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Damping optimization of parameter dependent
mechanical systems by rational interpolation

Zoran Tomljanović∗ Christopher Beattie† Serkan Gugercin†

Abstract

We consider an optimization problem related to semi-active damping of vibrating sys-
tems. The main problem is to determine the best damping matrix able to minimize influence
of the input on the output of the system. We use a minimization criteria based on the H2

system norm. The objective function is non-convex and the associated optimization prob-
lem typically requires a large number of objective function evaluations. We propose an
optimization approach that calculates ‘interpolatory’ reduced order models, allowing for
significant acceleration of the optimization process.

In our approach, we use parametric model reduction (PMOR) based on the Iterative
Rational Krylov Algorithm, which ensures good approximations relative to the H2 system
norm, aligning well with the underlying damping design objectives. For the parameter sam-
pling that occurs within each PMOR cycle, we consider approaches with predetermined
sampling and approaches using adaptive sampling, and each of these approaches may be
combined with three possible strategies for internal reduction. In order to preserve impor-
tant system properties, we maintain second-order structure, which through the use of modal
coordinates, allows for very efficient implementation.

The methodology proposed here provides a significant acceleration of the optimization
process; the gain in efficiency is illustrated in numerical experiments.

Keywords: Model reduction, Interpolation, Second-order systems, semi-active damping
msc2010: 49J15, 74P10, 70Q05, 41A05

1 Introduction

We consider the following vibrational system described by

Mq̈(t) + Cq̇(t) +Kq(t) = Ew(t),

z(t) = Hq(t)
(1)

∗Department of Mathematics, University J.J. Strossmayer in Osijek, Osijek, Croatia, ztomljan@mathos.hr
†Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, USA, {beattie,

gugercin}@vt.edu

1

http://arxiv.org/abs/1707.01789v1


where the mass matrix, M , and stiffness matrix, K , are real, symmetric positive-definite matri-
ces of order n. The state variables comprise displacement and rotational degrees of freedom and
are collected in the coordinate vector q ∈ ℝn. The vector z ∈ ℝmout denotes the observed output
comprising the system displacements in which we are interested, which in turn determines the
(constant) output port matrix H ∈ ℝ

mout×n. The vector w(t) ∈ ℝ
min represents a dynamic distur-

bance, the primary excitation . The associated locations of the primary excitation determine the
primary excitation matrix, E ∈ ℝ

n×min .
The damping matrix is given by

C = Cint + Cext,

where Cint and Cext represent contributions from internal and external damping, respectively.
We are principally concerned with optimizing the placement and geometry of external dampers
whose dynamic effects are described through Cext. The internal damping contribution as en-
coded in Cint is typically both small in magnitude and difficult to model in detail. Often it is
modeled by taking Cint to be a small multiple of critical damping (see, e.g., [18, 19, 47]):

Cint = 2�cM
1∕2

(
M−1∕2KM−1∕2

)1∕2
M1∕2, �c ≪ 1. (2)

Other models of internal damping may be considered as well, but whatever model may be chosen
(i.e., however Cint is determined), it is part of the description of the underlying structure and not
accessible to modification in the course of optimization.

We assume that the external damping, the component of damping that is accessible to modi-
fication and optimization, creates dynamic effects that may be modeled as Cext = BGBT where
G = diag (g1, g2,… , gp) ∈ ℝ

p×p is a diagonal matrix and B ∈ ℝ
n×p determines the placement

and geometry of the external dampers. The entries {gi}
p

i=1
are usually called gains or viscosities

and represent friction coefficients of the corresponding dampers. These coefficients are non-
negative and may be either constant or vary over time. Here, we consider the gi to have constant
values that will be chosen within fixed feasible margins, gi ∈ [g−

i
, g+i ] for i = 1,… , p. Usually

the number of dampers p is much smaller than the full dimension: p ≪ n. More details regarding
system stability and model description can be found in [16, 20].

Damping optimization has a long history in the service of structural engineers and these
problems continue to be widely investigated from the perspectives of both engineering and math-
ematics. A frequent context for damping optimization comes from system stabilization goals,
wherein one strategically adds damping to a structure with light internal damping so as to mute
resonances or move them away from the frequencies of ambient oscillatory loads or to sup-
pressing damaging effects of external impacts on the structure. There is a vast literature in this
field of research, see, e.g., [34,35,39,40,44]. Depending on the particular application, different
damping criteria may be appropriate. For example, for stationary systems criteria that involve
spectral abscissa are useful (see [27]), while criteria that involve total average energy was used
in, e.g., [45, 47]. Structured dimension reduction methods using total average energy criterion
were considered in [18,19]. For non-stationary systems one may consider in addition particular
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external forces that potentially play an important role in system behaviour. In this case, criteria
that involve average energy amplitude and average displacement amplitude can be considered
(see, e.g., [35,36,46]). Overviews on different possible damping criteria can be found in [29,49].

Since optimization of gains g1, g2,… , gp will be our main interest, we collect these param-
eters into a vector g = (g1, g2,… , gp) and write G(g) to express the parametric dependence on
gains. The transfer function matrix for system (1) is given by

F (s; g) = H(s2M + s(Cint + BG(g)BT ) +K)−1E, s ∈ ℂ. (3)

Note that for any s ∈ ℂ, F (s; g) is an mout × min complex matrix with rational functions of s as
elements. We may also rewrite the second-order system representing our vibrating system as a
first-order system of differential equations:

ẋ(t) = Âx(t) + Êw(t), (4)

z(t) = Ĥx(t),

where

x =

[
q

q̇

]
, Â(g) =

[
0 I

−M−1K −M−1(Cint + BG(g)BT )

]
,

Ê =

[
0

M−1E

]
, and Ĥ =

[
H 0

]
,

(5)

leading to an alternate realization of F (s; g): F (s; g) = Ĥ
(
s I − Â(g)

)−1

Ê. The main task
in our setting will be to determine a damping configuration, as encoded in G and B, which
minimizes the influence of the input disturbance, w, on observed output states, z.

One may consider different criteria to achieve this goal, some are based on system-theoretic
norms (see, e.g., [16, 20, 29]). We focus on the H2 norm and define a cost function in the
frequency domain using the transfer function matrix defined above in (3):

‖F (⋅ ; g)‖
H2

=

(
1

2� ∫
+∞

−∞

trace (F (j! ; g)∗F (j! ; g))d!

) 1

2

. (6)

For single-input/single-output (SISO) systems, this criterion can be identified with the response
energy resulting from an impulsive input:

‖F (⋅ ; g)‖2
H2

= ∫
+∞

0

‖zD(t)‖22 dt. (7)

Here, zD is the (scalar) output response of the SISO system (4) resulting from a Dirac function
input, w(t). Moreover, in the multi-input/multi-output (MIMO) case, the H2-norm provides a
uniform bound on the time response magnitude assuming a disturbance with unit L2-energy:
max
t≥0 ‖z(t)‖∞ ≤ ‖F (⋅ ; g)‖

H2
when ‖w‖L2

≤ 1.
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In order to minimize uniformly the output z under the influence of the disturbance, w, we
will proceed by determining the “best" damping such that ‖F‖

H2
is minimal. Using standard

theory (see, e.g., [20, 24, 51]), it can be shown that the H2-norm of the system, ‖F‖
H2

, can be
expressed via the solution of a Lyapunov equation:

‖F (⋅ ; g)‖
H2

=
(
1

2�
trace ÊT

X̂Ê
) 1

2

, (8)

where X̂ solves
ÂT (g)X̂ + X̂Â(g) = −ĤT Ĥ, (9)

and the matrices Â(g), Ê, and Ĥ are given in (5).
Although this makes evaluation of ‖F (⋅ ; g)‖

H2
amenable to numerical computation, the

computational resources required to approach realistic problems is still substantial. Moreover,
one observes that the objective function, ‖F (⋅ ; g)‖

H2
will have many local minima with respect

to damping positions as encoded in B, and for each B there may be many local minimizers with
respect to the damping gains, g = (g1, g2,… , gp). Not surprizingly, many function evaluations
are necessary to carry out optimization with respect to both g and B and this frequently creates
an unmanageable computational burden.

We introduce an approach here which calculates reduced second-order systems in such a
way that allows efficient approximation of the H2 norm, which in turn brings us a significant
acceleration of the optimization process. We focus first on efficient optimization with respect to
g, and then optimization with respect to damping positions; both can be well approximated and
cheaply obtained using a reduced order model. Since we are dealing with structured second-
order systems, we use structure preserving methods which are derived particularly for a para-
metric setting.

There are several different methods for calculating a reduced system for second-order set-
tings; see, e.g., [6, 9, 10, 21, 22, 25, 38, 41, 43]. A review of different methods of dimension
reduction, both parametric and nonparametric, can be found in [2,3,5,8,14,15,17,33]. The ap-
proximation of optimal damping using dimension reduction for stationary second-order systems
was studied in [18,19] where the authors considered optimization of passive damping. Another
approach based on dominant poles, presented first in [42], was studied in [16]. The approach
that we present here uses interpolatory projections to produce high fidelity reduced-dimension
second-order systems that are then optimized with respect to damping as measured with the H2

system norm. We employ a variant of the Iterative Rational Krylov Algorithm (IRKA), which
is a popular approach for producing high quality reduced models. IRKA produces locally H2-
optimal reduced models, dovetailing perfectly with the optimization task at hand. In Section 2,
we describe the original IRKA approach as well as our variant, and organize its use in damping
optimization. Implementation issues are discussed in Section 3. In Section 4, we describe a
variety of numerical experiments that show the advantages of our approach.
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2 IRKA and Damping Optimization

The use of reduced models in parameter optimization involves iterating a two step process
wherein one performs parameter optimization on a high-fidelity, parameterized surrogate model
in the first, comparatively inexpensive step, which is expected to bring the parameters into the
vicinity of their optimal values, followed by a (generally more expensive) update step that cor-
rects deviations that the surrogate model may have with the true parameterized system in the
vicinity of the current parameter values. This approach is aligned with classical trust region
strategies, see for example, [1,31]. Since we are seeking to minimize the H2 system norm with
respect to a variety of damping configurations, an effective choice of surrogate models will beH2

optimal reduced order models. Efficient interpolatory projection methods have been developed
to derive locally H2-optimal reduced order models in related settings (e.g. see [7, 12, 26, 32]).

Projection-based methods for model reduction can be described quite simply. We approxi-
mate the full state, q(t), using q(t) ≈ Xrqr(t) where Xr ∈ ℝ

n×r has linearly independent columns
spanning a right modeling space that is still to be determined. A complementary left modeling

space spanned by the columns of a second matrix, Wr ∈ ℝ
n×r, allows us to enforce Petrov-

Galerkin conditions that define reduced model dynamics:

Mrq̈r(t) + Crq̇r(t) +Krqr(t) = Erw(t), where

Mr = W ∗
r
MXr, Cr(g) = W ∗

r
C(g)Xr, Kr = W ∗

r
KXr, and Er = W ∗

r
E.

(10)

The reduced model output then appears as zr(t) = Hrqr(t) with Hr = HXr. Evidently, one
should choose Xr and Wr, or equivalently, right and left modeling subspaces, so as to ensure
zr(t) ≈ z(t) over a wide range of inputs, w(t). In [16], the authors have chosen the columns of Xr

and Wr to contain eigenvectors of the polynomial pencil, �2M + �C(g) +K , that correspond to
dominant poles of the transfer function,F (s; g), defined in (3). With this approach one maintains
the dominant terms from F (s; g) in the reduced transfer function,

F2r(s; g) = Hr(s
2Mr + sCr(g) +Kr)

−1Er. (11)

Note that F2r(s; g) is an mout ×min complex matrix (same size as F (s; g)) but now with rational
functions of lower order (2r − 1, 2r) as elements.

We will make a different choice forWr andXr, choosing them instead so as to enforce tangen-

tial interpolation conditions: for selected interpolation points �1, �2,… , �r ∈ ℂ and directions
b1,… , br and c1,… , cr, we will choose Wr and Xr so that

cT
i
F (�i) = cT

i
F2r(�i), F (�i)bi = F2r(�i)bi, and cT

i
F ′(�i)bi = cT

i
F ′
r
(�i)bi,

for i = 1,… , r. Calculation of Wr and Xr that enforce these interpolation properties is straight-
forward, and depending on the context, a variety of choices for interpolation points and tangent
directions could be used, see, e.g., [4,11,13,23,28,32]. This is the thrust of interpolatory projec-

tion methods for model reduction. Since we are dealing with structured second-order mechanical
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systems, we will constrain the choice of Wr and Xr so as to preserve second-order structure as
well as important system properties such as system stability, passivity, and reciprocity which is
encoded in system structure through the symmetry and positive-definiteness of M , C , and K .
This can be accomplished by setting Wr = Xr, and then (10) becomes:

Mrq̈r(t) + Crq̇r(t) +Krqr(t) = Erw(t), where

Mr = X∗
r
MXr, Cr(g) = X∗

r
C(g)Xr, Kr = X∗

r
KXr, and Er = X∗

r
E.

(12)

Using either (10) or (12), one may express the reduced transfer function F2r(s; g) in (11) in
terms of its 2r poles and residues:

F2r(s) =

2r∑
k=1

ck b
T
k

s − �k

(13)

First-order necessary conditions for an order 2r rational function, F̂2r(s), having the form
(13) (and having 2r distinct poles, {�k}) to be an optimal H2 reduced order approximation to
F (s) are due to Meier and Luenberger [37]. They require that F̂2r(s) be a Hermite interpolant
to the full-order system at points in the complex plane that reflect the reduced system poles
across the imaginary axis and for MIMO systems this need only happen in particular directions

in the input/output spaces see, e.g., [23, 32, 48]. Specifically, if F̂2r(s) =

2r∑
k=1

ĉk b̂
T
k

s − �̂k

and F̂2r is

a local minimizer of ‖‖‖F̂2r − F
‖‖‖H2

, then F̂2r is also a tangential Hermite interpolant of F (s) at

−�̂k, k = 1,… , 2r in the sense that

F̂2r(−�̂k)b̂k = F (−�̂k)b̂k, ĉT
k
F̂2r(−�̂k) = ĉT

k
F (−�̂k),

and ĉT
k
F̂ ′
2r
(−�̂k)b̂k = ĉT

k
F ′(−�̂k)b̂k, for k = 1,… , 2r.

(14)

IRKA [32] is an algorithm that can produce such an F̂2r efficiently and will provide directly a
standard realization for it:

ẋ2r(t) = Â2rx2r(t) + Ê2rw(t),

z2r(t) = Ĥ2rx2r(t)
(15)

so that F̂2r = Ĥ2r

(
s I − Â2r

)−1

Ê2r, but significantly for our application, F̂2r will not generally
have the form of a second-order system transfer function such as F2r in (11), and this is what
motivates the modification we propose for IRKA.

Assume that we have a damping configuration given by B and G = diag (g1, g2,… , gp),
and we would like to obtain a reduced model, F2r(s; g), of the form (11) that will accurately
represent F (s; g) at least for small changes that may be made to the gains, g1, g2,… , gp. Using
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‖F2r(s; g)‖H2
as a surrogate for ‖F (s; g)‖

H2
, we choose g1, g2,… , gp so as to minimize the value

of ‖F2r(s; g)‖H2
(and hopefully, by proxy, ‖F (s; g)‖

H2
).

Algorithm 1, which we will also refer to as sym2IRKA, calculates a modeling basisXr ∈ ℂn×r

using a one-sided projection approach inspired by IRKA. In each iteration, we form a 2r order
reduced system transfer function given by (11) and (12) that interpolates the true transfer function
at a set of r interpolation points in r directions that had been determined in the previous step. In
order to proceed, in Step 4, the 2r order reduced system transfer function is further reduced to an

order r transfer function represented in pole-residue form as F̃r(s) =
∑r

k=1

c̃k b̃
T
k

s−�k
. By reflection

across the imaginary axis, this gives r interpolation points and tangent directions with which
to continue to the next step. There are many strategies with which to carry out this “internal
reduction" step, and in what follows we consider three different strategies:

(a) internal reduction based on balanced truncation: we use the balanced truncation method

applied to a linearized order 2r realization of F2r, to produce an order r (standard system)
realization. The r poles of this realization are reflected to produce the next set of in-
terpolation points. Details regarding the balanced truncation method can be found, e.g.,
in [2, 3, 15].

(b) internal reduction based on IRKA: We follow a process similar to (a) except we use a
variant of IRKA to produce an order r (standard system) realization. A natural way of
doing this would be to use the original formulation of IRKA, which, upon convergence,
will produce a reduced system satisfying necessary conditions for H2 optimality. Inter-
estingly, we found this approach did not perform as well as a (H2 suboptimal) one-sided
modification of IRKA similar to Algorithm 1 (i.e., using Wr = Xr) but applied instead
to a linearized order 2r realization of F2r in order to reduce it to a standard order r real-
ization. This modified approach appears to reduce the potential for a loss of stability at
non-interpolating damping configurations and we generally observe faster convergence of
the iteration.

(c) internal reduction based on dominant poles: we choose the r most dominant poles that
are closed under conjugation, see e.g., [16,42]); the transfer function (3) can be represented

as F (s) =

2n∑
i=1

Ri

s − �i

with residues Ri = (Hxi)(y
∗
i
E)�i ∈ ℂ

s×m, where �i ∈ ℂ and

xi, yi ∈ ℂ
n∖{0} are, respectively, eigenvalues, right eigenvectors, and left eigenvectors

of the quadratic eigenvalue problem

(�2
i
M + �iC +K)xi = 0, y∗

i
(�2

i
M + �iC +K) = 0, i = 1,… , 2n. (16)

Although there are a variety of definitions for “dominant" poles; we take as dominant
those poles producing the largest values of ‖Ri‖

|Re(�i)|
. This choice has been shown to have

good performance within the optimization setting that we consider here. If the r dominant
poles fail to be closed under conjugation then we consider taking r + 1 dominant poles,
so as to be closed under conjugation.
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Algorithm 1: sym2IRKA. Symmetrized IRKA for second-order systems
Input: System matrices defining (1) with (fixed) gains ĝ = (g1, g2,… , gp)

T .
itMax - maximum number of iterations allowed for system reduction
Initial shift selection: {�1 … , �r} (closed under conjugation).
Initial tangent directions: {b1,… , br} (also closed under conjugation).

Output: Modeling basis Xr(ĝ) producing an interpolatory ROM at g = ĝ.
1: for j = 1,… , itMax do

2: Xr = [(�2
1
M + �1C +K)−1Eb1,… , (�2

r
M + �rC +K)−1Ebr];

3: Form reduced system determined by
Mr = X∗

r
MXr, Cr = X∗

r
CXr, Kr = X∗

r
KXr, Er = X∗

r
E and Hr = HXr

4: Internal reduction step using strategies (a), (b), or (c):
Reduce the order 2r transfer function, F2r, defined in (13) to an order r transfer function,

F̃r(s) =
∑r

k=1

c̃k b̃
T
k

s−�k
, such that �1,… , �r, are closed under conjugation

5: Assign �k = −�k and bk = b̃k for k = 1,… , r

6: if {�k} converged then

7: break;
8: end if

9: end for

10: Xr(ĝ) ← Xr;

Other potential strategies for internal reduction may be found in [50]. Note that the for loop
in sym2IRKA goes up to a specified maximum number of iterations, itMax, but is stopped earlier
if two consecutive sets of interpolation points, {�i} have changed only slightly within a given
tolerance. In terms of computational effort, note that Step 4 deals only with reduced systems,
requiring effort that scales with r ≪ n rather than n.

Although we are solving large linear systems repeatedly within Step 1 and Step 6, we find
that these tasks can be implemented efficiently through the use of the modal coordinates. This
is discussed in the next subsection.

Through the use of sym2IRKA, we obtain a reduced model that has the same structure as the
true system and should replicate the response of the true system (and hence replicate itsH2 norm)
to relatively high accuracy at the given sampling gain (g1, g2,… , gp). In order to approximate
the H2 norm of F (s, g) with the (easily computed) H2 norm of F2r(s, g) over a sufficiently broad
range of parameter values in g, we will employ a parametric model order reduction approach
described in [7]. In this approach we calculate H2-based interpolatory reduced systems for a
small number of selected sampling parameters and then form an aggregate interpolatory reduced
model. The original and reduced model then have virtually the same H2 norms on the given set
of sampling gains and generally nearly so at points in between. This makes the optimization
process more robust and damping optimization can be performed more efficiently. A similar
approach was also used in [16] where the authors considered local approximations based on
dominant poles of the system.
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In our setting, parameterized model order reduction (PMOR) is organized so that we cal-
culate reduced systems given by (12) for several, say m, damping gain configurations, g(i),
i = 1,… , m and for each of these sampled gain configurations (represented as a p-tuple of
individual damper gains), we calculate a modeling basis, X(i)

r
, that corresponds to a reduced

system given by (12). We then merge all X(i)
r

i = 1,… , m into an aggregate modeling basis,
X = [X(1)

r
, X(2)

r
, … , X(m)

r
] and form an aggregate reduced system model,

X∗MXq̈k(t) +X∗C(g)Xq̇k(t) +X∗KXqk(t) = X∗Ew(t),

z(t) = HXqk(t).
(17)

By using this approach, we are assured of a good approximation of system response (and H2

norm approximation) for any of the particular gain configurations, g(i), i = 1,… , m, and we
will generally retain good approximation for nearby gain configurations as well. Since we are
interested in optimizing these gains, we may organize the procedure so that sampled gain con-
figurations are determined adaptively during the optimization process, and used to augment the
aggregate modeling basis. Gain configurations that were useful earlier in the process but that
no longer contribute significant information can be dropped from the aggregate modeling basis.
How best to produce a balanced parameter sampling strategy is an important and generally un-
resolved issue, but for particular problems there have been some advances (e.g., see the recent
survey [15]). For our damping optimization problem, we consider two main strategies to sample
damping gain configurations:

(i) predetermined sampling of damping gain configurations: We use a predetermined set
of m damping gain configurations: g(1),… , g(m) that has been chosen from the set of fea-
sible damping gain configurations, g(k) ∈

⨉p

i=1
[g−

i
, g+i ]. This choice can be done via uni-

form sampling across a fixed mesh in the feasible region, or it can include ad hoc choices
of damping gain configurations as well. For example, we include among our predeter-
mined damping gain configurations, the trivial configuration, g = 0, that is, we include a
system having only internal damping and no external damping. This approach is described
in more detail as Algorithm 2.

(ii) adaptive sampling during optimization. Starting with an initial damping gain config-
uration (say, g(1) = 0), construct a reduced order model, F2r(s; g

(1)) using sym2IRKA.
Then, allowing g to vary, determine the next damping gain configuration to be sampled
by finding g(2) that solves (approximately)

g(2) = argmin
g

‖‖F2r(⋅ ; g)
‖‖H2

.

Repeat this process, each time augmenting the modeling subspace used to construct re-
duced models with information from the newest reduced order model. This is discussed
below and described in more detail as Algorithm 3.
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Algorithm 2 Approximation of optimal gains using predetermined gain configuration samples
Input: System matrices defining (1); A set of m (different) gain configurations g(1),… , g(m).

The number of retained poles nRetPoles for each gain configuration;
Initial choices for shift selection �1 … , �r and directions b1,… , br;

Output: Approximate optimal gains.
1: for j = 1,… , m do

2: Using the gain configuration g(j), calculate a reduced order modeling subspace, V j , with
sym2IRKA (Algorithm 1).

3: end for

4: Aggregate modeling spaces, into X = orth([V 1,… , V m]).
5: Form a global reduced system using X as in (17).
6: Find (approximate) optimal gains by optimizing the gains of the global reduced system, (17)

(using an appropriate optimization tool).

Algorithm 3 Computation of optimal gains with adaptive sampling

Input: System matrices defining (1); An initial gain configuration ĝ(0) = (g
(0)

1
, g

(0)

2
,… , g(0)

p
)T .

Initial choices for shift selection �1 … , �r and directions b1,… , br;
nRetPoles - number of retained poles for each gain configuration;
itMax - maximum number of iterations for sym2IRKA (Algorithm 1).
tolDiff - termination criterion for gain optimization

Output: Approximate optimal gains.
1: j = 0;
2: repeat

3: Using the gain configuration g(j), calculate a reduced order modeling subspace, V j , with
sym2IRKA.

4: Form a reduced system using X = orth([V 0, V 1,… , V j]) as in (17).
5: j = j + 1

6: Find an (approximately) optimal gain configuration by optimizing the gains of the global
reduced system, (17) (using an appropriate optimization tool), and denote it by g(j)

7: until |g(j) − g(j−1)| < tolDiff

8: return g(j)

Strategies (i) and (ii) (and the associated Algorithms 2 and 3) could be viewed as representing
two extremes and one can easily construct sensible sampling strategies that combine elements
of both in various ways. The common element in both strategies is the use of a reduced order
model that inherits from the original model, (3), the parameterization with respect to damping.
The optimal damping configuration then is sought by optimizing the reduced order model, using
it as an inexpensive surrogate for the original model. This is effective when the H2-norm of the
reduced order model closely tracks theH2-norm of the original model as the damping parameters
in g change. In order to assure that, one may include in the optimization goals a greedy search
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for the damping parameter ĝ, such that the deviation of H2-norm values between full-order and
reduced-order models is largest:

ĝ = argmax
g

| ‖F (⋅ ; g)‖
H2

− ‖‖F2r(⋅ ; g)
‖‖H2

|, (18)

where, as before, F is transfer function of full system while F2r is transfer function of reduced
system given by (17). Augmenting the current reduced model so as to interpolate the full order
model at ĝ is likely to improve fidelity over a wide range of intervening g. One may repeat the
procedure until the deviation given by (18) is acceptable. Such an approach ensures that the
reduced system is an accurate surrogate for the full system viewed as a function of damping
parameters, g.

There are two principal disadvantages to this approach in our setting. The first is that the
determination of ĝ from (18) requires evaluation of the H2-norm of the full system, which either
is computationally very demanding, or if the H2-norm is computed only approximately, this
introduces an additional layer of approximation to the approach. The second disadvantage is
that it may happen that the greedy selection of gains produced by (18) may be far away from the
gains that minimize the H2-norm of the full system, so we expend significant effort in producing
a reduced model that has high fidelity at damping configurations that are not interesting for us.

Therefore, we propose an adaptive sampling strategy that samples gain configurations that
have approximately minimized the H2-norm of an intermediate reduced order system. Assume
that we have obtained at some stage in the process a reduced system given by (17) with X = V 1.
We then determine a gain configuration, ĝ, that minimizes the surrogate objective function:

ĝ = argmin
g

‖‖F2r(⋅ ; g)
‖‖H2

,

where F2r is the transfer function of the reduced system given by (17). We generate another
modeling subspace, V 2, that would produce a high fidelity reduced model at the system with a
damping configuration of ĝ, (i.e., we calculate V 2 using Algorithm 1 for the gain configuration
ĝ), but we update the reduced system by augmenting the modeling subspace with V 2, instead of
replacing it with V 2: X = orth([V 1, V 2]). These steps are repeated (and the modeling subspace
grows), until the difference between consecutively sampled gains drops below the prescribed tol-
erance tolDiff . until the difference between consecutive sampling gains is equal or smaller than
prescribed tolerance tolDiff . In this way, the modeling subspace spanned by the columns of X
continues to grow and the reduced order model generally provides progressively higher fidelity
approximations to the full order system in the vicinity of the sampled damping configurations.
However, this added fidelity might not provide improved information about the optimum damp-
ing configuration. Note also that if too low an order is used for the reduced model then it may
have poor fidelity notwithstanding its local H2-optimality and the reduced models could fail to
recover even coarse H2-norm information for the full system resulting (potentially) in a false
optimum. As a practical matter, we have found that quite small reduced system orders will still
produce reasonable H2-norm estimates and we have not observed such failures. It is significant
that we are able to avoid entirely the evaluation of the H2 norm of the full system, which is a
forbidding computational challenge for large scale systems.
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3 Some Implementation Details

Our approach relies on the effectiveness of sym2IRKA (Algorithm 1), in generating structured
reduced order models with good fidelity. The efficiency of this process is improved if we intro-
duce modal coordinates: Since M and K are symmetric positive definite matrices there exists
a nonsingular matrix Φ (the modal matrix) which simultaneously diagonalizes both M and K:

ΦTKΦ = Ω2 = diag(!2
1
,… , !2

n
) and ΦTMΦ = I, (19)

where 0 < !1 ≤ !2 ≤ … ≤ !n are the undamped natural frequencies of the system while the
columns of the matrix Φ are eigenvectors (modes) of the undamped system. We have adopted
the usual assumption on internal damping, namely that internal damping is modal damping,
meaning that Φ diagonalizes the internal damping matrix, Cint, as well. We have taken internal
damping to be modeled as a small multiple of critical damping, so ΦTCintΦ = 2�cΩ with small
�c. Evidently, this approach can be adapted immediately to other models of internal damping as
well, e.g., Rayleigh damping or more general proportional damping (see, e.g. [36]).

Now, rewrite the system (1) in modal coordinates. By using (19) and substituting q(t) =

Φq̂(t), we obtain:

̈̂q(t) + (�Ω +ΦTBGBTΦ) ̇̂q(t) + Ω2q̂(t) = ΦTEw(t), (20)
z(t) = HΦq̂(t). (21)

We are focused in optimizing parameters in matrixG = diag (g1, g2,… , gp) where number of
dampers is usually much smaller than the number of states. This means that within the damping
matrix during the optimization process we have small rank update which one should use in order
to use the structure of system matrices efficiently. In particular, in steps 1 and 6 of Algorithm 1,
one drawback from the computational point of view, is that we need to solve many linear systems
especially within the main loop of the algorithm. Here, since we are in modal coordinates we
use the following approach.

In applying sym2IRKA, it is necessary to solve repeatedly systems of linear equations having
the form (�2M + �C +K)−1Bb, for varying shifts � and directions b. In modal coordinates,

(�2M + �C +K)−1Bb = Φ(�2I + ��cΩ + �ΦTBGBTΦ +Ω2)−1ΦTBb

= ΦD(�)−1ΦTBb − �ΦD(�)−1ΦTBM(�, g)BTΦD(�)−1ΦTBb

where

D(�) = �2I + ��cΩ + Ω2, G(g) = diag(
√
g1,… ,

√
gp),

M(�, g) = G(g)(Ip + �G(g)BT
D(�)−1BG(g))−1G(g),

and we have used the Sherman-Morrison-Woodbury formula [30] in passing from the first to the
second line.
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Note that D(�) is an n × n diagonal matrix and M(�, g) is a p × p matrix. Recalling that
p ≪ n is the number of dampers, the evaluation of products of the form M(�, g) z or even
outright evaluation of the full matrix M(�, g) can be implemented very efficiently.

The choice of initial gain in Algorithm 3 follows [16], where it was found effective to take
initial gains uniformly equal to zero (g(0) = 0), so that the optimization process starts with a
modally damped system having each mode with a presumed fixed initial fraction, �c, of crit-
ical damping. In [16], modal truncation was used to form reduced order models to be used
as surrogates in the damping optimization process (see also, [19, 29, 49]); here we improve on
the standard modal approximation by using IRKA approach on system without external damp-
ing. It is shown that one can take undamped eigenvectors that corresponds to the smallest r
undamped eigenfrequencies, in order to obtain modal approximation of the system. This im-
proves robustness of optimization process and it can also be calculated off-line since it does not
include information on external damping. Here we will improve standard modal approximation
(see, e.g. [16, 19, 29, 49]) by using sym2IRKA (Algorithm 1) without external damping (g=0).

The application of Krylov-based model reduction of second-order systems with proportional
damping was studied in [10], but since in this particular case (with g = 0) in Step 1 and Step 6
of sym2IRKA, we need only solve diagonal systems and running sym2IRKA can be done off-line
without significant cost. This first approximation determines an initial shift selection �1 … , �r.
The corresponding tangent directions b1,… , br are calculated as right singular vectors of re-
duced system transfer function evaluations on the corresponding initial shifts. In this way, the
first cycle of either Algorithm 2 or 3 involving the development of a reduced order model for
the case g = 0 can be counted as part of the off-line phase. We have observed in the numeri-
cal examples described below, that this initial model reduction approach provides ultimately a
better approximation of optimal gains than if we were to use modal approximation for the initial
surrogate model.

Note that in Step 3 of Algorithm 3, we recycle information obtained from earlier sym2IRKA

runs: optimal shifts and directions obtained from sym2IRKA can be used as starting shifts and
directions for the next run of sym2IRKA. This further improves the convergence behaviour of
sym2IRKA, especially when consecutive gain configurations are close to one another.

4 Numerical experiments

We illustrate here the advantages that accrue with the use of sym2IRKA, which is our variant of
IRKA introduced as Algorithm 1. We present results obtained using different sampling strategies
for intermediate damping configurations and different approaches taken for the internal reduction
step (Step 4) in sym2IRKA. These results will be compared with the approach presented in [16],
which describes another approach to damping optimization.

Example 4.1. We consider a mechanical system of n masses connected in sequence by simple
springs (see [45]), so that each mass is connected via a spring to two neighboring masses. The
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mathematical model is given as (1), where the mass and stiffness matrices are

M = diag (m1, m2,… , mn),

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2k1 + 2k2 −k2 −k3

−k2 2k2 + 2k3 −k3 −k4

−k3 −k3 2k3 + 2k4 −k4 −k5

⋱ ⋱ ⋱ ⋱

⋱ 2kn−2 + 2kn−1 −kn−2 −kn−1

−kn−1 2kn−1 + 2kn −kn

−kn−2 −kn 2kn + 2kn+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

We consider this system with n =1900 masses and the following values for mass and stiff-
ness:

ki = 500, for i = 1, ...1900; mi =

{
144 −

3

20
i, i = 1,… , 475,

i

10
+ 25, i = 476,… , 1900.

The parameter �c associated with internal damping (2) is set to 0.005 (i.e., 0.5% critical damp-
ing).

The primary excitation comes from 10 disturbances applied at 10 consecutive masses starting
with mass 471 until mass 480, in such a way that the magnitude of the excitation is highest at
the centerpoint of the range of masses, dropping off at the edges. Thus, the matrix E ∈ ℝ

1900×10

is defined so that

E(471 ∶ 480, 1 ∶ 10) = diag(10, 20, 30, 40, 50, 50, 40, 30, 20, 10); (22)

all other entries are zero.
For the output, we are interested in observing the displacement history of 18 masses that are

uniformly distributed throughout the system starting with mass 100:

z(t) =
[
q100(t) q200(t) … q1800(t)

]T
,

which we obtain by choosing matrix H ∈ ℝ
18×1900 as

H(1 ∶ 18, 100 ∶ 100 ∶ 1800) = I18×18;

all other entries are equal to zero.
External damping is provided by four dampers (i.e., p = 4) that are configured into two

independently positioned pairs of adjacent dampers, with the damping geometry determined by

B =
[
ej ej+1 ek ek+1

]
, (23)

where ej is the jth canonical vector and indices j and k determine the damper positions. Since
the first and second dampers share the same gain g1, and the third and fourth dampers share the
gain g2, G appears as

G = diag (g1, g1, g2, g2) ∈ ℝ
4×4.
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We consider different damping configurations by varying the indices k and j. In particular,
we consider the following possibilities:

{(j, k) | j ∈ {50, 150, 250, 350} and k ∈ {850, 950, 1050,… , 1850}}.

This gives 44 different damping configurations over which we optimize.

During the optimization procedure, we use the following parameters in Algorithms 2 and 3:

r = 60, tolDiff = 0.001, itMax = 40.

A convergence tolerance of 0.001 was used for termination in step 6 of sym2IRKA.
Viscosities were optimized by MATLAB’s built-in fminsearch using a termination tolerance

of 10−4, ending the optimization if either function values or variable values change by less than
and 10−4. The starting point for the optimization procedure was g(0) = (1000, 1000).

We perform several comparisons with this example. The first comparison is between our
approach using sym2IRKA and the dominant pole approach using [16, Algorithm 1 and 2].

For clearer comparisons, we use preset gain configurations with four parameter samples:
g(1) = (0, 0) (internal damping only), g(2) = (1000, 1000), g(3) = (100, 1000) and g(4) =

(1000, 100). When we used adaptive sampling, then the starting initial gain was taken as
g(1) = (0, 0) allowing only for internal damping.

We note that the magnitude of the first and second gains varies between 500 and 4000, thus
for the sake of better comparisons with the preset gain configurations, we have chosen values in
this range. Usually such information is not known in advance and an adaptive sampling strategy
could be advantageous.

As one can see in the upper plot of Figure 1, approaches using sym2IRKA have smaller rela-
tive errors in optimal gain. Relative error of the optimal gain was calculated by ‖g∗ − g‖∕‖g‖,
where g and g∗ denote the optimal gain calculated with and without dimension reduction, re-
spectively. The influence of our H2-based reduction approach is emphasized even further in the
lower plot of Figure 1 where we depict the relative errors in the H2 cost function. sym2IRKA

consistently yields smaller error.
Next, we consider different damping configuration sampling strategies coupled with different

internal reduction strategies ((a), (b) and (c) as described above) used in Step 4 of sym2IRKA.
For Algorithm 2, a predetermined damping configuration sampling was used. For Algorithm 3
the first initial gain was set to an approximation of optimal gains obtained by using sym2IRKA

applied to a system that has only internal damping. In Figure 2 we show relative errors for
Algorithm 2 and 3 with internal reduction strategies based on balanced truncation, sym2IRKA,
and the dominant pole algorithm related to strategies (a), (b), and (c) described above.

Besides accuracy, an important comparison criterion is the speed-up of the underlying opti-
mization algorithm. Table 1 shows the average speed-up for the optimization process obtained
by sym2IRKA for different strategies of internal reduction. We show here the average ratio be-
tween the time required for the gain optimization with and without the approximation technique
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Figure 1: Relative errors for the gain and the objective function.

using sym2IRKA. Overall, Algorithm 3 yields bigger speed-ups. For example, Algorithm 3 with
Strategy (c) has yielded an average speed up of 346.20. By way of contrast, note that the domi-
nant pole algorithm based on [16, Algorithm 1 and 2] accelerated the optimization process only
by a factor of 43.99 in average cases.

We conclude that we have obtained satisfactory relative errors in these trials and the approach
using sym2IRKA significantly accelerated the optimization process. Moreover, we see that an
approach that includes adaptive sampling additionally improves the efficiency of the sym2IRKA

approach, especially if feasible intervals of optimal gains are not known in advance.
For the predetermined sampling strategy, we have obtained similar reduced dimension for

approaches that use sym2IRKA, however an approach that uses the dominant pole approach had
smaller reduced dimension. In particular, the average reduced dimension for predetermined
sampling with strategy (a), strategy (b), and strategy (c) was 150, 178 and 141, respectively,
while for the approach based on dominant poles, we obtained an average reduced dimension of
98. This means that an approach that uses sym2IRKA provides a modeling subspace that spans a
“richer” subspace, if we compare with the subspace that is obtained by using the dominant pole
approach. The reduced dimension has a direct impact not only on the time ratio, but also on the
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Figure 2: Example 1, relative errors for H2 norm at optimal gain for Algorithm 2 and Algorithm
3 with strategies a), b) and c)

rate of convergence of sym2IRKA.

Example 4.2. We now consider a different structure that allows for more variables within the
optimization process. Consider a mass oscillator with 2d + 1 masses and 2d + 3 springs (see
[16, 19]). There are two rows of d masses connected with springs; the first row of masses have
stiffnesses k1 and the second row have stiffnesses k2. The first masses on the left edge (m1 and
md+1) are connected to a fixed boundary while on the other side of rows the masses (md and m2d)
are connected to mass m2d+1 with a stiffness k3 connected to a fixed boundary.

As in the previous example, the mathematical model is given by (1), with diagonal mass
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Acceleration factor for: Algorithm 2 Algoritm 3
Strategy (a) 187.37 288.62
Strategy (b) 146.12 338.29
Strategy (c) 228.63 346.20

Table 1: Time ratios for Example 1, i.e., acceleration factor of each approach using model re-
duction accelerated optimization

matrix M = diag (m1, m2,… , mn), but now the mass and stiffness matrices are given by

K =

⎡
⎢⎢⎣

K11 −�1
K22 −�2

−�T
1

−�T
2

k1 + k2 + k3

⎤
⎥⎥⎦
, with Kii = ki

⎡
⎢⎢⎢⎢⎢⎣

2 −1

−1 2 −1

⋱ ⋱ ⋱

−1 2 −1

−1 2

⎤
⎥⎥⎥⎥⎥⎦

, �i =

⎡⎢⎢⎢⎣

0

⋮

0

ki

⎤⎥⎥⎥⎦
,

for i = 1, 2. We will consider the n-mass oscillator with d = 1000, which means that we consider
2001 masses with the following configuration for the masses:

m2001 = 100, mi =

⎧⎪⎨⎪⎩

100 −
i

10
, i = 1,… , 499,

i

30
+ 33, i = 501,… , 1000,

100 − (i − 999)
5

20
+

(i−999)2

5000
, i = 1001,… , 2000,

The stiffness values are given by

k1 = 400, k2 = 100, k3 = 300.

The parameter �c associated with internal damping (2) is set to 0.003 (i.e., 0.3% critical damp-
ing).

The primary excitation are 21 disturbances applied to 21 masses that are closest to ground.
The 10 masses closest to the left-hand side are such that masses closest to the ground are exposed
to higher magnitude disturbances. Additionally, a disturbance is applied to the mass on the right-
hand side. That is E ∈ ℝ

n×21 with

E(1 ∶ 10, 1 ∶ 10) = diag(1000 ∶ −100 ∶ 100),

E(1001 ∶ 1010, 11 ∶ 20) = diag(1000 ∶ −100 ∶ 100),

E(2001, 21) = 2000;

all other entries are equal to zero.
Regarding the output, we are interested in the 21 displacements of the first row of masses

and 21 displacements of the second row of masses. In particular, we have that

z(t) =
[
q490(t) q491(t) … q510(t) q1490(t) q1491(t) … q1510(t)

]T
,
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so that H ∈ ℝ
42×2001.

In this example we illustrate how our approach based on sym2IRKA performs within a setting
having more optimization variables. We still consider four dampers (p = 4) but now with
different viscosities. The geometry of external damping is determined by a matrix B given
by

B =
[
ej − ej+5 ej+20 − ej+25 ek − ek+5 ek+20 − ek+25

]
, (24)

where ej is the jth canonical vector and indices j and k determine damping positions. Since the
dampers now have (potentially) all different viscosities, we have that

G = diag (g1, g2, g3, g4) ∈ ℝ
4×4.

The positions are chosen such that the first two dampers are applied on the first row of masses,
while the third and the fourth damper are applied on the second row of masses. Similarly as in
the previous example, in order to consider different damping configurations, we vary the indices
k and j. The following configurations are considered:

{(j, k) | j ∈ {250, 450, 650, 850} and k ∈ {1150, 1250, 1350, 1450, 1550, 1650, 1750}}.

This gives 28 different damping configurations over which we optimize.

During optimization, we use the following parameters for Algorithms 2 and 3:

r = 120, tolDiff = 0.05, itMax = 40.

A tolerance of 0.001 was used for checking convergence in Step 6 of sym2IRKA. The starting
point for optimization (as performed by fminsearch) was set to (1000, 1000, 1000, 1000). The
termination tolerance for fminsearch was set to 5 ⋅ 10−4.

We observed that the magnitudes of all optimal gains vary from 350 to 7000, thus, as we
have done in the previous example, for the predetermined gain sampling we choose values
that belong to this range. In particular, five sampling parameters were used as predetermined
samples of damping gain configurations: g(1) = (0, 0, 0, 0) – representing a system that has
only internal damping, g(2) = (1000, 1000, 1000, 1000), g(3) = (1000, 1000, 4000, 4000), g(4) =

(4000, 4000, 1000, 1000), and g(5) = (4000, 500, 4000, 500).
For the case of adaptive sampling, the initial gain was (0, 0, 0, 0), as before, but since we have

more variables and in order to improve robustness, in the generation of the initial subspace we
have added a starting point informed by the optimization procedure (that is, at an initial gain of
(1000, 1000, 1000, 1000)).

Note that in these examples the starting point for optimization also included predetermined
sampling of damping gain configurations.

Similarly as in the first example, in Figure 3 we show relative errors for the H2 norm at op-
timal gain. This figure shows results obtained by Algorithm 2 and Algorithm 3 with strategies
of internal reduction based strategies from cases (a), (b) and (c). We can see that within the
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Figure 3: Example 2, relative errors for H2 norm at optimal gain for Algorithm 2 and Algorithm
3 with strategies a), b) and c)

given tolerances the proposed methodology for damping optimization once again yields satis-
factory approximation together with significant acceleration of optimization. As in the previous
example, our approach based on sym2IRKA returned approximation of optimal gains with better
relative errors compared to the one obtained by dominant pole approach based on [16, Algorithm
1 and 2] in this example as well.

Similar to the first example, in Table 2 we illustrate average time speed-up for the opti-
mization process obtained using sym2IRKA for different strategies of internal reduction. In this
example dominant pole algorithm based on [16, Algorithm 1 and 2] accelerated optimization
process 83.87 times. This is also significant acceleration factor, but new approach based on
sym2IRKA was even more efficient, yielding an accelerating factor as high as 208. From this
table we can see that adaptive strategy is more efficient for strategies a) and b), but provides
slightly smaller time ratio for strategy b). Here adaptive sampling needed more updates of ini-
tial gains which have had impact in the final time ratio, but this strategy do not need to have
additional information on the area where are the optimal gains.
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Acceleration factor for Algorithm 2 Algoritm 3
Strategy (a) 124.72 157.98
Strategy (b) 133.53 126.16
Strategy (c) 171.93 208.80

Table 2: Time ratios for Example 2, i.e., acceleration factor with model reduction accelerated
optimization

Although the time speed ups depend on the tuning tolerances, for both examples we can
conclude, based on performed numerical experiments, that the approach based on sym2IRKA is
significantly faster than the dominant pole approach while also providing better relative errors.
For the predetermined sampling strategy, we have used gain samples that are somehow in the
vicinity of the optimal gains and this is, in general, hard to know. Thus, in practice, the adaptive
sampling strategy is expected to be much more efficient. The adaptive sampling strategy yields
similar relative errors as the predetermined sampling strategy and usually provides better or at
least similar acceleration speed up.

Acknowledgements

The work of Zoran Tomljanović was supported in part by the Croatian Science Foundation under
the project Optimization of parameter dependent mechanical systems, Grant No. IP-2014-09-
9540 and project Control of Dynamical Systems, Grant No. IP-2016-06-2468. The work of
Christopher Beattie was supported in part by the Einstein Foundation Berlin. The work of Serkan
Gugercin was supported in part by the Alexander von Humboldt Foundation and by the NSF
through Grant DMS-1522616.

References

[1] N.M. Alexandrov, J.E. Dennis, R.M. Lewis, and V. Torczon, A trust-region framework

for managing the use of approximation models in optimization, Structural and Multidisci-
plinary Optimization 15 (1998), no. 1, 16–23.

[2] A. C. Antoulas, D. C. Sorensen, and S. Gugercin, A survey of model reduction methods for

large-scale systems, Contemporary Mathematics 280 (2001), 193–219.

[3] A.C. Antoulas, Approximation of large-scale dynamical systems, SIAM Publications,
Philadelphia, PA, 2005.

21



[4] A.C. Antoulas, C.A. Beattie, and S. Gugercin, Interpolatory model reduction of large-scale

dynamical systems, Efficient Modeling and Control of Large-Scale Systems, Springer,
2010, pp. 3–58.

[5] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, Templates for the solution

of algebraic eigenvalue problems: A practical guide, SIAM, Philadelphia, 2000.

[6] Z. Bai and Y. Su, Dimension reduction of second order dynamical systems via a second-

order Arnoldi method, SIAM Journal on Scientific Computing 5 (2005), 1692–1709.

[7] U. Baur, C. A. Beattie, P. Benner, and S. Gugercin, Interpolatory projection methods for

parameterized model reduction, SIAM Journal on Scientific Computing 33 (2011), no. 5,
2489–2518.

[8] U. Baur, P. Benner, and L. Feng, Model order reduction for linear and nonlinear systems:

A system-theoretic perspective, Arch. Comput. Methods Eng. 21 (2014), no. 4, 331–358.

[9] C. Beattie and S. Gugercin, Interpolatory projection methods for structure-preserving

model reduction, Systems and Control Letters 58 (2009), 225–232.

[10] C.A. Beattie and S. Gugercin, Krylov-based model reduction of second-order systems with

proportional damping, Proceedings of the 44th IEEE Conference on Decision and Control,
December 2005, pp. 2278–2283.

[11] , Model reduction by rational interpolation, To appear in Model Reduction and Ap-
proximation: Theory and Algorithms. Available as http://arxiv.org/abs/1409.2140 (P. Ben-
ner, A. Cohen, M. Ohlberger, and K. Willcox, eds.), SIAM, Philadelphia, PA, USA, 2017.

[12] P. Benner and T. Breiten, Interpolation-based H2-model reduction of bilinear control sys-

tems, SIAM Journal on Matrix Analysis and Applications 33 (2012), no. 3, 859–885.

[13] P. Benner, T. Breiten, and T. Damm, Generalized tangential interpolation for model re-

duction of discrete-time mimo bilinear systems, International Journal of Control 84 (2011),
no. 8, 1398–1407.

[14] P. Benner, A. Cohen, M. Ohlberger, and K. Willcox, Model reduction and approximation:

Theory and algorithms, SIAM, 2005.

[15] P. Benner, S. Gugercin, and K. Willcox, A survey of projection-based model reduction

methods for parametric dynamical systems., SIAM Review 57 (2015), no. 4, 483–531.

[16] P. Benner, P. Kürschner, Z. Tomljanović, and N. Truhar, Semi-active damping optimization

of vibrational systems using the parametric dominant pole algorithm, Journal of Applied
Mathematics and Mechanics (2015), 1–16, DOI:10.1002/zamm201400158.

22

http://arxiv.org/abs/1409.2140


[17] P. Benner, V. Mehrmann, and D.C. Sorensen, Dimension reduction of large-scale

systems, Lecture Notes in Computational Science and Engineering, Springer-Verlag,
Berlin/Heidelberg, Germany, 2005.

[18] P. Benner, Z. Tomljanović, and N. Truhar, Dimension reduction for damping optimization

in linear vibrating systems, Z. Angew. Math. Mech. 91 (2011), no. 3, 179 – 191, DOI:
10.1002/zamm.201000077.

[19] , Optimal Damping of Selected Eigenfrequencies Using Dimension Reduction, Nu-
mer. Linear Algebr. 20 (2013), no. 1, 1–17, DOI: 10.1002/nla.833.

[20] F. Blanchini, D. Casagrande, P. Gardonio, and S. Miani, Constant and switching gains in

semi-active damping of vibrating structures, Int. J. Control 85 (2012), no. 12, 1886–1897.

[21] T. Bonin, H. Faßbender, A. Soppa, and M. Zaeh, A fully adaptive rational global arnoldi

method for the model-order reduction of second-order mimo systems with proportional

damping, Mathematics and Computers in Simulation 122 (2016), 1–19.

[22] T. Breiten, Structure-preserving model reduction for integro-differential equations, SIAM
Journal on Control and Optimization 54 (2016), no. 6, 2992–3015.

[23] A. Bunse-Gerstner, D. Kubalinska, G. Vossen, and D. Wilczek, H2-norm optimal model

reduction for large scale discrete dynamical {MIMO} systems, Journal of Computational
and Applied Mathematics 233 (2010), no. 5, 1202 – 1216, Special Issue Dedicated to
William B. Gragg on the Occasion of His 70th Birthday.

[24] J. B. Burl, Linear optimal control: H2 andH∞ methods, 1st ed., Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1998.

[25] J. Fehr, M. Fischer, B. Haasdonk, and P. Eberhard, Greedy-based approximation of

frequency-weighted gramian matrices for model reduction in multibody dynamics, ZAMM
- Journal of Applied Mathematics and Mechanics / Zeitschrift fÅžr Angewandte Mathe-
matik und Mechanik 93 (2013), no. 8, 501–519.

[26] G. Flagg and S. Gugercin, Multipoint Volterra series interpolation and H2 optimal model

reduction of bilinear systems, SIAM Journal on Matrix Analysis and Applications 36

(2015), no. 2, 549–579.

[27] P. Freitas and P. Lancaster, On the optimal value of the spectral abscissa for a system of

linear oscillators, SIAM Journal on Matrix Analysis and Applications 21 (1999), no. 1,
195–208.

[28] K. Gallivan, A. Vandendorpe, and P. Van Dooren, Model reduction of MIMO systems via

tangential interpolation, SIAM Journal on Matrix Analysis and Applications 26 (2005),
no. 2, 328–349.

23



[29] W.K. Gawronski, Advanced structural dynamics and active control of structures, Springer,
New York, USA, 2004.

[30] G.H. Golub and Ch.F. van Loan, Matrix computations, 3rd ed., J. Hopkins University Press,
Baltimore, 1996.

[31] S. Gratton and L. N. Vicente, A surrogate management framework using rigorous trust-

region steps, Optimization Methods Software 29 (2014), no. 1, 10–23.

[32] S. Gugercin, A. C. Antoulas, and C. Beattie, H2 model reduction for large-scale linear

dynamical systems, SIAM Journal on Matrix Analysis and Applications 30 (2008), no. 2,
609–638.

[33] J. S Hesthaven, G. Rozza, and B. Stamm, Certified reduced basis methods for parametrized

partial differential equations, Springer, 2016.

[34] D. J. Inman and A. N. Jr. Andry, Some results on the nature of eigenvalues of discrete

damped linear systems, ASME J. Appl. Mech. 47 (1980), 927–930.

[35] Y. Kanno, Damper placement optimization in a shear building model with discrete de-

sign variables: a mixed-integer second-order cone programming approach, Earthquake
Engineering and Structural Dynamics 42 (2013), 1657–1676.

[36] I. Kuzmanović, Z. Tomljanović, and N. Truhar, Optimization of material with modal damp-

ing, Applied Mathematics and Computation 218 (2012), 7326–7338.

[37] L. Meier III and D.G. Luenberger, Approximation of linear constant systems, Automatic
Control, IEEE Transactions on 12 (1967), no. 5, 585–588.

[38] D.G. Meyer and S. Srinivasan, Balancing and model reduction for second-order form lin-

ear systems, IEEE Transactions on Automatic Control 41 (1996), no. 11, 1632–1644.

[39] P.C. Müller and W.O. Schiehlen, Linear vibrations, Martinus Nijhoff Publishers, 1985.

[40] B. Nour-Omid and M. E. Regelbrugge, Lanczos method for dynamic analysis of damped

structural systems, Earthquake Engrg. and Structural Dynamic 18 (1989), 1091–1104.

[41] T. Reis and T. Stykel, Balanced truncation model reduction of second-order systems, Math-
ematical and Computer Modelling of Dynamical Systems 14 (2008), no. 5, 391–406.

[42] M. Saadvandi, K. Meerbergen, and W. Desmet, Parametric dominant pole algorithm for

parametric model order reduction, Tech. report, KU Leuven, Department of Computer
Science, March 2013.

[43] T.-J. Su and R.R. Craig Jr, Model reduction and control of flexible structures using krylov

vectors, Journal of guidance, control, and dynamics 14 (1991), no. 2, 260–267.

24



[44] I. Takewaki, Optimal damper placement for minimum transfer functions, Earthquake En-
gineering and Structural Dynamics 26 (1997), 1113–1124.

[45] N. Truhar, Z. Tomljanović, and M. Puvača, An efficient approximation for optimal damping

in mechanical systems, International journal of numerical analysis and modeling 14 (2017),
no. 2, 201–217.

[46] N. Truhar, Z. Tomljanović, and K. Veselić, Damping optimization in mechanical systems

with external force, Applied Mathematics and Computation 250 (2015), 270–279.

[47] N. Truhar and K. Veselić, An efficient method for estimating the optimal dampers’ viscosity

for linear vibrating systems using Lyapunov equation, SIAM J. Matrix Anal. Appl. 31

(2009), no. 1, 18–39.

[48] P. Van Dooren, KA Gallivan, and P.A. Absil, H2-optimal model reduction of MIMO sys-

tems, Applied Mathematics Letters 21 (2008), no. 12, 1267–1273.

[49] K. Veselić, Damped Oscillations of Linear Systems, Springer Lecture Notes in Mathemat-
ics, Springer-Verlag, Berlin, 2011.

[50] S. Wyatt, Issues in interpolatory model reduction: Inexact solves, second-order systems

and daes, Dissertation, Virginia Polytechnic Institute and State University, Blacksburg,
2012.

[51] K. Zhou, J.C. Doyle, and K. Glower, Robust and optimal control, Upper Saddle River, New
Jersey: Prentice Hall, 1996.

25


	1 Introduction
	2 IRKA and Damping Optimization
	3 Some Implementation Details
	4 Numerical experiments

