Skip to main content

Advertisement

Log in

Numerical modelling of generalized Newtonian fluids in bypass tube

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The following paper describes a numerical simulation of a complete bypass of a stenosed human artery. The considered geometry consists of the narrowed host tube and the bypass graft with a 45-degree angle of connection. Different diameters of the narrowing are tested. Blood is the fluid with shear rate–dependent viscosity; therefore, various rheology mathematical models for generalized Newtonian fluids are considered, namely Cross model, modified Cross model, Carreau model, and Carreau-Yasuda model. The fundamental system of equations is based on the system of generalized Navier-Stokes equations. Generalized Newtonian fluids flow in a bypass tube is numerically simulated by using a SIMPLE algorithm included in the open-source CFD tool, OpenFOAM. The aim of this work is to compare the numerical results for the different mathematical models of the viscosity with the changing diameter of the narrowed channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Openfoam guide. https://openfoamwiki.net/index.php/OpenFOAM_guide

  2. Blocked artery: https://www.health.harvard.edu/heart-health/ask-the-doctor-checking-for-blocked-arteries-in-heart-failure https://www.health.harvard.edu/heart-health/ask-the-doctor-checking-for-blocked-arteries-in-heart-failure (2018)

  3. Blood cells. https://upload.wikimedia.org/wikipedia/commons/2/24/Red_White_Blood_cells.jpg (2018)

  4. Cardiovascular system. https://journalmex.files.wordpress.com/2009/02/dibujo-circulacion-de-sangre5.jpg https://journalmex.files.wordpress.com/2009/02/dibujo-circulacion-de-sangre5.jpg (2018)

  5. Graft. https://www.nqvascular.com.au/bypass-surgery/ (2018)

  6. On application of overset/chimera method for flow approximation over a vibrating body using OpenFOAM (2018)

  7. Ali, D., Sen, S.: Permeability and fluid flow-induced wall shear stress of bone tissue scaffolds: Computational fluid dynamic analysis using Newtonian and non-Newtonian blood flow models. Comput. Biol. Med. 99, 201–208 (2018)

    Article  Google Scholar 

  8. Barth, T.: Aspects of unstructured grids and finite-volume solvers for the euler and navier-stokes equations. NASA, AGARD, Special course on unstructured grid methods for advection dominated flows pp. 6.1–6.61 (1992)

  9. Baskurt, O., Meiselman, H.: Blood rheology and hemodynamics. In: Semin. Thromb. Hemos (2003)

  10. Bodnár, T., Fasano, A., Sequeira, A.: Fluid-structure interaction and biomedical applications, chap. Mathematical models for blood coagulation. Springer, Heidelberg (2014)

    MATH  Google Scholar 

  11. Cho, Y., Kensey, K.: Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. part 1: Steady flows. Biorheology 28, 241–262 (1991)

    Article  Google Scholar 

  12. Jonášová, A.: Computational modelling of hemodynamics for non-invasive assessment of arterial bypass graft patency. Ph.D. thesis, University of West Bohemia, Pilsen, Czech Republic (2014)

  13. Keslerová, R., Trdlička, D., Řezníček, H.: Numerical simulation of steady and unsteady flow for generalized Newtonian fluids. Journal of Physics, Conference Series 738, 1–6 (2016)

    Article  Google Scholar 

  14. Keynton, R., Rittgers, S., Shu, M.: The effect of angle and flow rate upon hemodynamics in distal vascular graft anastomoses: an in vitro model study. J. Biomech. Eng. 113, 458–463 (1991)

    Article  Google Scholar 

  15. Lee, D., Su, J., Liang, H.: A numerical simulation of steady flow fields in a bypass tube. J. Biomech. 34, 1407–1416 (2001)

    Article  Google Scholar 

  16. Leuprecht, A., Perktold, K.: Computer simulation of non-Newtonian effects on blood flow in large arteries. Comput. Methods Biomech. Biomed. Engin. 4, 149–163 (2001)

    Article  Google Scholar 

  17. LeVeque, R.: Finite volume methods for hyperbolic problems. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  18. Moukalled, F., Mangani, L., Darwish, M.: The finite volume method in computational fluid dynamics. Springer, Heidelberg (2016)

    Book  MATH  Google Scholar 

  19. Patankar, S.: Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation (1980)

  20. Patankar, S., Spalding, D.: A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Transf. 15, 1787–1806 (1972)

    Article  MATH  Google Scholar 

  21. Pereira, J., Serra e Moura, J., Ervilha, A., Pereira, J.: On the uncertainty quantification of blood flow viscosity models. Chem. Eng. Sci. 101, 253–265 (2013)

    Article  Google Scholar 

  22. Sequeira, A., Janela, J.: A portrait of state-of-the-art research at the Technical University of Lisbon, chap. An overview of some mathematical models of blood rheology. Springer, Amsterdam (2007)

    Google Scholar 

  23. Skiadopoulos, A., Neofytou, P., Housiadas, C.: Comparison of blood rheological models in patient specific cardiovascular system simulations. J. Hydrodyn. 29, 293–304 (2017)

    Article  Google Scholar 

  24. Vimmr, J., Jonášová, A.: Noninvasive assessment of carotid artery stenoses by the principle of multiscale modelling of non-Newtonian blood flow in patient-specific models. Appl. Math. Comput. 319, 598–616 (2018)

    MathSciNet  MATH  Google Scholar 

  25. Xiang, J., Tremmel, M., Kolega, J., et al.: Newtonian viscosity model could overestimate wall shear stress in intracranial aneurysm domes and underestimate rupture risk. Journal of NeuroInterventional Surgery 4, 351–357 (2012)

    Article  Google Scholar 

Download references

Funding

This work was supported by the grant agency of the Czech Technical University in Prague.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radka Keslerová.

Additional information

Communicated by: Pavel Solin

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keslerová, R., Řezníček, H. & Padělek, T. Numerical modelling of generalized Newtonian fluids in bypass tube. Adv Comput Math 45, 2047–2063 (2019). https://doi.org/10.1007/s10444-019-09684-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-019-09684-y

Keywords

Mathematics Subject Classification (2010)

Navigation