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Abstract

We present a hybrid asymptotic/numerical method for the accurate computation of single and double
layer heat potentials in two dimensions. It has been shown in previous work that simple quadrature
schemes suffer from a phenomenon called “geometrically-induced stiffness,” meaning that formally high-
order accurate methods require excessively small time steps before the rapid convergence rate is observed.
This can be overcome by analytic integration in time, requiring the evaluation of a collection of spatial
boundary integral operators with non-physical, weakly singular kernels. In our hybrid scheme, we combine
a local asymptotic approximation with the evaluation of a few boundary integral operators involving only
Gaussian kernels, which are easily accelerated by a new version of the fast Gauss transform. This new
scheme is robust, avoids geometrically-induced stiffness, and is easy to use in the presence of moving
geometries. Its extension to three dimensions is natural and straightforward, and should permit layer
heat potentials to become flexible and powerful tools for modeling diffusion processes.

1 Introduction

A variety of problems in computational physics involve the solution of the heat equation in moving geometries
- often as part of a more complex modeling task. Examples include heat transfer, fluid dynamics, solid-
liquid phase transitions, and the diffusion of biochemical species. Integral equation methods are particularly
powerful for solving such problems; they are stable, insensitive to the complexity of the geometry, and
naturally applicable to non-stationary domains. For unbounded domains, they have the additional advantage
that they do not require artificial absorbing conditions to be imposed on a finite computational domain, as
do methods based on directly discretizing the governing partial differential equation. Methods of this type
have not become widespread, in part because of quadrature difficulties when evaluating the necessary space-
time integrals. Here, we present a robust, new method that overcomes these difficulties, combining a local
asymptotic calculation with an exponential variable transformation that permits high order accuracy to be
achieved using a small number of quadrature nodes in time, both on and off surface.

Before turning to the more technical aspects of quadrature, let us introduce the issues with a simple
model problem. We seek the solution of the heat equation in either the interior or exterior of a non-
stationary domain given at time ¢ by (¢). The boundary of Q(t) will be denoted by I'(t). More precisely,
we seek to compute the solution to the system:
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aa—lt](x, t) — V2U(x,t) = 0, (x,t) € Q1) (1)
U(x,0) = f(x), x € Q(0), (2)

[U(X7 t)] = M(X7 t), (X7 t) € F(t) (3)

[(Z[Ti(x,t)} =o(x,t), (x,t)eTl(t) (4)

over the time interval 0 <t < T. Here, the notation [f(x,¢)] denotes the jump in f(x,t) across I'(¢) in the
outward normal direction. We let N denote the total number of time steps with At = T'/N. Without loss of
generality, let us simply consider the first time step. Given the solution to at time ty = 0, the solution
at time t = tg + At = At can be expressed explicitly as

u(x, At) = J[U(x,0), At](x) + D[u(x, At) + S[o](x, At), (5)
with
J[f, At] (X) = (0) G(X -y At)f(X) dy ’ (6)
At
Slol(x, At) = /o o G(x —y, At — 1)o(y,T)dsydr, (7)
At
Dlp](x,At) = /0 /F( ) aO:yG(x -y, At — 7))y, 7)dsydr . (8)
(9)
Here,
o lIx|2/at

is the fundamental solution of the heat equation in d dimensions. The function J[f, At](x) is referred to as
an initial (heat) potential, the function S[o](x, At) is referred to as a single layer potential, and the function
Dlu](x, At) is referred to as a double layer potential. In the remainder of this paper, we will assume d = 2.

Both S[o](x, At) and D[u](x, At) satisfy the homogeneous heat equation. The fact that is the exact
solution to the model problem is a consequence of the following theorem concerning the behavior of layer
potentials [9] [14].

Theorem 1. Let Q(t) be a bounded domain with smooth boundary T'(t), and let X’ denote a point on T'(t).
Then Dlu)(x,0) = 0 for x ¢ I'(0), and

lim  Dlu|(x,At) = —%,u(xﬂAt) + D*[u](x', At), (11)
xeQ(At)
lim  Dlu](x,At) = %,u(x’, At) + D*[u](x', At), (12)
xe e (AL
where
At 5
D*[u](x', At) == / / a—G(X' -y, At —7) p(y,7) dsy dr, x' € T(At) (13)
Ny
0 I'(r)

is a weakly singular operator acting on the boundary, and cQ(At) denotes the complement of Q(At).
We also have S[o](x,0) =0 for x ¢ T'(0), and

1
lim n Slo](x,At) = io(x’, At) + K*[o](x', At), (14)
xEQ(AL) x/
1
lim . Slo](x,At) = —ia(xl, At) + K*[o](x/, At), (15)

xEcQ(AL)
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where

At
0
K*(0)(x', At) = / / o GX —y, At = 1) oy, 7) dsy dr, X € T(A1), (16)
Nx!
0 1(r)
is a weakly singular operator acting on the boundary.
Finally, the kernel of the single layer potential is also weakly singular, so that

At
Slo](x', At) := / / Gx' —y,At—7)o(y, ) dsy dr (17)
0 T'(r)

is well-defined for x' € T'(At), with limy_,x S[o](x, At) = S[o](x/, At).

Remark 1. The evaluation of J[f, At] can be carried out using a “volume integral” version of the fast
Gauss transform [20)], so we concentrate here on the efficient and accurate evaluation of the boundary integral
components D[u](x, At) and S[o](x, At).

Remark 2. Boundary integral methods that use over the entire space-time history of the problem without
recasting the solution as new initial value problem at each time step are also very powerful, but require fast
algorithms that are outside the scope of the present paper [0, [7, [17]. Even in those schemes, the accurate
computation of S[c](x,At) and Dlu)(x, At) is essential.

Remark 3. For Dirichlet, Neumann, or Robin boundary conditions on T'(t), classical approaches based on
the single and/or double layer potential yield Volterra integral equations of the second kind [9, [T])]. We omit
a discussion of these boundary value problems here, since we are focused on the problem of quadrature, and
the relevant considerations are more easily illustrated by considering the analytic solution with o and |
viewed as known functions.

2 Asymptotics of local heat potentials in two dimensions

We turn first to the construction of asymptotic expansions for S[o] and D[u] that are valid both on and off
surface. Earlier results in [7] can be obtained as the limiting case for S[o] when the target approaches the
boundary. Similar analysis (for the single layer case) was carried out by Strain [16], using a different set of
asymptotic parameters.

Let us assume that an arbitrary target point x is expressed in the form x = xg + r - n, where x¢ € T'(At)
is the closest point on the boundary at time At, n is the unit inward normal vector at x¢, and r is the signed
distance from x to the boundary. That is, when x is in the interior of the domain, r is taken to be positive,
while if x is an exterior point, then r is negative.

Observing that the single and double layer potentials are invariant under Euclidean motion, we shift and
rotate the coordinate system so that xg lies at the origin (0,0) and n points in direction of the positive
y-axis. We further assume that the boundary T'(At) extends away from the origin in such a way that it is
locally the graph of a function, parametrized as

r=s, y=y(s7) (18)
where y(0, At) = ys(0, At) = 0 with curvature k = y,4(0, At) and normal velocity v = y. (0, At).

Remark 4. With a slight abuse of notation, we will assume that the boundary extends to infinity while
remaining the graph of a function. This involves an exponentially small error, assuming that T(At) is the
graph of a function out to a distance L, where L > \/Eln(l/e). From the decay of the heat kernel, it is
straightfoward to verify that this incurs an error of the order O(e), so long as the boundary then extends
farther away from the target point xg, now located at the origin.

For the sake of clarity, let us now write o(s,7) in place of o(y,7) and switch to the coordinate system
indicated by . The single layer potential then takes the form:

At poo -5 /A(At—T) o~ (r—y)? /4(At—7)
S At) ~ 1 2 dsd 19
Aan~ [ [ ol VTR dudr, (19)
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where y = y(s, 7). If we apply the change of variables

2= AN — 1), UZﬁ, (20)

we obtain

2VA
Slo](x, At) =5 / / —uf g (r—y)? (uz At — 22 /4)\/1 + y2 dudz. (21)
7T

From this formula, we expand y(s, 7) and o(uz, At —22/4) as Taylor series in u and z. This yields asymptotic
expansions for the local parts of layer potentials.

Lemma 1. Let T'(7) and o(x,7) be four times differentiable. Then

Slo](x, At) = ;\/?Eg/g (f) (1 +E 5 v, NE) - o(x0, At) + O(A?) (22)

where x = xg + ¢V At - n, xg € T'(At) is a point on the boundary at time At, n is the inward normal vector
at Xo, K s the curvature, and v is the normal velocity. Here, E3/5 denotes the exponential integral of order

e e} e—a:t
E?>/2(9U):/1 Wdt- (23)

Proof: Beginning with (2I)), we assume that the functions y(s,7) and o(s,7) have the following Taylor
expansions:

y(s’ T) = Z an 7n,5 At — 'T) OZme ’U,nZ2m+n (24)
= ﬂ" m n 2m+n
U(SaT) - Zﬂn mS At*T Z (25)

Note that

a0 =y(0,At) =0

1,0 =Ys(0,At) =0

ap1 = —y-(0,At) = —v
yss(0,At) K

Qo ="—7"7—""=—.
2,0 5 D)

The result now follows by substituting and into e~("=¥)°/#" and /14 42 in equation , using
the facts that
/ w2 le™" dy = 0

o 2n — 1!
/ uZne—usz:ﬁ.(nn )
e 2
O

Remark 5. This calculation can be carried out to higher order in At. However, the expression will involve
higher order derivatives of y(s,t) and o and are not likely to be practical. The expansions above are sufficient
for our purposes.

Remark 6. The exponential integral of order s is defined by
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It satisfy the recurrence:
1 —x
Espq(z) = g(e — 2E;(x))

for s >0, and
Ey(z) =21 -T(1—s,z)

for0 < s < 1. Here I'(1 — s,x) is the incomplete Gamma function of order 1 — s. In particular, we have

Byyalr) = 2(e™ — VaT (5, 2)).

This provides one method for computing Es35(x), since incomplete Gamma functions are well studied special
functions and there is widely available software for their evaluation.

The asymptotic expansion for the double layer potential D is given by the following lemma.

Lemma 2. Let T'(7) and p(x,7) be four times differentiable, then

Dl](x, At) = — \/KE?,/2 <> ”I” (x0, At)

©, . (L 2
S
- ( ) (14 VAL ") u(xo. At) + O(A),
where erfc(z) = ff ~tdt is the complementary error function. X, Xg, Kk, v and ¢ have the same
definition as in Lemma [1]
Proof: Using the same notation and change of variables as above, D assumes the form
2v/At 2
_ =y~ y) — T — SYs
DIu)(x, At) / / we wu(u,z) dudz. (27)
z
Assume now that p(s, 7) has the following Taylor expansion:
T) = zﬂ:l%,ms"(At —7)" = 2 sz,nm un A (28)

r=w?
Substituting and into e~ = and =% in equation yields the desired result, using the

fact that
A2y VE (]
5 dz = erfc . (29)
0 z 2[r| 2VAL

O

Remark 7. There is no essential difficulty in carrying out this calculation to higher order. In the case of
Dlu], however, the expression is quite involved, even to achieve an error of the order O(At3/2). 1t involves
the derivatives pr and pigs:

Du](x, At) = ﬁEg/z (02) (—“ . v _83“2 C\/E) (0, At)

_ 2 2 _ 2
_sen(e) e (' ') (1 FeVAL @Atm) (0, AT)

2 8

cAt c? v? + 3K% — 2uk tss(Xo, At) — pr (%0, At)
~ S, (S) (2 TS (kg A ’ 7 X0,
NG 3/2 (4) < 6 (%o, At) + 1 )

+O(AY?).

(30)
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2.1 Asymptotics on the boundary

In the asymptotic formulae and (26), we may let x — xo (i.e. ¢ — 0) in order to recover the known
asymptotics [7, 12, 13] for points on the boundary I'(At) itself. For the sake of completeness, we include
them here.

Corollary 1. Let T'(7) and o(x,T) be four times differentiable, and let xo € I'(At) be a point on the boundary
at time At. Then

At
S[o](xo, At) = ,/7a(x0,m) + O(AE/?), (31)
. : : _ Ix—xo0]
Proof: In equation 1) let x — x¢ (i.e. ¢ Tar 0). The result follows from the facts that

lim. 0 E3/2(c) = E3/2(0) = 2 and that the single layer is only weakly singular, so that

li At) = At).
L Jm - Slo] e Af) = Sla]xo. A1

O

Corollary 2. Let T'(7) and u(x,7) be four times differentiable, and let xo € T'(At) be a point on the boundary
at time At. Then

At
D*[p)(x0, A1) = —| = (o, At + O(A2), (32)
where D*[u](xo, At) is defined in (L3).

Proof: The result follows from equation , letting x — x¢ (i.e. ¢ = L\/Ait"‘ — 0). We also make use of the

jump relations
1
li D At) =—= At) 4+ D* At
omoer (B g D116 AD) = =5 u(xo, AL) + D" [ul(x0, At)
1
li D At) = = At) + D* At
er (U e an D110 80 = oo, 8) + D"kl A0,
with the convention that when x is in the interior of the domain (x € Q(At)), we have sgn(c) = 1. When
x € Q°(At) we have sgn(c) = —1. O

Remark 8. Note that, on the boundary, the order of accuracy for D is already of the order O(At3/2),
including only the leading order term. This is because all of the terms of order O(At) in equation vanish
as ¢ — 0.

2.2 Generalization

Sometimes it is convenient to have asymptotic formulas for the layer potentials that are one step removed
from the current time, which we will now denote by 2At. That is, we seek approximations of

At
Splol(x,2At) = / / G(x —y,2At — 1)o(y, T)dsydr (33)
0 T(7)
At o
Dplu](x,2At) = / / —G(x—y,2At — T)u(y, 7)dsydr (34)
o Jr(r) Iny

All of the transformations used above still apply and we give the results here without repeating the
derivation.

Lemma 3. Let I'(1) and o(x,7) be four times differentiable, then

Sglo](x,2At) = ;ﬁ (x/§E3/2 <082) — E3)5 (f)) (1 + 2 g Y .c@> -0 (x0, 2At) + O(AP?), (35)

following the notation of Lemma .
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Lemma 4. Let T'(7) and p(x,7) be four times differentiable, then

D [](x, 2A8) = — E (\/§E3/2 <082) — By <‘f)> il I Y i(x0, 2A1)

_ o (erfc <€|C|> — erfe <;|>> (14 VAL - 2= u(x0, 2A1) )

2 2
+ O(At),
following the notations of lemma @
For targets xo € I'(2At) on the boundary, simply let z — 0 in the above lemmas.

Corollary 3. Let I'(1) and o(x,T) be four times differentiable, and xo € I'(2At) be a point on the boundary
at time At, then:

2—-1 [At

Splo](x0,2At) = f2 \/ =0 (x0, 2At) + O(AE*/?). (37)
7r

Corollary 4. Let I'(7) and u(x,7) be four times differentiable, and let xo € T'(2At) be a point on the

boundary at time 2At. Then

At

Dplu](x0,2At) = — ?(\/5_ 1)/€+v

(%0, 2At) + O(ALY?) . (38)

3 Quadrature methods for local heat potentials

In the preceding section, we developed asymptotic methods for S[o] and D[u|. Formally, these appear to
be highly efficient, but there are two major drawbacks to their use. First, as we saw above, it is somewhat
unwieldy to carry out asymptotic expansions to high order in At. Moreover, those expressions involve
impractical high order derivatives of the density and the geometry. A second problem is that the formal
order of convergence is not manifested until At is rather small, on the order of Az?, where Ax is the
spacing in the discretization of the boundary. This lack of resolution for larger values of At is referred to as
“geometrically induced stiffness,” and has been studied in detail in [12].

Leaving asymptotic methods aside for the moment, direct numerical quadrature approximations require
some care because of the singularity in time introduced by the heat kernel. To clarify the nature of the
singularity in time, let us rewrite the local layer potentials in the following form:

0 \/47T(At—T)BS[

Slo](x, At) = o)(x, At, 7)dr, (39)

where
Ix—y|2

e A(Ai-7)

Bslo](x, At, 7) = /l"(‘r) ma(}”ﬂdsw (40)

and
At 1

o /An(At—1) Bol

_ x—y|?
e 1(At-7)

iy IVACAT = 7T 7 Y) Ty

Dlpl(x, At) = pl(x, At,7)dr, (41)

where

Bplul(x, At,7) = / (42)

r

A straightforward calculation shows that both Bg[o](x, At, 7) and Bp[u](x, At, 7) are bounded as 7 — At
and of the same order of smoothness as o and T'(7). Thus, the singularity in and is indeed of the
form \/ﬁ, as written. There are an abundance of quadrature rules available to deal with integrands of
this form.
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3.1 Partial product integration

Because of the inverse square root singularity in (39)), a natural choice is product integration, which takes
the form:

k
Slo](x, At) = \/gz w;Bs[o](x, At,v;) + eas(k). (43)

Here, the nodes v; = %At are equispaced, and the weights wy, - -+ , wy are chosen so that

At k
1
—_— TdTZ\/AtE w;ig(At — v; 44
0 mg( ) = Jg( ]) ( )
is exact for g(7) a polynomial of degree < k. It is straightforward to verify that the error ea;(k) is of the
order k + 3/2. More precisely, we have:

ear(k) < OALEH gD, (45)

for some constant C. Variants of this method using nonequispaced nodes include Gauss-Jacobi quadrature
[], and hybrid Gauss-trapezoidal rules [I]. With a slight abuse of language, we refer to all such methods
as partial product integration methods, since they take into account only part of the structure of the heat
kernel. An important feature of these methods is that each spatial integral is simply a convolution with a
Gaussian and can be computed in linear time using the fast Gauss transform [8] [15] 18] 20].

Unfortunately, these methods also suffer from geometrically induced stiffness, as shown in [12]. The mode
of failure is that, even when the geometry and density are sufficiently well-resolved with a spatial grid with
spacing Az, the formal order of accuracy of partial product integration is sometimes not manifested until
At ~ Az?. While first observed as a geometric phenomenon near regions of high curvature, it occurs even
on straight boundaries with sharply peaked densities, so that the term geometric is perhaps unfortunate.

3.2 Geometrically induced stiffness

As a simple example, let us consider the computation of S[o], where the boundary T" is chosen to be the
x-axis, and the density o is chosen to be a (time-independent) Gaussian centered at the origin:

oy, ) = aaly) = e 97, (y=(y,0)). (46)

Note that o(y, 7) is well-resolved with a spatial mesh whose spacing is Az ~ Vd. We choose the evaluation
point to be x = (x,0). In this case, letting t = At — 7, S[o] takes the form:

S[o]( At)—/At/oo L -2 )yt
(X, = A - 47Tt€ gd y y

/At 1 /°° 1 oy () dydt (47)
= e t 0
o VAart J_o VAart ay)ey
= ——galz, t)dt,
o Vi
where
gi(z,t) = ———¢ TFD, (48)

4m(t + d)
It is straightforward to verify that

ak 1 1 2k 1 k+1/2 T
C ity = — (=) (—— [ G 49
g 9@ ) \/E<2> <t+d) Qk(\/2t+d> (49)
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where hgy, is the Hermite function of order 2k, defined as hog(t) = D?*e=t" At = 0, for example, the

maximum value of 3872 ga(z,t) is achieved at ¢ = 0, and thus we have:
o 2k(2k — ) /1"
1579400, oo = ——=—{ 77 -
ot Vdmrd 4d

Suppose now that we make use of product integration with k + 1 nodes in time. Combining with

, we obtain:

(50)

2k (2% + 1)1 /1 \FT3/2
< k+3/24  \ah T ) [ 4
eAt(k) < CAt \/7? <4d)

A FH3/2
—cw(f)

where C'(k) is a constant that is independent of At and d but grows rapidly with k. Thus, despite the fact
that Az ~ v/d is sufficient to resolve the density, we need At ~ d ~ Az? in order for the time quadrature
to be accurate, so that At < 4d in . This is not a formal result: partial product integration with larger
time steps is, indeed, inaccurate in this regime.

(51)

3.3 Adaptive Gaussian Quadrature

A powerful method for handling end-point singularities is adaptive Gaussian quadrature. The basic idea
for an integrable singularity at 7 = At is to subdivide the time interval [0, A¢] dyadically, so that each
subinterval is separated from the singular endpoint by its own length. For a precision €, it is easy to see that
cutting off the last interval [At — €2, At] yields a truncation error of size e. This follows from the fact that
the norm of the operator S[o](x,€) is of the order O(y/€). Dydadic refinement to this scale clearly requires
approximately log, €2 subintervals. In the elliptic setting, say for corner singularities using two-dimensional
boundary integral methods, it has been shown that using a simple nth order Gauss-Legendre rule on each
subinterval yields “spectral accuracy” with respect to n [3], [5 [0, 19]. That is, the error is of the order
O(e ™log, €). We now show that the same principle can be applied to heat potentials, in a manner that is
high order and that also overcomes geometrically induced stiffness. For the sake of simplicity, we restrict
our attention to the same model problem considered above.

Theorem 2. Let S€[o](x, At) be the single layer potential truncated at At — €2:

1

At—e? 00 (2—1)2
€ At) — ) 2
stlcan = [ [ e o) dyin (52)

where oq4(y) is given by @), and the evaluation point is chosen to be x = (x,0). Suppose now that the
interval [0, At — €2] has a dyadic decomposition of the form:

0, At — 2] = UN AL — 202, At — 2112, 53
1=0

where At = 2Ne2, and that on each dyadic subinterval, the Gauss Legendre rule with n quadrature nodes is
applied. Then the error E, in applying composite Gauss-Legendre quadrature satisfies the error bound:

E, <Clog, (f;) %/:. (54)
Proof: Letting t = At — 7, from and , we have that
At

S€o|(x, At) = /62 \/mgd(x,t)dt, (55)
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where
1 o2
T,t) = ———— e TTD
9a(,1) An(t+ d)
(56)
-7 (i)
Inttrd) \2vt+d/)’
and hg is the Hermite function of order zero. For convenience of notation, we let
Fala 1) = —i—gal. 1) (57)
x,t) = x,t).
d \/mgd
We now rewrite the integral as a sum of integrals on dyadic subintervals:
N—1 ,9i+1.2
S€lo)(x, At) = Z Fy(z,t)dt, (58)
i=1 /2
and denote by E! the quadrature error on the ith subinterval. Thus,
git1.2 n
=] B - wgFat)| (59)
2i¢e2 :
j=1

o0

where {t;;}7_; and {w;;}7_; are the Legendre nodes and weights on the ith subinterval. In order to apply
the standard estimate for Gauss Legendre quadrature (Lemma|7|in the appendix), we need an upper bound
for the (2n)" derivative of Fy(x,t) with respect to time.

Since g4(z,t) satisfies the one dimensional heat equation on (—oo,00) x (—d, c0), we have:

Dygq(x,t) = Dggd(m,t), (V(z,t) € (—o0,00) x (0,00)), (60)
so that
ngd(‘rvt) = Dikgd(mv t)

() (7)) "

Applying Cramer’s inequality (Lemma [5)), we obtain:

INE /1) FH1/2
|Dfga(x,t)| < C (2) (t) V(2Kk)!. (62)
1
Dy | —
@)
which means that up to a mild growth factor in n, the kth derivative of gq4(z,t) is controlled by that of %
Returning to the integrand in , Leibniz’s rule leads to

From Corollary 5| (see the appendix), this implies

|Dfga(x,t)| < Cn'/* : (63)

2n

e = () [ (S5 )| 10t o)

k=0
2n
2n 1 1
<cwd () o (G2)l et () "
— n kZ:O k t \/7? t \/g
, (Vt>0, VzeR).

1
D2n -
" (0)

=Cn'/4
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(The last step follows from the Leibnitz rule applied to % = % . %)

Restricting ¢ to the ith subinterval [2¢€2, 2¢+1¢?] we obtain:

2n+1
DX Fy(x,t) < Cn'/*(2n)! <22> vz € R. (65)
‘e
Combined with the standard error estimate for Gauss-Legendre quadrature, this yields the following bound:
, 1\"
EL<cntt (=) . 66
It remains only to sum up E! over all subintervals to obtain
N-1
, At\ nt/4
E, < E =C1 — | —.
n_; n Cog2<62> 167 (67)

O

The above theorem shows the exponential convergence rate of adaptive Gaussian quadrature for a specific
choice of density function. It can easily be generalized to an arbitary smooth density function in the following
manner. Suppose that o(y,t) is time dependent. We then expand the density function as a Taylor series in
time around ¢t = At:

o(y.7) = 00(y) + o1 (y) (At~ 7) + Soa(y) (At — 7)?

1 k—1 k (68)
+---+ ng—l(y)(At —7)" 7 4+ O((At — 1)").
Denoting by 6 (y, 7) the first k terms in the expansion, we have
Slo](x, At) = S[51](x, At) + O(AtF+1/2), (69)
A similar analysis to the estimate in the proof of Theorem [2|leads to a total error of the form:
At 1/4
Epp < CAFTY2 4 Cylog, (2> 26” + O(e). (70)
€

The first term on the right-hand side is due to the kth order accurate approximation of the density as a
function of time. The second term is due to the error in adaptive Gaussian quadrature, as in , and
the last term is due to ignoring the contribution of the last time interval [At — €2, At] to the single layer
potential.

When the boundaries are curves, the calculation is more complicated, involving time derivatives of a
spatial convolution on a possibly nonstationary domain. Instead of entering into a detailed analysis, we
illustrate the convergence behavior via numerical examples in the next section. Finally, we note that the
double layer potential can be treated in essentially the same manner.

3.4 A hybrid asymptotic/quadrature-based method

In our initial analysis above, we integrated in time over the interval [At — €2, At] with a truncation error of
the order O(e). Let us, however, reconsider the use of the asymptotic approach, not on the entire interval
[0, At] but simply on [At — §, At]. For small §, geometrically induced stiffness is no longer an issue and the
cost of evaluation is negligible - requiring only one kernel evaluation for each target point. Thus, for the
single layer potential, we decompose it in the form:

At
Slo](x, At) = / G(x —y,At —1)o(y,T)dsydr
At—6 JT(7)

At—4§ (71)
+ / Gx—y, At —1)o(y,T)dsydr
0 I'(r)

= SWIo, 8](x, At) + SV0[o](x, At),
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where SV o] is defined in . For a user-specified tolerance of €, we choose § so that the asymptotic
formula for S™) is accurate to a tolerance of e. (This requires that § be of the order Az? or smaller
to avoid geometrically induced stiffness.) SV3 can then be treated as above with fewer subintervals than
before, since dyadic subdivision is needed only until the smallest interval is of length §.

3.5 Local quadrature with an exponentially graded mesh

While we have shown that adaptive Gaussian quadrature on dyadic intervals is robust and overcomes the
problem of geometrically induced stiffness, the total number of quadrature nodes in time is still relatively
large. We now seek a method for reducing the cost by designing a “single panel” quadrature rule that
maintains the exponential clustering toward the singularity inherent in the dyadic subdivision process. In
the elliptic setting (for domains with corner singularities), this is discussed in [2] B, T0]. A simple mapping

with this effect is obtain by setting e™" =t — 7. Under this change of variables, S‘/g[a] (x, At) becomes

log wy|?
Sve o] (x, At) / / e~ i o(y,t —e “)dsydu (72)
47T [(t—e—u)

log At

which is a smooth integral on the interval [—log At, —logd]. Applying Gauss-Legendre quadrature with n
nodes, we have

Ix—y|?

S"[[ 1(x, At) Zw / e 1% oy, At — e "“)dsy + es(5, At,n) (73)
L(At—e ")

where {u;}7_; and {w;}7_; are Legendre nodes and weights scaled to [—log At, —logd]. Here, es(d, At,n)
denotes the truncation error.
The double layer potential can be treated in a similar manner. With the same change of variables as

above, namely e™" =t — 7, we obtain

log ¢ Ix—y|2 (X — y) -n
B e\ T Y) "y
[ |(x, At) 87T/logAt/ . e e p(y,t—e ) = dsydu. (74)

Applying Gauss-Legendre quadrature with n nodes yields

ey ? —v)-
DY?[ul(x, At) = Z“ / iyt - o) BT g op 6 atm). (T9)
87T [(t—e ")

e %

Here, ep (0, At,n) denotes the truncation error for the double layer potential.

To analyze the error for a single Gauss-Legendre panel with an exponentially graded mesh, let us consider
as a model problem the calculation of

At
1
1(5,At) = / — dt. 76
(0, At) v (76)

This has the same near singularity at t =0 as S V3 or DV3 above. If we carry out dyadic decomposition, as
in , and apply an n-point Gauss-Legendre rule on each dyadic interval, we get the error bound:

VAL 3
en(6, A1) < - T2 (77)

Note that in this case the total number of dyadic intervals is 1og2(%). With n quadrature nodes on each, it
leads to N = nlog,(&!) nodes in total.

If we use instead the exponential change of variables, the standard error estimate for Gauss-Legendre

quadrature leads to:
n

I(0,At) = wj-e 7/ +e,(5,At), (78)

J=1
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where

en(5,At) < C

. \/f <e-1og(At/5)>2"_ (79)

16 -n

Both and suggest superalgebraic convergence in n and low order accuracy in At. This works very
well in practice: the total error in the evaluation of a layer potential over a single time step is governed by
the order of accuracy with which the density is approximated and the precision of the local rule determined
by the parameter n in , as in above.

For a concrete example, let us assume At = 1072 and that the desired tolerance is ¢ = 1072, We
set § = €. In this case we have logg(%) ~ 23. Adaptive Gaussian quadrature requires n = 9 on each
dyadic interval, meaning that the total number of quadrature nodes is n logQ(%) = 207, while the change of
variables requires only n = 12. Rather than go through a detailed analysis of the full single and double layer
potentials, numerical examples in the next section show that the graded mesh performs as well as dyadic
refinement with many fewer nodes, and that the errors eg(d, At,n) and ep(d, At,n) decay superalgebraically
with n.

4 Numerical examples

For our first example, we consider as a boundary the parabola given by:

U (A? t) = Aa
{yg()\,t) _ (=2 <A <2m) (80)

so that 2a is the curvature at the origin xg = (0,0). We compute the single layer potential S[o](xq, At)
with a constant density o(y,t) = 1. We carry out the experiment for a = 2 and a = 20, and use as the time
quadrature three different methods: 1) the asymptotic formula, 2) Gauss-Jacobi quadrature with four, eight,
and sixteen nodes, 3) our hybrid scheme with four, eight, and sixteen nodes. (We choose a small enough ¢
to give 13 digits of accuracy in the asymptotic regime.) All spatial integrals are computed in this section to
high precision, so that the errors in the examples come only from the time quadrature. In Fig. [I} quadrature
errors are plotted for a wide range of At.

Error using asymptotic method Error using Gauss/Jacobi method Error using hybrid method
. GJ4 . M
10- P/,,,_-——x"—’j 107 == 4 point
- g GJ8 =
w = - @
© 5} - Y 116 %}
s 2 - GJ16 n 8 poi
SR ~ g, 8 point
p =10 o . =10
o o ” 7z o
g 3 - . 5
g A - - m - =
m -~ —— - ¢
R s -12¢ -
10-12 e 107! _ 7" 16 point
-~ e -
2 4 2 4
10 At 10 10 At 10

Figure 1: Comparison of quadrature methods for the single layer potential on a parabola with varying
curvature. The dashed lines correspond to the low curvature case (@ = 2) in all panels, while the solid lines
correspond to the high curvature case (a = 20).

The results show that both the asymptotic formula and Gauss-Jacobi quadrature are very sensitive to
the geometry. For the case with low curvature, they perform relatively well, while for the case with high
curvature, they are inaccurate, especially at large values of At. Even for smaller values of At, they have
still not entered their rapidly convergent regime. The performance of the hybrid scheme is quite different.
While low order in At, it converges superalgebraically in the number of quadrature nodes, consistent with
our analysis above. With 16 quadrature nodes, we are able to achieve 10 digits of accuracy for a wide range
of At, even for the high curvature case, where the other two methods perform poorly.
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For our second example, we consider the computation of the single layer potential on a straight line
segment [—1,1] x {0}, where the density is chosen to be an oscillatory function:

o(y,t) = cos(2kmyy). (81)

Errors for the same set of methods are plotted in Fig. 2] Again, the asymptotic formula and Gauss-Jacobi
quadrature are sensitive to the frequency of the oscillation, while the hybrid scheme is much more robust.

Error using asymptotic method Error using Gauss/Jacobi method Error using hybrid method
_4 GJA Y M
10 '/tf/”‘“"’kj 10 4 point
= e GJ8 =
z% 3 el GJ16 w .
~ 108 Z108 el g 48 8 point
g = g 5
5 g . s
Z 5] «” - A P
= e e ¢
- s 12: ey
1072 ¢ 10750 =716 point
1074 e -
1027 Ay 107 1072 At 107 1072 At 107"

Figure 2: Comparison of quadrature methods for the single layer potential on a straight line segment with

oscillatory density. For all panels, the dashed lines correspond to the case £k = 10 in , while the solid
lines correspond to k£ = 100.

As a final example, we consider a more general task: computation of the double layer potential D[u](x, At)
on a moving ellipse given by

{yl(O,t) =20c0s(®) + 156 () ooy (82)

y2(0,t) = sin(0),
The density is chosen to be
wu(y,t) = cos(y1t) + sin(10¢). (83)

We evaluate the double layer potential at y = (21.5,0.0) and ¢ = 1.0 using the same set of methods.
Errors are plotted in Fig.

Quadrature error for moving ellipse

Error using hybrid method

asymp .’_—.\\/A 4 point
100k //”'
GJ4 b
= 2| / G = 8 point
Q GJ16 Q
= =
- = 10 E
5 o s
= = 16 point
£a) <5 D
108 108
108
‘72 P 10-10 1 L
10 At 10 1072 At 1071

Figure 3: Comparison of quadrature methods for the double layer potential on
latory density given by (83).

a moving ellipse with oscil-
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5 Conclusions

We have developed a new method for the evaluation of layer heat potentials in two dimensions. By making
use of an exponential change of variables, we overcome the phenomenon of “geometrically-induced stiffness,”
which prevents the robust application of high order Gauss-Jacobi type quadrature rules. In our hybrid
scheme, we combine a local asymptotic approximation with Gauss-Legendre quadrature in the transformed
time variable. The corresponding spatial boundary integral operators involve only Gaussian kernels, per-
mitting the application of the fast Gauss transform [20]. The scheme is easy to use with moving boundaries
and precisely the same rule can be used in three dimensions with respect to the time variable. A full solver
for the heat equation in fixed and moving geometries, incorporating the scheme of the present paper, will be
described at a later date.
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A Stirling’s formula, Cramer’s inequality and Gauss-Legendre quadra-
ture

In the proof of Theorem [2] we make use of Stirling’s formula.

Vor (%) vVn<nl<e (%) V. (84)
From this, it is staightforward to derive the following

Corollary 5. Let n € N, we have:
V(2n)! < Cntt(2n — 1) (85)

where C' > 0 is a constant.
We also use Cramer’s inequality [11].

Lemma 5. Let h,(t) be the n — th order Hermite function, defined by
ha(t) = (—1)"D"e " (86)

Then )
|hn ()] < K27/2V/nle /2, (87)
where K is some constant with numerical value K < 1.09.
The following lemma is a direct consequence of Leibniz’s product rule for differentiation.
Lemma 6. Let F(t) =1 and f(t) = % Then we have:

Fen) =3 ()17 1001 (33)

k=0
Finally, we state the standard error estimate for Gauss-Legendre quadrature [4].

Lemma 7. Let f € C?"([a,b]) and let {z1, -+ ,z,} and {w1, -+ ,w,} be the Gauss-Legendre nodes and
weights scaled to [a,b]. If we denote the quadrature error by E,(f), we have:

b n
EAf) = [ fado =3 wif(on)
@ k=1

_ (b—ap i)t o

= s e @

where £ € [a, b].
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