Skip to main content
Log in

On continuous inkjet systems: a printer driver for expiry date labels on cylindrical surfaces

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Continuous inkjet systems are commonly used to print expiry date labels for food products. These systems are designed to print on flat surfaces; however, a lot of food products package have a cylindrical shape (e.g., bottled and canned products) which causes an enlargement in characters at the ends of the label. In this work, we present an algorithm to correct this defect by calculating the extra-distance that an ink drop travels when the printing surface approaches an elliptic cylinder. Each charged ink drop is modeling as a solid particle which is affected by the air drag, Earth’s gravitation, and voltage due to the electrical field that causes the perturbation in the ink drop path. Numerical results show the correction of the enlargement mentioned above by varying the electric field along the width of the label. In addition, the equation and the values of a second electric field to correct the printing’s inclination caused by the method of the system’s operation are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caswell, J.A., Mojduszka, E.M.: Using informational labeling to influence the market for quality in food products. Am. J. Agric. Econ. 78, 1248–1253 (1996)

    Article  Google Scholar 

  2. Mumcu, Y., Kimzan, H.S.: The effect of visual product aesthetics on consumers’ price sensitivity. Procedia Economics and Finance 26, 528–534 (2015)

    Article  Google Scholar 

  3. Schmitt, B.: Experience marketing: concepts, frameworks and consumer insights. Foundations and Trends in Marketing 5(2), 55–112 (2010)

    Article  Google Scholar 

  4. Xu, L., Sun, D.: Electrohydrodynamic printing under applied pole-type nozzle configuration. Appl. Phys. Lett. 102, 024101 (2013)

    Article  Google Scholar 

  5. Yudistira, H.T., Nguyen, V.D., Dutta, P., Byun, D.: Flight behavior of charged droplets in electrohydrodynamic inkjet printing. Appl. Phys. Lett. 96, 02503 (2010)

    Article  Google Scholar 

  6. Chen, C.-H., Saville, D.A., Aksay, I.A.: Scaling laws for pulsed electrohydrodynamic drop formation. Appl. Phys. Lett. 89, 124103 (2006)

    Article  Google Scholar 

  7. Prasetyo, F.D., Yudistira, H.D., Nguyen, V.D., Byun, D.: Ag dot morphologies printed using electrohydrodynamic (EHD) jet printing based on a drop-on-demand (DOD) operation. J. Micromech. Microeng. 23, 095028 (2013)

    Article  Google Scholar 

  8. Nguyen, V.D., Byun, D.: Mechanism of electrohydrodynamic printing based on ac voltage without a nozzle electrode. Appl. Phys. Lett. 94, 17359 (2009)

    Google Scholar 

  9. Lee, J.S., Kim, S.Y., Kim, Y.J., Park, J., Kim, Y., Hwang, J., Kim, Y.J.: Design and evaluation of a silicon based multi-nozzle for addressable jetting using a controlled flow rate in electrohydrodynamic jet printing. Appl. Phys. Lett. 93, 243114 (2008)

    Article  Google Scholar 

  10. Alper, J.: Biology and the inkjets. Science 305, 1895 (2004)

    Article  Google Scholar 

  11. Dong, H., Carr, W., Morris, J.: Visualization of drop-on-demand inkjet: drop formation and deposition. Rev. Sci. Instrum. 77, 085101 (2006)

    Article  Google Scholar 

  12. Sedighi, N., Murad, S., Aggarwal, S.K.: Molecular dynamics simulations of nanodroplet spreading on solid surfaces, effect of droplet size. Fluid Dyn. Res. 42, 035501 (2010)

    Article  MATH  Google Scholar 

  13. Henmi, C., Nakamura, M., Nishiyama, Y., Yamaguchi, K., Mochizuki, S., Takiura, K., Nakagawa, H.: Development of an effective three dimensional fabrication technique using inkjet technology for tissue model samples. Japanesse Society for Alternatives to Animal Experiments, 689–692 (2008)

  14. Tyson, J.: How inkjet printers work. https://computer.howstuffworks.com/inkjet-printer.htm, Accessed on 21.11.2017 (2001)

  15. Taplin, L.A.: Spectral modeling of a six-color inkjet printer (2001). Master thesis. https://pdfs.semanticscholar.org/7c4a/c47a7a4bcec3a468f08126a38144d36e7dfc.pdf, Accessed on 21.11.2017

  16. Calvert, P.: Inkjet Printing for Materials and Devices. Chem. Mater. 13, 3299–3305 (2001)

    Article  Google Scholar 

  17. Kim, Y., Ren, X., Kim, J. W., Noh, H.: Direct inkjet printing of micro-scale silver electrodes on polydimethylsiloxane (PDMS) microchip. J. Micromech. Microeng. 24, 115010 (2014)

    Article  Google Scholar 

  18. Zhang, Y., Liu, C., Whalley, D.C.: The penetration limit of poly(4-vinyl phenol) thin films for etching via holes by inkjet printing. Appl. Phys. Lett. 101, 253302 (2012)

    Article  Google Scholar 

  19. Merrin, J., Leibler, S., Chuang, J.S.: Printing multistrain bacterial patterns with a piezoelectric inkjet printer. PLoS ONE 2(7), e663 (2007)

    Article  Google Scholar 

  20. Rayleigh, L.: Further observations upon liquid jets. In: Continuation of those recorded in the Royal Society’s Proceedings for March and May, 1879. Proceedings of the Royal Society of London, 130–145 (1882)

  21. Andrade, E.N., da, C., Tsein, L.C.: The velocity-distribution in a liquid-into-liquid jet. Proc. Phys. Soc. 49, 381–391 (1937)

    Article  Google Scholar 

  22. Martin, G.D., Hoath, S.D., Hutchings, I.M.: Inkjet printing - the physics of manipulating liquid jets and drops. Engineering and Physics—Synergy for Success 105, 012001 (2008)

    Google Scholar 

  23. Halterman, H.J.: Kinetics and evaporation of water drops in air, IMAG (2003)

Download references

Acknowledgements

We make a special thanks to Mr. Jorge A. Cárdenas S. for providing the image of the seasoning bottle from El Pariente JC.

Funding

We thank the CONACyT, UANL, and UNACH for the financial support and for providing their facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Morales-Castillo.

Additional information

Communicated by: Pavel Solin

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguirre-López, M.A., Almaguer, FJ., Díaz-Hernández, O. et al. On continuous inkjet systems: a printer driver for expiry date labels on cylindrical surfaces. Adv Comput Math 45, 2019–2028 (2019). https://doi.org/10.1007/s10444-019-09682-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-019-09682-0

Keywords

Mathematics Subject Classification (2010)

Navigation