zk − zk+1‖2 ≤ 2(‖zk − z∗‖2 + ‖zk+1 − z∗‖2).

The sequence ‖zk − zk+1‖2 also converges R-linearly. Finally, it follows from (1.3e) that

A1x
k+1
1 −A1x

∗
1 =

1

β
(zk − zk+1)−

m
∑

i=2

(Aix
k+1
i −Aix

∗
i ).

Then, using Cauchy-Schwarz inequality, we have

‖A1x
k+1
1 − A1x

∗
1‖2 ≤ 2

(

1

β2
‖zk − zk+1‖2 + (m− 1)

m
∑

i=2

‖Aix
k+1
i −Aix

∗
i ‖2
)

.

Therefore, the sequence {‖A1x
k+1
1 −A1x

∗
1‖2} also converges R-linearly because of the R-linear convergence

of the sequences {‖zk − zk+1‖2} and {‖Aix
k+1
i −Aix

∗
i ‖2} (i = 2, . . . ,m). The proof is complete.

Remark 5.1. In [18], three scenarios are considered to ensure the linear convergence of e-ADMM (1.3).

We list them in Table 1. Note that all the cases in [18] additionally require Xi = ℜni (i = 1, . . . ,m).

Scenario 1 in Table 2 of [18] is included in our Assumption 5.1; while we can easily establish the linear

convergence of the e-ADMM with (3.38) for Scenarios 2 and 3 in Table 2 of [18] by following the roadmap

of the proof of Theorem 5.1. For succinctness, we omit the proof details for Scenarios 2 and 3 in Table 2

of [18]. Now we elaborate on the difference of the restrictions on β in Table 1. Note that the denominator

of the upper bound for β in (3.38) is a linear function of m while that in [18] is quadratic. So it is not

hard to see that our restriction of β (3.38) is less restrictive than those in [18]. More specifically, for

example, if we consider the case of m = 15 and µi ≡ µ (i = 2, . . . ,m), then the ranges of β in [18] for

Scenarios 1 and 2 are (0, µ
52 ) and (0, µ

157 ), respectively; while those in (3.38) for both cases are (0, µ
50 ).

The difference of β’s range becomes more apparent for larger values of m.
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6 Two assertions

In this section, we construct some examples to show that the e-ADMM (1.3) with m ≥ 3 are divergent

if the model (1.1) or the penalty parameter β in (1.3) is not appropriately assumed. These examples

exclude the hope of ensuring the convergence of (1.3) under too mild assumptions and to some extent

justify the rationale of our assumptions for discussing the convergence of the e-ADMM (1.3) with m ≥ 3.

In particular, we verify the following assertions.

• The e-ADMM may be divergent for solving (1.1) if (m − 3) functions are strongly convex for any

penalty parameter β > 0 with m ≥ 4;

• The e-ADMM may be divergent for solving (1.1) if (m− 2) functions are strongly convex without

any restriction on the penalty parameter β with m ≥ 3.

6.1 Application of e-ADMM to a linear homogeneous equation

Inspired by [3], we consider a linear homogeneous equation with m variables

m
∑

i=1

Aixi = 0, (6.1)

where Ai ∈ ℜm (i = 1, . . . ,m) are all column vectors and the matrix A := [A1, . . . , Am] is assumed to be

nonsingular. Obviously, the equation (6.1) has the unique solution xi = 0 (i = 1, . . . ,m). The equation

(6.1) is a special case of the model (1.1) where the objective function is null, b is the all-zero vector in

ℜm and Xi = ℜ for i = 1, . . . ,m.

Applying the e-ADMM (1.3) with β > 0 to (6.1), we obtain


























−A⊤
1 z

k + βA⊤
1 (A1x

k+1
1 +A2x

k
2 + · · ·+Amxk

m) = 0,

−A⊤
2 z

k + βA⊤
2 (A1x

k+1
1 +A2x

k+1
2 + · · ·+Amxk

m) = 0,

· · · · · · · · · · · · · · · · · ·
−A⊤

mzk + βA⊤
m(A1x

k+1
1 +A2x

k+1
2 + · · ·+Amxk+1

m ) = 0,

zk+1 = zk − β(A1x
k+1
1 +A2x

k+1
2 + · · ·+Amxk+1

m ).

(6.2)

Introducing the new variable µk := zk/β, the scheme (6.2) can be rewritten as











xk+1
2
...

xk+1
m

µk+1











= S











xk
2
...

xk
m

µk











, where S = L−1R, (6.3)

with

L =





















A⊤
2 A2 0 · · · 0 0 01×m

A⊤
3 A2 A⊤

3 A3 · · · 0 0 01×m

...
...

. . .
...

...
...

A⊤
m−1A2 · · · · · · A⊤

m−1Am−1 0 01×m

A⊤
mA2 A⊤

mA3 · · · A⊤
mAm−1 A⊤

mAm 01×m

A2 A3 · · · Am−1 Am Im×m





















(6.4)
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and

R =























0 −A⊤
2 A3 · · · · · · −A⊤

2 Am A⊤
2

0 0 · · · · · · −A⊤
3 Am A⊤

3
...

...
. . .

...
...

...

0 0 · · · . . . −A⊤
m−1Am A⊤

m−1

0 0 · · · · · · 0 A⊤
m

0m×1 0m×1 0m×1 · · · 0m×1 Im×m























(6.5)

− 1

A⊤
1 A1





















A⊤
2 A1

A⊤
3 A1

...

A⊤
m−1A1

A⊤
mA1

A1





















(

−A⊤
1 A2,−A⊤

1 A3, · · · ,−A⊤
1 Am−1,−A⊤

1 Am, A⊤
1

)

.

(6.6)

Therefore, the e-ADMM (1.3) for solving (6.1) is divergent if the spectral radius of S, denoted by ρ(S),

is strictly larger than 1. Note that ρ(S) is independent of β. That is, when the e-ADMM (1.3) is applied

to the special problem (6.1), the convergence is independent of the value of β.

Based on the analysis above, the divergence of (1.3) with m = 3 for any β > 0 has been illustrated in

[3] by the example with A defined as

A = (A1, A2, A3) =





1 1 1

1 1 2

1 2 2



 . (6.7)

For this case, we have ρ(S) = 1.0278 > 1 where S is the corresponding matrix given in (6.3). We can

extend the assertion to the more general case of m ≥ 3. Indeed, the following theorem can be easily

proved by mathematical induction; thus we omit the proof. But the same technique will be used for

constructing other examples.

Theorem 6.1. For model (1.1) with m ≥ 3, the e-ADMM (1.3) is not necessarily convergent for any

β > 0.

Proof. Indeed, we can use mathematical induction on m to show that for any m ≥ 3, there exists one

specific matrix A(m) ∈ ℜm×m such that the corresponding iterative matrix, i.e., S in (6.3), satisfies

ρ(S) > 1 when e-ADMM is applied to (6.1) with A := A(m).

6.2 The divergence of (1.3) with (m − 3) strongly convex functions for any

β > 0 with m ≥ 4

Let us consider the problem

minx 0.05x2
4

s.t.









1 1 1 0

1 1 2 0

1 2 2 0

0 0 0 1

















x1

x2

x3

x4









= 0
(6.8)

which corresponds to the model (1.1) with one strongly convex function in its objective. Let us denote

the coefficient matrix of the linear constraint in (6.8) by Â := [Â1, Â2, Â3, Â4]. Applying the e-ADMM
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(1.3) with β > 0 to (6.8), we obtain


























−Â⊤
1 µ

k + Â⊤
1 (Â1x

k+1
1 + Â2x

k
2 + Â3x

k
3 + Â4x

k
4) = 0,

−Â⊤
2 µ

k + Â⊤
2 (Â1x

k+1
1 + Â2x

k+1
2 + Â3x

k
3 + Â4x

k
4) = 0,

−Â⊤
3 µ

k + Â⊤
3 (Â1x

k+1
1 + Â2x

k+1
2 + Â3x

k+1
3 + Â4x

k
4) = 0,

−Â⊤
4 µ

k + Â⊤
4 (Â1x

k+1
1 + Â2x

k+1
2 + Â3x

k+1
3 + Â4x

k+1
4 ) + 0.1

β
xk+1
4 = 0,

µk+1 = µk − (Â1x
k+1
1 + Â2x

k+1
2 + Â3x

k+1
3 + Â4x

k+1
4 ),

which depends on the penalty parameter β. Note Â⊤
4 Âi = 0 (i = 1, 2, 3). Consequently, we have



























−Â⊤
1 µ

k + Â⊤
1 (Â1x

k+1
1 + Â2x

k
2 + Â3x

k
3) = 0,

−Â⊤
2 µ

k + Â⊤
2 (Â1x

k+1
1 + Â2x

k+1
2 + Â3x

k
3) = 0,

−Â⊤
3 µ

k + Â⊤
3 (Â1x

k+1
1 + Â2x

k+1
2 + Â3x

k+1
3 ) = 0,

xk+1
4 = Â⊤

4 µ
k/(1 + 0.1

β
),

µk+1 = µk − (Â1x
k+1
1 + Â2x

k+1
2 + Â3x

k+1
3 + Â4x

k+1
4 ).

Moreover, if we set µ̂ := µ[1:3], and recall the definition of A in (6.7), we get



































−A⊤
1 µ̂

k +A⊤
1 (A1x

k+1
1 +A2x

k
2 +A3x

k
3) = 0,

−A⊤
2 µ̂

k +A⊤
2 (A1x

k+1
1 +A2x

k+1
2 +A3x

k
3) = 0,

−A⊤
3 µ̂

k +A⊤
3 (A1x

k+1
1 +A2x

k+1
2 +A3x

k+1
3 ) = 0,

xk+1
4 = µk

[4]/(1 +
0.1
β
),

µ̂k+1 = µ̂k − (A1x
k+1
1 +A2x

k+1
2 +A3x

k+1
3 ),

µk+1
[4] = µk

[4] − xk+1
4 .

(6.9)

Also, we denote y⊤ := (x⊤
2 , x

⊤
3 , µ̂

⊤). Then, the iterative scheme (6.9) is






yk+1

µk+1
[4]

xk+1
4






=





S 05×1 05×1

01×5 1 −1

01×5 1/(1 + 0.1
β
) 0











yk

µk
[4]

xk
4






. (6.10)

where S is the matrix given in (6.3) when the e-ADMM is applied to (6.1) with A defined in (6.7).

Let Ŝ(β) be the coefficient matrix given in (6.10), which is clearly dependent on β. Then, we have

ρ(Ŝ(β)) ≥ ρ(S) = 1.0278 > 1 for any β > 0. In fact, we have ρ(Ŝ(β)) ≥ ρ(S) because the absolute value

of the maximum eigenvalue of the 2 × 2 submatrix in the lower right corner of the coefficient matrix in

(6.10) is no big than 1. Hence, the e-ADMM (1.3) may be divergent for any penalty parameter β > 0 if

m = 4 and there is one strongly convex function. We extend the conclusion to the general case of m ≥ 4

in the following theorem.

Theorem 6.2. For model (1.1) with m ≥ 4, the e-ADMM (1.3) is not necessarily convergent for an

arbitrarily fixed β > 0 if there are (m− 3) strongly convex functions in the objective of (1.1).

Proof. For any m ≥ 4, we consider the following convex programming:

min σ
2

∑m
i=4 x

2
i

s.t.
∑m

i=1 Ǎixi = 0, (6.11)

where Ǎ := [Ǎ1, . . . , Ǎm] ∈ ℜm×m or rewritten as

Ǎ =

(

A 03×(m−3)

0(m−3)×3 I(m−3)×(m−3)

)

,
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where the 3×3 matrix A is defined in (6.7). Applying the e-ADMM (1.3) with β > 0 to (6.11), we obtain


































−Ǎ⊤
1 µ

k + Ǎ⊤
1 (Ǎ1x

k+1
1 + Ǎ2x

k
2 + · · ·+ Ǎmxk

m) = 0,

−Ǎ⊤
2 µ

k + Ǎ⊤
2 (Ǎ1x

k+1
1 + Ǎ2x

k+1
2 + · · ·+ Ǎmxk

m) = 0,

−Ǎ⊤
3 µ

k + Ǎ⊤
3 (Ǎ1x

k+1
1 + Ǎ2x

k+1
2 + · · ·+ Ǎmxk

m) = 0,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
−Ǎ⊤

mµk + Ǎ⊤
m(Ǎ1x

k+1
1 + Ǎ2x

k+1
2 + · · ·+ Ǎmxk+1

m ) + σm

β
xk+1
m = 0,

µk+1 = µk − (Ǎ1x
k+1
1 + Ǎ2x

k+1
2 + Ǎ3x

k+1
3 + Ǎ4x

k+1
4 ).

Note that we have

Ǎ⊤
j Ǎi = 0, when







i = 1, 2, 3 and j > 3,

i, j > 3 and i 6= j,

j = 1, 2, 3 and i > 3.

Consequently, it implies that


























−Ǎ⊤
1 µ

k + Ǎ⊤
1 (Ǎ1x

k+1
1 + Ǎ2x

k
2 + Ǎ3x

k
3) = 0,

−Ǎ⊤
2 µ

k + Ǎ⊤
2 (Ǎ1x

k+1
1 + Ǎ2x

k+1
2 + Ǎ3x

k
3) = 0,

−Ǎ⊤
3 µ

k + Ǎ⊤
3 (Ǎ1x

k+1
1 + Ǎ2x

k+1
2 + Ǎ3x

k+1
3 ) = 0,

xk+1
i = Ǎ⊤

i µ
k/(1 + σi

β
), i = 4, . . . ,m,

µk+1 = µk − (Ǎ1x
k+1
1 + Ǎ2x

k+1
2 + Ǎ3x

k+1
3 + · · ·+ Ǎmxk+1

m ).

Moreover, setting µ̌ := µ[1:3] and recall the definition of A in (6.7), we get


































−A⊤
1 µ̂

k +A⊤
1 (A1x

k+1
1 +A2x

k
2 +A3x

k
3) = 0,

−A⊤
2 µ̌

k +A⊤
2 (A1x

k+1
1 +A2x

k+1
2 +A3x

k
3) = 0,

−A⊤
3 µ̌

k +A⊤
3 (A1x

k+1
1 +A2x

k+1
2 +A3x

k+1
3 ) = 0,

xk+1
i = µk

[i]/(1 +
σi

β
), i = 4, . . . ,m,

µ̌k+1 = µ̌k − (A1x
k+1
1 +A2x

k+1
2 +A3x

k+1
3 ),

µk+1
[i] = µk

[i] − xk+1
i i = 4, . . . ,m.

(6.12)

Let us denote y⊤ := (x⊤
2 , x

⊤
3 , µ̌

⊤). Then, the iterative scheme (6.9) can be written as


























yk+1

µk+1
[4]

...

µk+1
[m]

xk+1
4

...

xk+1
m



























=





S 03×(m−3) 03×(m−3)

0(m−3)×3 I(m−3)×(m−3) −I(m−3)×(m−3)

0(m−3)×3 D(m−3)×(m−3) 0(m−3)×(m−3)































yk

µk
[4]

...

µk
[m]

xk
4

...

xk
m



























, (6.13)

where

D(m−3)×(m−3) = diag(
1

1 + σ4

β

, · · · , 1

1 + σm

β

).

It can be easily shown that the absolution value of the maximal eigenvalue of
(

I(m−3)×(m−3) −I(m−3)×(m−3)

D(m−3)×(m−3) 0(m−3)×(m−3)

)

(6.14)

is less than 1. Thus, for the coefficient matrix in (6.13), denoted by Š, we have

ρ(Š(β)) ≥ ρ(S) = 1.0278 > 1, ∀β > 0.

The proof is complete.
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6.3 The divergence of (1.3) with (m−2) strongly convex functions and without

restriction on β for m ≥ 3

Then, we show that the e-ADMM (1.3) may be divergent even if there are (m − 2) strongly convex

functions in the objective of (1.1) while there is no restriction on β for the case of m ≥ 3. We consider

the model

min 1
2a3x

2
3

s.t. A1x1 +A2x2 +A3x3 = 0,
(6.15)

where Ai ∈ ℜ3 (i = 1, 2, 3) are all column vectors, the matrix A := [A1, A2, A3] is assumed to be

nonsingular, and the scalar a3 is positive. It is easy to see that each iteration of (1.3) applied to (6.15)

can be characterized by a matrix iteration (6.3) with the iterative matrix Ŝ defined as:

Ŝ = L̂−1R, (6.16)

where the matrix R is defined in (6.5) with m = 3, and L̂ is defined below:

L̂ =





A⊤
2 A2 0 01×3

A⊤
3 A2 A⊤

3 A3 + a3/β 01×3

A2 A3 I3×3



 . (6.17)

Specifically, let us take

A = [A1, A2, A3] =





1 1 1

1 1 2

1 2 2



 and a3 = 0.05. (6.18)

With simple calculations, if we take β = 1, then we have ρ(Ŝ)=1.0259 for the matrix Ŝ given in (6.16).

On the other hand, for this example, we have m = 3, f3(x3) = 0.025x2
3 and µ3 = 0.05. According to

Theorem 3.1, the e-ADMM (1.3) is guaranteed to be convergent when β ∈ (0, 0.05
7.5 ), i.e., ρ(M̂) = 0.9586

when β = 0.0066 ∈ (0, 0.05
7.5 ). Now, we extend the conclusion to the general case of m ≥ 3. This theorem

also shows that it is necessary to appropriately restrict the penalty parameter β when discussing the

convergence of the e-ADMM (1.3)

Theorem 6.3. For model (1.1) with m ≥ 3, the e-ADMM (1.3) is not necessarily convergent for all

β > 0 when there are (m− 2) strongly convex functions in its objective.

Proof. In the following, we show that for any β > 0, there exist examples such that the e-ADMM (1.3)

is divergent. First, it follows from Theorem 6.1 that there exists a specific matrix A(m) ∈ ℜm×m with

m ≥ 3 such that the e-ADMM (1.3) is divergent when it is applied to the equation (6.1) with A := A(m).

It implies that the corresponding matrix S(m) given in (6.3) has ρ(S(m)) > 1. Recall the matrices L and

R composing S(m) by S(m) = L−1R (see (6.4) and (6.5)). Then, with this specific choice of A(m), we

consider the following problem:

min σ
2

∑m
i=3 x

2
i

s.t.
∑m

i=1 A
(m)
i xi = 0,

(6.19)

where A(m) = [A
(m)
1 , . . . , A

(m)
m ], σ > 0 and there are (m − 2) strongly convex functions in its objective.

One can show that each iteration of (1.3) applied to (6.19) can be characterized by a matrix iteration

(6.3) with the iterative matrix S̃(m) defined as S̃(m) = L̃−1R with R define in (6.5) and L̃ defined by

L̃ =





















A⊤
2 A2 0 · · · 0 0 01×m

A⊤
3 A2 A⊤

3 A3 + σ/β · · · 0 0 01×m

...
...

. . .
...

...
...

A⊤
m−1A2 · · · · · · A⊤

m−1Am−1 + σ/β 0 01×m

A⊤
mA2 A⊤

mA3 · · · A⊤
mAm−1 A⊤

mAm + σ/β 01×m

A2 A3 · · · Am−1 Am Im×m




















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Set β = 1 in the e-ADMM (1.3). Then, let E := L̃− L = diag(0, σ, · · · , σ,0m×m), we have

‖I − (I + L−1E)−1‖ = ‖
∞
∑

k=1

(−1)k+1(L−1E)k‖ ≤
∞
∑

k=1

‖L−1E‖k

=
‖L−1E‖

1− ‖L−1E‖ ≤ ‖E‖‖L−1‖ = σ‖L−1‖. (6.20)

Next, define ∆S := S̃(m) − S(m). Then, we have

‖∆S‖ = ‖ − (I − (I + L−1E)−1)L−1R‖ ≤ ‖I − (I + L−1E)−1‖‖L−1R‖ ≤ σ‖L−1‖‖L−1R‖. (6.21)

Thus, there exist a positive constant σ̄ such that ‖∆S‖ < 1 when σ ∈ (0, σ̄]. Then, Invoking Lemma 2.2

with setting A := S(m) and ∆ := ∆S , there exists a positive scalar κ dependent on S(m) = L−1R such

that

|ρ(S(m))− ρ(S̃(m))| ≤ κ‖∆S‖ ≤ σκ‖L−1‖‖L−1R‖, (6.22)

where the last inequality is due to (6.21). Then, the right-hand side of the above inequality only depends

on σ since κ‖L−1‖‖L−1R‖ is a constant. Therefore, there exists a sufficient small σ̂ (σ̂ ≤ σ̄) such that

ρ(S(m)) − σ̂κ‖L−1‖‖L−1R‖ > 1 whenever ρ(S(m)) > 1. As a consequent, we have ρ(S̃(m)) > 1 due to

(6.22). This implies that the e-ADMM (1.3) with β = 1 is divergent when solving (6.19) with setting

σ := σ̂. Indeed, for any β > 0, we can construct a specific problem defined in (6.19), i.e., finding a

appropriate σ, such that the e-ADMM (1.3) with this β is divergent. Note (6.19) is a special case of (1.1)

with (m− 2) strongly convex functions in its objective.

7 Conclusions

In this paper, we conduct convergence analysis for the direct extension of ADMM (“e-ADMM”) for solving

a separable convex minimization model whose objective function is the sum ofm function without coupled

variables. We extend the existing result for the special case of m = 3 to the general case of m ≥ 3, and

prove the convergence of e-ADMM when (m − 2) functions are assumed to be strongly convex and the

penalty parameter is appropriately restricted. For the special case of m = 3, our result is still better

than some existing ones that are analyzed specifically for this special case of m = 3 in the sense that the

penalty parameter is less restricted. The worst-case convergence rate measured by iteration complexity

and asymptotically linear convergence are also derived under some additional assumptions.
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