Skip to main content
Log in

Numerical simulation of unsteady flows through a radial turbine

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The article deals with the numerical simulation of unsteady flows through the turbine part of the turbocharger. The main focus of the article is the extension of the in-house CFD finite volume solver for the case of unsteady flows in radial turbines and the coupling to an external zero-dimensional model of the inlet and outlet parts. In the second part, brief description of a simplified one-dimensional model of the turbine is given. The final part presents a comparison of the results of numerical simulations using both the 3D CFD method and the 1D simplified model with the experimental data. The comparison shows that the properly calibrated 1D model gives accurate predictions of mass flow rate and turbine performance at much less computational time than the full 3D CFD method. On the other hand, the more expensive 3D CFD method does not need any specific calibration and allows detailed inspections of the flow fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baines, N.C.: Turbocharger turbine pulse flow performance and modelling 25 years on. In: 9th International Conference on Turbochargers and Turbocharging, Institution of Mechanical Engineers, London, pp 347–362 (2010)

  2. Barth, T., Jespersen, D.: The design and application of upwind schemes on unstructured meshes. In: 27th Aerospace Sciences Meeting American Institute of Aeronautics and Astronautics, Reston, Virigina. https://doi.org/10.2514/6.1989-366(1989)

  3. Blockwitz, T., Otter, M., Akesson, J., Arnold, M., Clauss, C., Elmqvist, H., Friedrich, M., Junghanns, A., Mauss, J., Neumerkel, D., Olsson, H., Viel, A.: Functional Mockup Interface 2.0: the standard for tool independent exchange of simulation models, 173–184. https://doi.org/10.3384/ecp12076173 (2012)

  4. Borisov, V.E., Davydov, A.A., Kudryashov, I.Y., Lutsky, A.E., Men’shov, I.S.: Parallel implementation of an implicit scheme based on the LU-SGS method for 3D turbulent flows. Math. Models Comput. Simul. 7(3), 222–232 (2015). https://doi.org/10.1134/S2070048215030035

    Article  MathSciNet  MATH  Google Scholar 

  5. De Bellis, V., Bozza, F., Schernus, C., Uhlmann, T.: Advanced numerical and experimental techniques for the extension of a turbine mapping. SAE Int. J. Eng. 6(3), 2013–24–0119 (2013). https://doi.org/10.4271/2013-24-0119

    Google Scholar 

  6. De Bellis, V., Marelli, S., Bozza, F., Capobianco, M.: 1D simulation and experimental analysis of a turbocharger turbine for automotive engines under steady and unsteady flow conditions. Energy Procedia 45, 909–918 (2014). https://doi.org/10.1016/j.egypro.2014.01.096

    Article  Google Scholar 

  7. Ding, Z., Zhuge, W., Zhang, Y., Chen, H., Martinez-Botas, R., Yang, M.: A one-dimensional unsteady performance model for turbocharger turbines. Energy 132, 341–355 (2017). https://doi.org/10.1016/j.energy.2017.04.154

    Article  Google Scholar 

  8. Dixon, S.L., Hall, C.: Fluid mechanics and thermodynamics of turbomachinery, 7th. Butterworth-Heinemann, Oxford (2013)

    Google Scholar 

  9. Escue, A., Cui, J.: Comparison of turbulence models in simulating swirling pipe flows. Appl. Math. Model. 34(10), 2840–2849 (2010). https://doi.org/10.1016/j.apm.2009.12.018

    Article  MathSciNet  MATH  Google Scholar 

  10. Farrell, P., Maddison, J.: Conservative interpolation between volume meshes by local Galerkin projection. Comput. Methods Appl. Mech. Eng. 200(1-4), 89–100 (2011). https://doi.org/10.1016/j.cma.2010.07.015

    Article  MathSciNet  MATH  Google Scholar 

  11. Fritzson, P.: Introduction to modeling and simulation of technical and physical systems with Modelica. Wiley-IEEE Press, New Jersey (2011)

    Book  Google Scholar 

  12. Fürst, J.: CFD analysis of a twin scroll radial turbine. EPJ Web of Conferences 180, 02,028 (2018). https://doi.org/10.1051/epjconf/201818002028

    Article  Google Scholar 

  13. Fürst, J.: Development of a coupled matrix-free LU-SGS solver for turbulent compressible flows. Comput. Fluids 172, 332–339 (2018). https://doi.org/10.1016/j.compfluid.2018.04.020

    Article  MathSciNet  MATH  Google Scholar 

  14. Hajilouy-Benisi, A., Rad, M., Shahhosseini, M.R.: Flow and performance characteristics of twin-entry radial turbine under full and extreme partial admission conditions. Arch. Appl. Mech. 79(12), 1127–1143 (2009). https://doi.org/10.1007/s00419-008-0295-5

    Article  MATH  Google Scholar 

  15. Kalitzin, G., Medic, G., Iaccarino, G., Durbin, P.: Near-wall behavior of RANS turbulence models and implications for wall functions. J. Comput. Phys. 204 (1), 265–291 (2005). https://doi.org/10.1016/j.jcp.2004.10.018

    Article  MATH  Google Scholar 

  16. Macek, J., Vítek, O., žák, Z.: Calibration and results of a radial turbine 1-D model with distributed parameters. In: SAE 2011 world congress & exhibition, SAE international. https://doi.org/10.4271/2011-01-1146, p 24 (2011)

  17. Macek, J., žák, Z., Vítek, O.: Physical model of a twin-scroll turbine with unsteady flow. In: SAE 2015 world congress & exhibition, SAE international. https://doi.org/10.4271/2015-01-1718, p 14 (2015)

  18. Mathworks: Simulink: Dynamic Simulation for Matlab (2011)

  19. Menter, F.R., Kuntz, M., Langtry, R.: Ten years of industrial experience with the SST turbulence model. Turbulence Heat and Mass Transfer 4, 4:625–632 (2003)

    Google Scholar 

  20. Palfreyman, D., Martinez-Botas, R.F.: The pulsating flow field in a mixed flow turbocharger turbine: an experimental and computational study. J. Turbomach. 127(1), 144 (2005). https://doi.org/10.1115/1.1812322

    Article  Google Scholar 

  21. Sarshar, A., Tranquilli, P., Pickering, B., McCall, A., Roy, C.J., Sandu, A.: A numerical investigation of matrix-free implicit time-stepping methods for large CFD simulations. Comput. Fluids 159, 53–63 (2017). https://doi.org/10.1016/j.compfluid.2017.09.014

    Article  MathSciNet  MATH  Google Scholar 

  22. Toro, E.F.: The HLL and HLLC Riemann solvers. In: Riemann solvers and numerical methods for fluid dynamics. https://doi.org/10.1007/978-3-662-03490-3_10, pp 293–311. Springer, Berlin (1997)

  23. Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12(6), 620 (1998). https://doi.org/10.1063/1.168744

    Article  Google Scholar 

  24. žák, Z., Macek, J., Hatschbach, P.: Evaluation of experiments on a twin scroll turbocharger turbine for calibration of a complex 1-D model. J. Middle European Construction Design Cars 14(3), 11–18 (2016). https://doi.org/10.1515/mecdc-2016-0010

    Article  Google Scholar 

Download references

Acknowledgements

Access to computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum provided under the programme “Projects of Large Research, Development, and Innovations Infrastructures” (CESNET LM2015042) is greatly appreciated.

Funding

The authors acknowledge support from the EU Operational Programme Research, Development and Education, and from the Center of Advanced Aerospace Technology (CZ.02.1.01/0.0/0.0/16_019/0000826), Faculty of Mechanical Engineering, Czech Technical University in Prague.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Fürst.

Additional information

Communicated by: Pavel Solin

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fürst, J., Žák, Z. Numerical simulation of unsteady flows through a radial turbine. Adv Comput Math 45, 1939–1952 (2019). https://doi.org/10.1007/s10444-019-09670-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-019-09670-4

Keywords

Mathematics Subject Classification (2010)

Navigation