Skip to main content
Log in

Two numerical methods for the Zakharov-Rubenchik equations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Two numerical methods are presented for the approximation of the Zakharov-Rubenchik equations (ZRE). The first one is the finite difference integrator Fourier pseudospectral method (FFP), which is implicit and of the optimal convergent rate at the order of O(Nr + τ2) in the discrete L2 norm without any restrictions on the grid ratio. The second one is to use the Fourier pseudospectral approach for spatial discretization and exponential wave integrator for temporal integration. Fast Fourier transform is applied to the discrete nonlinear system to speed up the numerical computation. Numerical examples are given to show the efficiency and accuracy of the new methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zakharov, V.E., Rubenchik, A.M.: Nonlinear interaction between high and low frequency waves. Prikl. Mat. Techn. Fiz. 5, 84–89 (1972)

    Google Scholar 

  2. Oliveira, F.: Stability of the solitons for the one-dimensional Zakharov-Rubenchik equation. Phys. D. 175, 220–240 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Linares, F., Matheus, C.: Well-posedness for the 1D Zakharov-Rubenchik system. Adv. Differ. Eq. 14, 261–288 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Ponce, G., Saut, J.C.: Well-posedness for the Benney-Zakharov-Rubenchik system. Discret. Contin. Dyn. Syst. 13, 818–852 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Oliveira, F.: Adiabatic limit of the Zakharov-Rubenchik equation. Rep. Math. Phys. 61, 13–27 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Oliveira, F.: Stability of solutions of the Zakharov-Rubenchik equation. Wave and Stability in Continuous Media, 408–413 (2015)

  7. Cordero, J.: Subsonic and Supersonic limits for the Zakharov-Rubenchik system. Impa Br (2011)

  8. Cordero, J.: Supersonic limit for the Zakharov-Rubenchik system. J. Differ. Equ. 261, 5260–5288 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhao, X.F., Li, Z.Y.: Numerical methods and simulations for the dynamics of one-dimensional Zakharov-Rubenchik equations. J. Sci Comput. 59, 412–438 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ji, B.Q., Zhang, L.M., Zhou, X.X.: Conservative compact difference scheme for the one dimensional Zakharov-Rubenchik equations. Int J. Comput. Math. 96, 1–26 (2019)

  11. Bao, W.Z., Sun, F.F., Wei, G.W.: Numerical methods for the generalized Zakharov system. J. Comput. Phys. 190, 201–228 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bao, W.Z., Yang, L.: Efficient and accurate numerical methods for the Klein-Gordon-Schrodinger equations. J. Comput. Phys. 225, 1863–1893 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cai, J.X., Yang, B., Liang, H.: Multi-symplectic implicit and explicit methods for Klein-Gordon-Schrodinger equations. Chin. Phys. B. 3, 99–105 (2013)

  14. Zhang, H., Song, S.H., Zhang, W.E., Chen, X.D.: Multi-symplectic method for the coupled Schrodinger-KdV equations. Chin. Phys. B. 8, 226–232 (2014)

  15. Wang, J.: Multi-symplectic numerical method for the Zakharov system. Comput. Phys. Commun. 180, 1063–1071 (2009)

    Article  MATH  Google Scholar 

  16. Jiaxiang, C., Liang, H.: Explicit multi-symplectic Fourier pseudo-spectral scheme for the Klein-Gordon-Zakharov equations. Chin. Phys. Lett. 29, 1–4 (2012)

  17. Huang, L.Y., Jiao, Y.D., Liang, D.M.: Multi-symplectic scheme for the coupled Schrodinger-Boussinesq equations. Chin. Phys. B. 7, 45–49 (2013)

  18. Dong, X.C.: A trigonometric integrator pseudospectral discretization for the N-coupled nonlinear Klein-Gordon equations. Numer Algor. 62, 325–336 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liao, F., Zhang, L.M., Wang, S.S.: Time-splitting combined with exponential wave integrator fourier pseudo-spectral method for Schrondinger-Boussinesq system. Commun. Nonlinear. Sci. Numer. Simulat. 55, 93–104 (2018)

    Article  Google Scholar 

  20. Bao, W.Z., Cai, Y.Y.: Uniform and optimal error estimates of an exponential wave integrator sine pseudo-spectral method for the nonlinear Schrodinger equation with wave operator. SIAM J. Numer. Anal. 52, 1103–1127 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bao, W.Z., Dong, X.C.: Analysis and comparison of numerical methods for Klein-Gordon equation in nonrelativistic limit regime. Numer. Math. 120, 189–229 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhao, X.F.: On error estimates of an exponential wave integrator sine pseudospectral method for the Klein-Gordon-Zakharov system. Numer. Meth. Part. D. E. 32, 266–291 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bao, W.Z., Dong, X.C., Zhao, X.F.: An exponential wave integrator sine pseudo-spectral method for the Klein-Gordon-Zakharov system. SIAM J. Sci. Comput. 35, 2903–2927 (2013)

    Article  MathSciNet  Google Scholar 

  24. Cai, J.X., Hong, J.L., Wang, Y.S., Gong, Y.Z.: Two energy-conserved splitting methods for three-dimensional time-domain Maxwell’s equations and the convergence analysis. SIAM J. Numer. Anal. 53, 1918–1940 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gong, Y.Z., Wang, Q., Wang, Y.S., Cai, J.X.: A conservative Fourier pseudo-spectral method for the nonlinear schrödinger equation. J. Comput. Phys. 328, 354–370 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shen, J., Tang, T.: Spectral and high-order methods with applications. Science Press, Beijing (2006)

    MATH  Google Scholar 

  27. Gong, Y.Z., Cai, J.X., Wang, Y.S.: Multi-symplectic Fourier Pseudo-spectral Method for the Kawahara Equation. Commun. Comput. Phys. 16, 35–55 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, T., Zhao, X.: Optimal \(l^{\infty }\) error estimates of finite difference methods for the coupled Gross-Pitaevskii equations in high dimensions. Sci. China Math. 57, 2189–2214 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gong, Y.Z., Cai, J.X., Wang, Y.S.: Some new structure-preserving algorithms for genernal multi-symplectic formulations of Hamiltonian PDEs. J. Comput. Phys. 279, 80–102 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shen, J., Tang, T., Wang, L.L.: Spectral methods (Algorithms, Analysis and Applications). Springer Series in Computational Mathematics (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luming Zhang.

Additional information

Communicated by: Jon Wilkening

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Foundation item: Supported by National Nature Science Foundation of China No.11571181.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Wang, T. & Zhang, L. Two numerical methods for the Zakharov-Rubenchik equations. Adv Comput Math 45, 1163–1184 (2019). https://doi.org/10.1007/s10444-018-9651-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-018-9651-3

Keywords

Mathematics Subject Classification (2010)

Navigation