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Abstract

Optimal transport problems pose many challenges when considering their nu-
merical treatment. We investigate the solution of a PDE-constrained optimisa-
tion problem subject to a particular transport equation arising from the mod-
elling of image metamorphosis. We present the nonlinear optimisation problem,
and discuss the discretisation and treatment of the nonlinearity via a Gauss–
Newton scheme. We then derive preconditioners that can be used to solve the
linear systems at the heart of the (Gauss–)Newton method.

Keywords: PDE-constrained optimisation, Saddle point systems,
Time-dependent PDE-constrained optimisation, Preconditioning, Krylov
subspace solver, Optical Flow, Optimal Transport

1. Introduction

The problem of optimal transport is a longstanding and active area of re-
search in applied mathematics and the sciences [1]. Its numerical treatment
provides many challenges to the mathematical community (see [2, 3] and the
references therein). Our goal in this paper is to discuss the solution of a PDE-
constrained optimisation problem where the constraint is given by a transport
equation. In the field of PDE-constrained optimisation one typically wants to
minimise an objective function with the constraints given by one or more PDEs
[4, 5].

Much of our analysis for this formulation builds upon the previous work [6],
for which we wish to devise new iterative methods and discretisation schemes.
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The study of the original transport problem goes back to the 18th century but
a modern formulation was given in [7, 8]. Recent developments include the
seminal paper [9], where the problem is phrased as a fluid mechanics problem.
A very similar formulation of minimising an objective function subject to a
transport equation constraint is found in optical flow (cf. for example [10, 11,
12, 13, 14, 15, 16]), which models the apparent ‘motion’ of an image.

In this manuscript, we examine the optimisation and discretisation of this
problem, with a particular focus on the efficient solution of the linear systems
that arise at the heart of the outer nonlinear solver. Our primary choice of non-
linear solver for the nonlinear optimisation problem is a Gauss–Newton scheme
[6, 17], though we also consider methods based on a full Newton method. As
one can typically follow the route of first performing the discretisation followed
by deriving the appropriate optimality conditions, or vice versa, we discuss
both approaches. We also briefly analyse a modified formulation of the clas-
sical transport model. Our main goal is the derivation of the linear system
of equations, followed by the introduction of suitable preconditioners that al-
low a parameter-robust solution of the linear system that is the computational
heart of the nonlinear iteration. Such preconditioners have recently received
much attention (cf. [18, 19, 20, 21]). We then illustrate that the proposed pre-
conditioners are efficient both for synthetic data as well as practical imaging
examples.

The paper is structured as follows. In Section 2 we introduce the problem
formulation considered in this work. Section 3 introduces the discretisation of
the optimisation problem and the constraint via a finite difference approach.
We discuss both discretise-then-optimise and optimise-then-discretise schemes.
After introducing a modification to the problem formulation, we discuss two
general preconditioning strategies in Section 4. In Section 5 we present numeri-
cal experiments for the finite difference method, demonstrating the effectiveness
of our discretisation and preconditioning approaches.

2. The optimal transport problem

The problem we examine in this paper is one of minimising the functional

E(y, ~m) =
1

2γ

∫
Ω

(y(~x, 1)− y1(~x))2 dΩ +
δ

2

∫ 1

0

∫
Ω

(y(~x, t)− ȳ(~x, t))2 dΩ dt

+
β

2

∫ 1

0

∫
Ω

(Q~m(~x, t))2 dΩ dt,

(1)

where β and γ are (positive) parameters that can be understood as regularisa-
tion or penalty parameters. The parameter γ is chosen in such a way that the
computed state y(~x, 1) is close to the true final state y1 at time T = 1. Here, the
velocity ~m represents a control variable, Q is a differential operator (possibly
Q = blkdiag(I, I) or Q = blkdiag(∇,∇)), and ȳ is a specified desired state. The
problem is solved on a space-time grid (~x, t) := ([x1, x2], t) ∈ Ω × [0, 1], where
Ω ⊂ R2 denotes the domain occupied by the image.
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For the majority of the analysis presented in this paper we will consider the
case δ = 0, i.e., where

E(y, ~m) =
1

2γ

∫
Ω

(y(~x, 1)− y1(~x))2 dΩ +
β

2

∫ 1

0

∫
Ω

(Q~m(~x, t))2 dΩ dt, (2)

however on a number of occasions we will describe modifications which are
taken into account when δ is a positive parameter, measuring the deviation of
y from the desired state ȳ during the entire time interval. We typically refer
to the minimisation of (1) with δ > 0 as the “full observation case”, and the
minimisation of (2) (where the state is measured within E at the final time
only) as the “partial observation case”. The goal is to minimise the above
energy subject to the continuity transport equation

yt +∇ · (~my) = 0, (3)

with the initial condition y(~x, 0) = y0 as well as appropriate boundary condi-
tions, for instance periodic boundary conditions or Dirichlet conditions. Here,
~m = [m1, m2]

T
is defined for the two-dimensional domain Ω. While such a

problem can be found in many areas of science, we wish to apply the above for-
mulation to the estimation of an optical flow. To illustrate a particular set-up,
examples for y0 and y1 are the two images shown in Fig. 11.

(a) Initial image y0 (b) Target image y1

Figure 1: An example of an optical flow problem where we have a starting picture on the left
and a target picture on the right.

3. Discretisation using finite differences

In this section, we wish to present how we discretise the optimisation prob-
lem (2) with constraint (3). An outline is as follows: in Section 3.1 we examine
the approach where such a PDE-constrained optimisation problem is discretised

1The images were taken from http://cs.brown.edu/people/mjblack/images.html.
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first, upon which optimality conditions are found. In Section 3.2 we then extend
this methodology to the setting where optimality conditions are first derived (on
a formal basis) on the continuous level, whereupon these are then discretised.
In Section 3.3 we then discuss the application of our methodology to a slight
modification of the PDE (3). In Section 3.4, we explain how the optimality con-
ditions vary if one instead considers the cost functional (1), with an additional
non-zero parameter δ measuring the deviation of the state y from ȳ throughout
the entire time interval.

3.1. Discretise-then-optimise

A control problem using the formulation (3) of the transport equation was
introduced in [6], and we therefore follow this approach for the derivation of the
discretise-then-optimise system. We start by discretising the objective function
and nonlinear PDE constraint to build a discrete Lagrangian, which then allows
us to compute the solution via a Gauss–Newton or Lagrange–Newton scheme
[22, Ch. 10.3 & 18]. We employ an implicit Lax–Friedrichs method [3, 6] for the
forward PDE

1

τ

(
y

(k+1)
i,j − 1

4

[
y

(k)
i+1,j + y

(k)
i−1,j + y

(k)
i,j+1 + y

(k)
i,j−1

])
+

1

2h

(
(m1 � y)

(k+1)
i+1,j − (m1 � y)

(k+1)
i−1,j + (m2 � y)

(k+1)
i,j+1 − (m2 � y)

(k+1)
i,j−1

)
= 0,

that we can manipulate to arrive at the following system for each time-step:(
I +

τ

2h
K(m(k+1))

)
y(k+1) = Dty

(k), k = 0, 1, ..., Nt − 1.

Here, � denotes the (componentwise) Hadamard product of vectors, τ represents
the time-step with h the spatial mesh parameter, the matrix Dt arises from the
four point stencil used to approximate the time derivative, and

K(m(k+1)) =
[
D1 D2

] diag
(
m

(k+1)
1

)
diag

(
m

(k+1)
2

)
 ,

where D1 and D2 are centred finite difference matrices. We can then formulate
an all-at-once approach using the notation

L(m(k+1)) y(k+1) = Dty
(k),
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where L(m(k)) = I + τ
2hK(m(k)), to obtain for a given number Nt time-steps a

matrix system of the form

L(m(1))

−Dt L(m(2))

−Dt
. . .

. . .
. . .

−Dt L(m(Nt))


︸ ︷︷ ︸



y(1)

y(2)

...

...

y(Nt)


︸ ︷︷ ︸

=



Dty
(0)

0

...

...

0


︸ ︷︷ ︸

A(m) y = d

representing the discretised PDE constraint. Depending on the boundary con-
ditions (Dirichlet or periodic), the matrices L(m(k)) and Dt need to be slightly
modified in rows pertaining to boundary nodes. In this work we apply periodic
boundary conditions, in analogy to the work of Benzi, Haber and Taralli [6].
Furthermore, we may approximate the objective function (2) on the discrete
level by

E(y,m) =
1

2γ
(y(Nt) − y1)TM(y(Nt) − y1) +

β τ

2
mTMm,

where M = blkdiag(W, . . . ,W ), and W is obtained from the discretisation of
the term

∫
Ω

(Q~m(~x, t))2 dΩ (which could simply be a scaled identity operator).
Note that, for simplicity, we have not included possible scalings of the individual
W matrices in M as these depend on the choice of discretisation performed in
time. We now form the discrete Lagrangian for this problem

L(y,m,p) = E(y,m) + pTQ (A(m) y − d) ,

where Q is a matrix allowing us to interpret the Lagrange multiplier p as a grid
function. For simplicity we assume that Q = τh2I, with I the identity matrix
of the appropriate dimension. Following [6], the computation of the first-order
conditions

Ly = 0, Lm = 0, Lp = 0,

leads to

γ−1MNt
(y − y0,1) +A(m)TQp = 0, (4a)

β τMm + J (y)TQp = 0, (4b)

Q (A(m) y − d) = 0, (4c)

where y0,1 is a vector containing vectors of zeros for every time-step, apart
from the final step which contains the vector y1. The matrix MNt contains
zero blocks at every time-step, apart from the final time-step, which gives rise
to an identity matrix scaled by h2, denoted as M . Note that in optical flow
applications (relating to our subsequent discussion of the “full observation case”)
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one is often given an image for every time-step, meaning the matrixMNt can be
modified to one that does not contain zero diagonal blocks, and the vector y0,1

contains all time instances of these images. Further, J (y) denotes the block
diagonal matrix blkdiag

(
J(y(1)), . . . , J(y(Nt))

)
, where

τ

2h

[
D1 D2

] [ diag
(
y(j)

)
0

0 diag
(
y(j)

) ] =: J(y(j)),

at each time-step j = 1, 2, ..., Nt. The equations (4) represent a nonlinear sys-
tem, which we have to treat with a nonlinear optimisation scheme. We follow [6]
and use a Gauss–Newton method for the solution of the first-order conditions,
which leads to the matrix system γ−1MNt

0 A(m)TQ
0 β τM J (y)TQ

QA(m) QJ (y) 0


 sy

sm

sp

 = −

 γ−1MNt(y − y0,1) +A(m)TQp

β τMm + J (y)TQp

Q (A(m) y − d)


(5)

at every step of the nonlinear iteration.

3.2. Optimise-then-discretise

We now highlight that it is also possible to follow the optimise-then-discretise
approach, where we commence by considering the continuous Lagrangian

L(y, ~m, p) = E(y, ~m) +

∫ 1

0

∫
Ω

p (yt +∇ · (~my)) dΩ dt,

and then search for the continuous first-order conditions. Note that, for brevity,
we have omitted the initial and boundary conditions within this Lagrangian
functional; these are also accounted for and reappear in the optimality condi-
tions. Proceeding formally, by considering the Fréchet derivatives of the La-
grangian L with respect to y, ~m and p, and integrating by parts, we then obtain
the conditions

−pt − ~m · ∇p = 0, (6a)

β Q∗Q~m− y∇p = ~0, (6b)

yt +∇ · (~my) = 0, (6c)

together with the initial condition for y, and the final-time condition

1

γ
(y(·, 1)− y1) = −p(1),

corresponding to the adjoint equation. We have now established the continuous
first-order conditions for the optimal transport problem. Equations (6) represent
a nonlinear system, which are augmented with boundary and initial/final-time
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conditions. Equivalently, we can write this as G(~z) with ~z = [y, m1, m2, p]
T

and solve this nonlinear problem using a Gauss–Newton or Newton’s method.
The latter is the Lagrange–Newton or sequential quadratic programming (SQP)
scheme. At each iteration we need to solve

G′(~zk)~sk = −G(~zk) =: ~b,

where ~sk = ~z − ~zk, until convergence of the method is achieved. We now need
to form the derivative of G to solve the Newton problem, and obtain

−(sp)t
− ~sm · ∇p− ~m · ∇sp = b1, (7a)

β Q∗Q~sm − y∇sp − sy∇p = ~b2, (7b)

(sy)
t

+∇ · (~msy) +∇ · (~smy) = b3. (7c)

We examine the discretisation of this system of equations, starting with the
treatment of the term

(sy)t +∇ · (~msy)

in the forward equation (7c), using the implicit Lax–Friedrichs scheme. This
gives

1

τ

(
(sy)

(k+1)
i,j − 1

4

[
(sy)

(k)
i+1,j + (sy)

(k)
i−1,j + (sy)

(k)
i,j+1 + (sy)

(k)
i,j−1

])
+

1

2h

(
(m1 � sy)

(k+1)
i+1,j − (m1 � sy)

(k+1)
i−1,j + (m2 � sy)

(k+1)
i,j+1 − (m2 � sy)

(k+1)
i,j−1

)
.

Written in the same form as for the discretise-then-optimise approach, the matri-

ces corresponding to the term at each time-step are
(
I + τ

2hK(m(k+1))
)
s

(k+1)
y −

Dts
(k)
y , for k = 0, 1, ..., Nt−1. The discretisation of ∇· (~smy) is performed anal-

ogously and we obtain

∇ · (~smy) =
∂(sm1y)

∂x1
+
∂(sm2y)

∂x2
,

where ~sm = [sm1
, sm2

]
T

, which leads to

1

2h

(
(sm1

� y)
(k+1)
i+1,j − (sm1

� y)
(k+1)
i−1,j + (sm2

� y)
(k+1)
i,j+1 − (sm2

� y)
(k+1)
i,j−1

)
,

and when taking into account the multiplication by the time-step τ results in

τ

2h

(
(sm1

� y)
(k+1)
i+1,j − (sm1

� y)
(k+1)
i−1,j + (sm2

� y)
(k+1)
i,j+1 − (sm2

� y)
(k+1)
i,j−1

)
.

We write this in matrix form as J (y) sm. Consider now the discretisation of
the terms arising from the continuous gradient equation (7b). For the term

−sy∇p =
[
− sy ∂p

∂x1
, − sy ∂p

∂x2

]T
, we will obtain entries of the form

−(sy)
(k+1)
i,j

1

2h

 p
(k+1)
i+1,j − p

(k+1)
i−1,j

p
(k+1)
i,j+1 − p

(k+1)
i,j−1
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at the (k+1)-st time-step, which can be written in matrix form (when multiplied
by the time-step τ) as

τ

2h

[
diag

(
DT

1 p(k+1)
)

diag
(
DT

2 p(k+1)
) ] s(k+1)

y .

In an analogous way, we may discretise the term −y∇sp =
[
− y ∂sp∂x1

, − y ∂sp∂x2

]T
by

−y(k+1)
i,j

1

2h

[
(sp)

(k+1)
i+1,j − (sp)

(k+1)
i−1,j

(sp)
(k+1)
i,j+1 − (sp)

(k+1)
i,j−1

]
,

which in block matrix form will lead to terms of the form

τ

2h

[
diag

(
y(k+1)

)
0

0 diag
(
y(k+1)

) ] [ DT
1

DT
2

]
s(k+1)
p ,

abbreviated by J (y)T sp. Finally, let us analyse the terms within the adjoint
equation (7a). The term

−~sm · ∇p = −sm1

∂p

∂x1
− sm2

∂p

∂x2
,

is approximated at time tk+1 by

−(sm1)
(k+1)
i,j

1

2h

(
p

(k+1)
i+1,j − p

(k+1)
i−1,j

)
− (sm2)

(k+1)
i,j

1

2h

(
p

(k+1)
i,j+1 − p

(k+1)
i,j−1

)
,

or in matrix form, when considering the time-step τ ,

τ

2h

[
diag

(
DT

1 p(k+1)
)

diag
(
DT

2 p(k+1)
) ]

s(k+1)
m =: G(p) s(k+1)

m .

By now it is clear that the collection of all the previously discretised expressions
results in a linear system of comparable structure to the matrix (5) obtained
from the discretise-then-optimise, Gauss–Newton approach. The last ingredient
needed is a discretised version of the adjoint operator, i.e.,

−(sp)t − ~m · ∇sp = −(sp)t −m1
∂sp
∂x1
−m2

∂sp
∂x2

.

An implicit Lax–Friedrichs scheme again uses forward averaged differences in
time and centred differences in space, leading to equations of the form

− 1

τ

(
(sp)

(k+1)
i,j − 1

4

[
(sp)

(k)
i+1,j + (sp)

(k)
i−1,j + (sp)

(k)
i,j+1 + (sp)

(k)
i,j−1

])
− 1

2h

(
(m1)i,j

(
(sp)

(k+1)
i+1,j − (sp)

(k+1)
i−1,j

)
+ (m2)i,j

(
(sp)

(k+1)
i,j+1 − (sp)

(k+1)
i,j−1

))
,

which in turn may be summarised by matrices
(
I + τ

2hL(m(k+1))
)
s

(k+1)
p −

Dts
(k)
p . These may be assembled for all time-steps into a high-dimensional

8



linear system B(m) in an analogous manner to A(m). We have now discretised
the PDE-constrained optimisation problem using the optimise-then-discretise
approach, obtaining a matrix system of the form γ−1MNt G(p) B(m)

G(p)T β τM J (y)T

A(m) J (y) 0


 sy

sm

sp

 = b. (8)

Note that we have not yet established that the discretisation of the adjoint
equation above leads to the desired (symmetric) form with A(m)T = B(m).
For both matrices the diagonal blocks are of key interest, and we discuss these
particular blocks now. For A(m)T , we obtain for the crucial diagonal blocks
that(
K(m(k+1))

)T
s(k+1)
p =

[
diag

(
m

(k+1)
1

)
diag

(
m

(k+1)
2

) ] DT
1 s

(k+1)
p

DT
2 s

(k+1)
p


= diag

(
m

(k+1)
1

)
DT

1 s(k+1)
p + diag

(
m

(k+1)
2

)
DT

2 s(k+1)
p ,

whereupon applying DT
1 = −D1 and DT

2 = −D2 clearly leads2 to the desired
form within B(m).

We emphasise that the matrix system (8) was obtained using a full Newton
method, as opposed to the analysis for the discretise-then-optimise method for
which the Gauss–Newton approach of [6] was applied. The main consequence
of this change in the outer iteration is the appearance of the G(p) and G(p)T

blocks in (8). We also point out that in (5) the scaling matrix Q was used for
the Lagrange multiplier, following [6]. Such a scaling could also be used to make
the system (8) resemble the discretise-then-optimise approach more closely.

3.3. Alternative problem formulation

Whereas we focus for the most part on the optimal transport problem given
in (2)–(3), we also wish to briefly discuss an alternative formulation given by
the minimisation of

E(y, ~m) =
1

2γ

∫
Ω

(y(~x, 1)− y1)2 dΩ +
β

2

∫ 1

0

∫
Ω

(Q~m(~x, t))2 dΩ dt

subject to the advection transport equation (cf. [16])

yt + ~m · ∇y = 0, (9)

along with appropriate boundary and initial conditions. Let us briefly compare
(9) with (3). The divergence theorem implies d

dt

∫
Ω
y dΩ = −

∫
Γ
(~my) ·~ndΓ, and

2Due to the stucture of the differential operators corresponding to D1 and D2, we can form
these as skew-symmetric matrices by setting to zero the entries corresponding to boundary
conditions, and transferring this information to the right-hand side of the matrix system.

9



thus (3) will be mass preserving in the presence of homogeneous Dirichlet or
periodic boundary conditions. By constrast, mass may be produced or removed
in (9) unless ∇ · ~m = 0 holds.

Discretising the objective function as before results in the following func-
tional on the discrete level:

E(y,m) =
1

2γ
(y(Nt) − y1)TM(y(Nt) − y1) +

β τ

2
mTMm. (10)

The discretisation of the transport equation (9) via an implicit Lax–Friedrichs
scheme [3] gives

1

τ

(
y

(k+1)
i,j − 1

4

[
y

(k)
i+1,j + y

(k)
i−1,j + y

(k)
i,j+1 + y

(k)
i,j−1

])
+

1

2h

(
(m1)i,j

(
y

(k+1)
i+1,j − y

(k+1)
i−1,j

)
+ (m2)i,j

(
y

(k+1)
i,j+1 − y

(k+1)
i,j−1

))
= 0,

which can be written in matrix form as(
I +

τ

2h
K̃(m(k+1))

)
y(k+1) = Dty

(k),

where

K̃(m(k+1)) =
[

diag
(
m

(k+1)
1

)
diag

(
m

(k+1)
2

) ][ D1

D2

]
.

Therefore, in block form, the system of equations for the forward problem at all
time-steps reads (with L̃(m(k)) = I + τ

2hK̃(m(k))):

L̃(m(1))

−Dt L̃(m(2))

−Dt
. . .

. . .
. . .

−Dt L̃(m(Nt))


︸ ︷︷ ︸



y(1)

y(2)

...

...

y(Nt)


︸ ︷︷ ︸

=



Dty
(0)

0

...

...

0


︸ ︷︷ ︸

Ã(m) y = d

.

(11)
Using the standard Lagrangian approach for differentiating the objective func-
tion (10) subject to the constraints (11), we obtain the first-order conditions,
neglecting the scaling matrix Q:

Ly = γ−1MNt
(y − y0,1) + Ã(m)Tp = 0,

Lm = β τMm + G̃(y) p = 0,

Lp = Ã(m) y − d = 0,
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where

G̃(j) =
τ

2h

[
diag(y

(j)
1 )

diag(y
(j)
2 )

]
with y

(j)
i = Diy

(j) and G̃ = blkdiag
(
G̃(1), . . . , G̃(Nt)

)
.

As for the previous problem formulation in Section 3.1 we may then write down
a Gauss–Newton scheme for this problem, governed by the matrix

γ−1MNt
0 Ã(m)T

0 β τM G̃(y)

Ã(m) G̃(y)T 0

 . (12)

3.4. Modified cost functional

We now briefly discuss the changes to the optimality conditions and matrix
systems if the cost functional (1) is instead considered. In this case, when the
discretise-then-optimise method is applied, the discrete approximation of E is
given by

E(y,m) =
1

2γ
(y(Nt)−y1)TM(y(Nt)−y1)+

δ τ

2
(y−ȳ)TM̄(y−ȳ)+

β τ

2
mTMm,

where ȳ contains the discrete values of the desired state ȳ at each time-step,
and M̄ is a block diagonal matrix corresponding to a scaled identity operator
applied at each time-step. The equations Lm = Lp = 0, as given by (4b)–(4c),
will then hold as before. By contrast, the equation Ly = 0 becomes

γ−1MNt
(y − y0,1) + δ τM̄(y − ȳ) +A(m)TQp = 0,

and the Gauss–Newton system (5) is therefore modified to the form γ−1MNt + δ τM̄ 0 A(m)TQ
0 β τM J (y)TQ

QA(m) QJ (y) 0


 sy

sm

sp


= −

 γ−1MNt
(y − y0,1) + δ τM̄(y − ȳ) +A(m)TQp

β τMm + J (y)TQp

Q (A(m) y − d)

 .
Similarly, for the matrix system (8) arising from the optimise-then-discretise

approach, the top left entry γ−1MNt
must be replaced by γ−1MNt

+ δ τM̄ if
the modified cost functional (1) is used.

4. Preconditioning

The most important step within our algorithm, in order to minimise the
computational work required, is to accurately and efficiently solve large and

11



sparse linear systems. To illustrate our methodology, we focus our description
on the Gauss–Newton matrix derived from the discretise-then-optimise case for
problem (2)–(3); see (5): γ−1MNt

0 A(m)TQ
0 β τM J (y)TQ

QA(m) QJ (y) 0

 . (13)

We approach the solution of such linear systems by exploiting the saddle point
form of the matrices involved. It is well known that saddle point matrices of
the form [

A BT

C 0

]
(14)

can be effectively approximated by the block diagonal or block triangular pre-
conditioners

PD =

[
A 0

0 S

]
, PT =

[
A 0

B −S

]
,

where S := CA−1BT denotes the (negative) Schur complement of the matrix
system, provided that A and S are non-singular. It can be shown (see [23, 24])
that preconditioning the saddle point system with PD or PT results in the
convergence of a Krylov subspace method in 3 or 2 iterations, respectively.
It can also be shown (see [25]) that a similar block triangular preconditioner
may also be applied if the (2, 2) block of (14) is non-zero. This convergence is
independent of all parameters in our problem set-up, such as the regularisation
parameters, the mesh parameter, or the time-step.

Of course, the so-called ‘ideal preconditioners’ PD and PT would not be
applied in practice, as the computational cost of inverting A and S would be
almost as great as (or maybe greater than) inverting the entire system. We
therefore wish to consider variants of these preconditioners, where the (1, 1)
block and Schur complement are replaced with suitable (cheap) approximations.
For the matrix (13), we see that

A =

[
γ−1MNt

0

0 β τM

]
, B = C =

[
QA(m) QJ (y)

]
.

Below, we present two preconditioners which we discover to be effective for this
system. In the case of “full observations”, i.e., δ > 0 and with the desired state
given for every time-step, as in some optical flow problems, the matrix MNt

is block diagonal and invertible, which makes preconditioning more straightfor-
ward. We therefore focus on the case where MNt

is highly singular3 and only

3By this we mean that a very high proportion of the eigenvalues of the matrix are equal
to zero.
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comment on the more straightforward case. The goal for these approximations
is to carry over the parameter robustness to the inexact preconditioners that we
apply in practice.

4.1. First preconditioner

The first preconditioner we introduce is based on the block diagonal structure
PD, but with the (1, 1) block and Schur complement replaced with suitable
approximations. For the (1, 1) block, we write that

A =

[
γ−1MNt

0

0 β τM

]
≈

[
M̂Nt

0

0 β τM

]
=: Â,

where M̂Nt
approximates the highly singular matrix γ−1MNt

. As suggested
by Benzi, Haber and Taralli in [6], all zero diagonal entries in the (1, 1) block
are replaced with µ within the preconditioner, where this parameter reflects the
mean ratio of diagonal entries between the first and second terms of the Schur
complement.

Since the (1, 1) block is highly singular, we define the Schur complement of
the “perturbed” system as

S = QA(m)M̂−1
Nt
A(m)TQ+

1

β τ
QJ (y)M−1J (y)TQ.

The approach we use to approximate this matrix follows the matching strategy
introduced in [19, 20, 26, 27], where we approximate S by

Ŝ1 =
(
QA(m) +M1

)
M̂−1

Nt

(
A(m)TQ+M2

)
, (15)

with the aim that the term M1M̂−1
Nt
M2 accurately captures the second term

of the exact Schur complement, that is:

M1M̂−1
Nt
M2 ≈

1

β τ
QJ (y)M−1J (y)TQ.

A possible selection of the matrices M1, M2 is as follows:

M1 =MT
2 =

1√
β τ
QJ (y)M−1/2M̂1/2

Nt
, (16)

whereupon Ŝ1 is invertible provided A(m)TQ +M2 is, which as Q, M̂Nt
are

scaled identity operators unrelated to the PDE operators A(m), J (y), will be
the case almost surely. A further saving in the required computational cost may
be achieved by replacing these matrices with the diagonal approximations:

M1 =MT
2 =

1√
β τ
QJ (y)

[
diag

(
M
)]−1/2

[
diag

(
M̂Nt

)]1/2
,

which leads to a preconditioner that may be applied cheaply in practice.
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Whereas the effectiveness of this Schur complement approximation will in-
evitably depend to some extent on the numerical behaviour of the solution at
each Newton step, the following observation may be readily made (based on the
methodology of [20]), guaranteeing the robustness of the smallest eigenvalue of
the preconditioned Schur complement in an ideal setting:

Lemma 1. The eigenvalues λ of Ŝ−1
1 S satisfy λ ≥ 1

2 , where Ŝ1 is as defined by
(15), and M1, M2 are given in (16).

Proof. Due to the symmetry and positive definiteness of S and Ŝ1, which is
observed due to M̂Nt

being symmetric positive definite by construction, the
eigenvalues may be bounded by the Rayleigh quotient

R :=
vTSv

vT Ŝ1v
=

vT
(
QA(m)M̂−1

Nt
A(m)TQ+ β−1τ−1QJ (y)M−1J (y)TQ

)
v

vT
(
QA(m) +M1

)
M̂−1

Nt

(
A(m)TQ+M2

)
v

.

We now observe that we may write

R =
aTa + bTb

(a + b)T (a + b)
, where a = M̂−1/2

Nt
A(m)TQv, b =

1√
β τ
M−1/2J (y)TQv.

Simple manipulation therefore tells us that

1

2
(a− b)T (a− b) ≥ 0 ⇔ aTa + bTb ≥ 1

2
(a + b)T (a + b) ⇔ R ≥ 1

2
,

which leads to the result. �

We highlight that, although the lower bound for the eigenvalues of Ŝ−1
1 S can

be analysed in detail, the magnitude of the largest eigenvalue will depend on the
precise behaviour of the Newton iterates, which we cannot control in general.
To provide an illustration of the overall eigenvalue distribution, we present in
Fig. 2 the eigenvalues for a particular test problem, for a range of problem sizes
and values of β. The eigenvalues are found to become more clustered for finer
grids, with the magnitude of the largest eigenvalues fairly robust to changes in
regularisation parameter.

Applying our approximations of the (1, 1) block and Schur complement leads
to a preconditioner of the form

P1 =


M̂Nt 0 0

0 β τM 0

0 0 Ŝ1

 , (17)

which we can then apply within a Krylov subspace method.

We highlight that similar ideas may be applied to the matrix system (8)
arising from the optimise-then-discretise setting. In more detail, one may apply
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Figure 2: Eigenvalues of Ŝ−1
1 S for an imaging test problem, where finite difference nodes

are equally distributed in each spatial direction. We vary the number of spatial degrees of
freedom from nx = 8 (left) to nx = 16 (right). We then vary the regularisation parameter β,
indicated by the three different colours. The horizontal axis gives the index of the largest 300
eigenvalues, and the vertical axis their corresponding magnitudes.

preconditioners of the form
M̂Nt

0 0

0 β τM 0

0 0 Ŝ1,OTD

 or


M̂Nt

0 0

G(p)T β τM 0

A(m) J (y) −Ŝ1,OTD

 .
Here, Ŝ1,OTD can be chosen to approximate the Schur complement of the matrix
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system obtained by setting G(y) = 0, for example. That is,

S̃ := A(m)M̂−1
Nt
B(m) +

1

β τ
J (y)M−1J (y)T

≈
(
A(m) +

1√
β τ
M1,OTD

)
M̂−1

Nt

(
B(m) +

1√
β τ
M2,OTD

)
=: Ŝ1,OTD,

with M1,OTD, M2,OTD chosen such that

M1,OTDM̂−1
Nt
M2,OTD ≈ J (y)M−1J (y)T .

Note. The derivation for the preconditioner (17) has been based on the cost
functional (2), whereupon the highly singular matrix γ−1MNt

is approximated

by M̂Nt . If instead the cost functional (1) is considered (with δ > 0), the
corresponding matrix in the (1, 1) block of (13) is M1,1 := γ−1MNt + δ τM̄,
which is now invertible. Therefore, when deriving an analogous preconditioner
P1 for this problem setup, the matrix M̂Nt

must be replaced with M1,1 on all
occasions.

4.2. Second preconditioner

We now derive a second block preconditioner, based largely on results in
[28]. We commence by considering the following permutation of the matrix to
be solved:

Π

 γ−1MNt
0 A(m)TQ

0 β τM J (y)TQ
QA(m) QJ (y) 0

 =

 QA(m) QJ (y) 0

0 β τM J (y)TQ
γ−1MNt

0 A(m)TQ

 ,
(18)

where the permutation matrix is given by

Π :=

 0 0 I

0 I 0

I 0 0

 .
The matrix (18) is now of general block structure (14), with

A =

[
QA(m) QJ (y)

0 β τM

]
, B =

[
0 QJ (y)

]
, C =

[
γ−1MNt

0
]
,

and a non-zero (2, 2) block given by A(m)TQ.
We may then consider the right preconditioner

P̃ =

 QA(m) QJ (y) 0

0 β τM 0

γ−1MNt
0 −Ŝ2

 ,
16



with its inverse P̃−1 given by A(m)−1Q−1 −β−1τ−1A(m)−1J (y)M−1 0

0 β−1τ−1M−1 0

γ−1Ŝ−1
2 MNt

A(m)−1Q−1 −γ−1β−1τ−1Ŝ−1
2 MNt

A(m)−1J (y)M−1 −Ŝ−1
2

 .
The matrix Ŝ2 is designed to approximate the Schur complement of the permuted
matrix system, that is

Ŝ2 ≈ S = A(m)TQ+
1

β τ γ
MNt

A(m)−1J (y)M−1J (y)TQ.

Let us now reapply the permutation to the preconditioned system (that is to

say we propose a preconditioner P2 for the matrix (13) such that P−1
2 = P̃−1Π),

and therefore obtain that P−1
2 is given by 0 −β−1τ−1A(m)−1J (y)M−1 A(m)−1Q−1

0 β−1τ−1M−1 0

−Ŝ−1
2 −γ−1β−1τ−1Ŝ−1

2 MNt
A(m)−1J (y)M−1 γ−1Ŝ−1

2 MNt
A(m)−1Q−1

 .
(19)

Applying the preconditioner is in fact more straightforward than it currently

appears. To compute a vector v = P−1
2 w, where v :=

[
vT1 , vT2 , vT3

]T
, w :=[

wT
1 , wT

2 , wT
3

]T
, we first see from the second block of P−1

2 that

β−1τ−1M−1w2 = v2.

The first equation derived from (19) then gives that

−β−1τ−1A(m)−1J (y)M−1w2 +A(m)−1Q−1w3 = v1

⇒ −A(m)−1J (y)v2 +A(m)−1Q−1w3 = A(m)−1
(
Q−1w3 − J (y)v2

)
= v1,

and using this we can write the last equation in (19) as

− Ŝ−1
2 w1 − γ−1Ŝ−1

2 MNt

(
β−1τ−1A(m)−1J (y)M−1w2 −A(m)−1Q−1w3

)
= v3

⇒ − Ŝ−1
2 w1 + γ−1Ŝ−1

2 MNt

(
A(m)−1Q−1w3 −A(m)−1J (y)v2

)
= Ŝ−1

2

(
γ−1MNt

v1 −w1

)
= v3.

Therefore, in order to solve a system with the preconditioner P2, we need to
solve for the matrix M, which is certainly invertible, as well as the matrix
QA(m). What remains is the construction of the approximation Ŝ2 of the Schur
complement. In more detail, we suggest the use of a similar matching strategy
as above, to write

Ŝ2 =
(
A(m)TQ+Ml

)
A(m)−1Q−1

(
QA(m) +Mr

)
,
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where

MlA(m)−1Q−1Mr ≈
1

β τ γ
MNt

A(m)−1J (y)M−1J (y)TQ.

Such an approximation may be achieved if, for example,

Ml =
1

γ
MNt

,

Mr =
1

β τ
QJ (y)M−1J (y)TQ or

1

β τ
QJ (y) [diag(M)]

−1 J (y)TQ,

and we thus build such approximations into our preconditioner P2. We highlight
that at no stage in applying P−1

2 does one have to apply a representation of the
inverse of the often highly singular matrix MNt

, which is a key advantage of
the preconditioner P2 over P1.

In Fig. 3 we illustrate the distribution of the eigenvalues of the precondi-
tioned matrix with respect to changes in the mesh parameter and the regu-
larisation parameter β. It can be seen that there is some dependence on the
regularisation parameter, while it seems that the mesh parameter does not in-
fluence the distribution of the eigenvalues dramatically. While this is not a
theoretical justification, it indicates that the method proposed is a promising
candidate for the case of partial observations of the variable y.

We highlight that our methodology for constructing preconditioners of the
form P1 and P2 may be readily tailored to the matrix system (12) arising from
the alternative problem formulation discussed in Section 3.3.

5. Numerical results

We now present the results of a number of numerical experiments, making
use of the finite difference discretisation outlined in Section 3. All experiments
are implemented in Matlab R2017b.

For our first test we consider the minimisation of (1) or (2) subject to the
PDE constraint (3), and employ the Gauss–Newton scheme in the finite dif-
ference setting. The parameters and operators are chosen to be γ = 1 and
Q = blkdiag(I, I). The regularisation parameter β is typically varied in our
experiments. We examine the performance of the preconditioners presented in
Sections 4.1 and 4.2, and recall that the (1, 1) block of the system matrix gov-
erning (5) is highly singular if the cost functional (2) is considered. We use
the same discretisation level in time as we use for the spatial domain for the
finite difference approach, and compare 5 spatial mesh levels for the synthetic
data. For the image data though we use ten time-steps and the same number
of intermediate images, i.e., one image for every time-step. The image data
is as depicted in Fig. 1. We here use 100 × 100 pixel grayscale images, where
the pixel values are scaled to be between zero and one. We apply the Gmres
method [29] as the iterative scheme for the Gauss–Newton system. This method
is stopped when a tolerance (we use 10−6) for the relative residual norm of the
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Figure 3: Eigenvalues of P−1
2 W, with W the saddle point matrix (13). The real parts are

displayed along the horizontal axis, with the imaginary parts on the vertical axis. We provide
results for three different mesh parameters h = 1

nx
.
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linear system (5) is reached, starting from an all-zero initial guess. Note that in
Matlab’s implementation of Gmres, the residual is measured in the Euclidean
norm. The outer Gauss–Newton scheme is stopped once the relative Euclidean
distance between consecutive iterates falls below 10−4. In Fig. 4 we illustrate
the performance of the preconditioner P1 when applied to the full observation
problem (i.e., the cost functional (1)), with δ = 1. We give results for a variety
of mesh parameters and regularisation parameters. In Fig. 5, we illustrate the
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(a) Preconditioned

1 2 3 4
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600
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β = 10−4

(b) Unpreconditioned

Figure 4: Average iteration numbers (vertical axis) per Gauss–Newton step of the Gmres
method with preconditioner P1, for several mesh parameters (horizontal axis) and different
choices of the regularisation parameter β.

performance of the preconditioner P2 for the partial observation case (i.e., the
cost functional (2)), when applied with a variety of mesh parameters and regu-
larisation parameters. We compare this approach to the unpreconditioned case,
which is only competitive for very coarse meshes. We observe, for both full ob-
servations and partial observations, that the Gauss–Newton scheme converges
robustly in 4 or 5 iterations.

We also report results for an optical flow problem of the form in [11, 30], and
take the objective function to be given by (1) with varying δ, β = 10−1, and γ =
10. The tolerances are set to be 10−3 and 10−2 for the linear and nonlinear solver,
respectively. We here assume that ȳ(~x, 1) = y1, and when discretised in time
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Figure 5: Average iteration numbers (vertical axis) per Gauss–Newton step of the Gmres
method with preconditioner P2, for several mesh parameters (horizontal axis) and different
choices of the regularisation parameter β. When applying the unpreconditioned method, we
terminate the computation for the finest mesh level as the computation time was too high.

ȳ(~x, ti) = yi corresponds to a given image. As intermediate values for the desired
state we chose the intermediate images from [31]. It is clear that this setup is
covered by our previous discussion, and the matrix representing contributions of
the state variable to the objective function is given byM1,1 = γ−1MNt +δ τM̄.
One can readily apply the preconditioning techniques introduced in Section 4,
and we consider the implementation of the preconditioner P1. We show the
results for our methodology in Fig. 6.

We observe robustness with respect to the matrix dimension and the pa-
rameters involved in the problem setup, both in terms of the Gauss–Newton
iterations required, and the number of iterations of the preconditioned iterative
method. This indicates the effectiveness of our preconditioning strategy for a
range of problem statements.

6. Conclusion

In this paper, we have presented numerical methods for the solution of op-
timal transport problems arising in image metamorphosis. We have discussed
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Figure 6: Results for the preconditioned iterative method with preconditioner P1, applied to
the optical flow problem. We show an instance of the control and the state, as well as the
number of Gmres iterations for each Gauss–Newton step, for varying regularisation parameter
δ.

the application of Newton and Gauss–Newton methods, using finite difference
schemes for the discretisation of the optimality conditions. We presented fast
and effective preconditioners which may be applied within Krylov subspace
methods to solve the resulting matrix systems, with a focus on the large di-
mensions of the matrices when many time-steps are taken to solve the systems
of PDEs. Encouraging numerical results indicate the potency of the solvers
presented.
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