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Abstract

We consider model order reduction for a free boundary problem of an osmotic
cell that is parameterized by material parameters as well as the initial shape of
the cell. Our approach is based on an Arbitrary-Lagrangian-Eulerian description
of the model that is discretized by a mass-conservative finite element scheme.
Using reduced basis techniques and empirical interpolation, we construct a pa-
rameterized reduced order model in which the mass conservation property of the
full-order model is exactly preserved. Numerical experiments are provided that
highlight the performance of the resulting reduced order model.

1 Introduction

Free boundary problems are PDE problems that involve an a priori unknown (free)
interface or boundary. These type of problems arise in different applications from
physics, engineering, finance and biology. Let us mention a few important application
fields where free boundary problems play an important role. In physics and engineer-
ing, many situations where different fluids (or solids) are involved, e.g. water and oil in
petroleum problems, can be cast into free boundary problems as in the classical Stefan
problem [32]; In finance, optimal stopping of stochastic processes is often solved by
reduction to free boundary problems [24], and in biology, the mathematical modeling
of problems like tumor growth and wound healing leads to free boundary problems [9].

While projection-based reduced order modeling techniques such as reduced basis
methods have been successfully applied to a wide variety of PDE models (see, e.g.,
[26, 12, 6] for an overview), the reduction of problems that involve an evolving ge-
ometry Ω(t) remains challenging: Whereas traditional reduction methods are built
around the idea of finding a joint linear approximation space for the entire manifold
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of solution state vectors, the solutions u(t) of free boundary problems naturally lie in
time-dependent function spaces V (t) that depend on the a priori unknown evolution
of Ω(t).

Taking an Eulerian point of view, a naive approch to resolve this issue is to consider
linear embeddings Λ(t) of V (t) into a larger space V of (discontinuous) functions
on some Ω∗ ⊃ ⋃tΩ(t) by extending the functions with zero on the complement of
Ω(t), and then search for a reduced approximation space VN ⊂ V for the solution
manifold MV := {Λ(t)(u(t))}. However, as is well-known from hyperbolic problems
with traveling shocks, the moving jump at the boundary of Ω(t) leads to a slow decay
of the Kolmogorov n-widths of MV (e.g. [22]). Thus, a good low-dimensional linear
approximation space VN for MV cannot exist.

Following ideas from [21], the aim of this paper is to approach this problem by con-
sidering nonlinear approximations ofMV where we allow transformations of functions
f in VN of the form Ψ .f(x) := f(Ψ(x)) with some diffeomorphism Ψ of Ω∗. If the func-
tions Ψ(t) are chosen such that the supports of functions in M̂V := {Ψ(t).Λ(t)(u(t))}
have a fixed boundary, the n-widths of M̂V will decay fast. Given a good approxima-
tion space VN of M̂V , Ψ(t)−1.VN will then yield good approximations of Λ(t)(u(t)).
Noting that such transformations Ψ(t) induce mappings of a fixed reference domain
Ω̂ to Ω(t), this leads us to reformulate the original problem on Ω̂ and introduce Ψ(t)
(as a function of Ω̂) as an additional solution field. The evolution of Ψ(t) will be de-
termined by the evolution of the boundary Γ (t) of Ω(t) as given by the free boundary
problem and an harmonic extension into Ω̂. In effect, we arrive at a formulation of the
free boundary problem on the reference-domain using the domain transformation Ψ(t)
as in Arbitrary-Lagrangian-Eulerian (ALE) methods [14, 8]. The freedom in choice of
the harmonic extension to determine Ψ(t) can be seen in analogy to choosing a phase
condition in context of the freezing formulation discussed in [21].

Literature on model order reduction for free boundary problems seems to be mostly
non-existent. We are only aware of the preliminary work in [13] and the following re-
lated works. In the context of fluid-structure interaction (FSI) problems a similar
ALE formulation has been considered in [3]. The use of a reference domain for the
reduction of models with parametrized geometry dates back to the early days of re-
duced basis methods, e.g. [25]. This approach has been extended to FSI problems in
[15]. An increasingly popular way to deal with moving domains is based on an implicit
description of the geometry through indicator functions (e.g. level sets [30, 23]) as it
often allows for a higher flexibility of the geometry handling w.r.t. large deformations
and topology changes. A nonlinear approximation method based on the truncation of
functions in VN via time-dependent indicator functions is discussed in [2]. Due to the
lack of hyperreduction no fully online-efficient reduced order model (ROM) is obtained,
however. Model order reduction of phase-field models, in which Γ (t) is approximated
by an easer-to-approximate diffuse interface layer, is discussed in [34, 28, 11].

Despite the high accuracy of projection-based ROMs, conservation properties of
the original PDE model are usually only approximately preserved by the reduction
process. The exact conservation of quantities such as the total mass of the system
is often of particular interest, however. In this work we will derive globally mass
conserving ROMs based on a carefully chosen finite element discretization of the free
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boundary problem in which the mass conservation constraint is implemented by testing
the variational formulation with a constant function. Including the constant functions
in the reduced space then ensures mass conservation of the Galerkin ROM. To preserve
this property under empirical interpolation [5], we propose a rank-one modification of
the interpolated mass matrix to ensure exact yet efficient assembly of the constraint.

The inclusion of locally constant test functions in the reduced space to obtain
locally mass conservative flux reconstructions is considered in [20] to improve the
efficiency of a localized a posteriori error estimator in the context of localized model
order reduction. In [7] an alternative approach to preserve conservation properties is
presented, which is based on the inclusion of additional constraints in the least-squares
Petrov-Galerkin minimization problem that is solved in the ROM.

Content and structure of the paper

The paper is structured as follows. We introduce a mathematical model for osmotic
cell swelling as a model problem in Section 2. The Arbitrary-Lagrangian-Eulerian
formulation of the full order model is then discussed in Section 3 before we apply
model order reduction in Section 4. Based on the numerical experiments in Section 5,
we discuss the performance and potential of this approach before we conclude.

2 Mathematical model of an osmotic cell swelling
problem

As a model free boundary problem we consider a mathematical model of osmotic cell
swelling that is also considered in a.o. [17, 27, 10, 36, 37, 38]. A membrane separates
the interior of a cell which is filled with a fluid from the outside. Inside and outside
of the cell a solute concentration is dissolved to which the membrane is impermeable.
The outer concentration is assumed to be constant and known. An extension to the
“two-phase” osmosis problem where the outer concentration field is also considered to
be unknown can be found in [18, 27]. We, however, restrict to the simpler “one-phase”
case. In this system, the membrane is subject to two acting forces: on the one hand, a
surface tension force that only depends on the shape of the membrane and counteracts
large curvatures; on the other hand, a force induced by the tendency to equilibrate the
solute concentration across the membrane. The latter is modeled by Van’t Hoff’s law,
which states that the pressure at the boundary is proportional to the concentration
difference at the free boundary.

Let us denote by u the solute concentration. Inside the cell, u is subject to a
linear unsteady diffusion equation with constant diffusion coefficient α. Boundary
conditions result naturally from the conservation of mass principle as the total solute
concentration is constant. Let (0, T ], T > 0 be the time interval of interest and
Ω0 ⊂ Rd, d = 2, 3 be the initial domain of the cell with Γ0 := ∂Ω0 the initial shape
of the membrane. Then, the model for the solute concentration and the boundary
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Figure 1: Evolution of cell geometry and concentration for an example considered in
Section 5.2: The initially homogeneous distribution of the concentration is given in
the initial cell shape. The mean curvature smoothens the cell shape, which leads to
local changes in the concentration field. Finally, the evolution tends to a stationary
state which is a circle with a homogeneous distribution of the concentration.

motion is given by

∂tu− α∆u = 0 in Ω(t), (1a)

wΓu+ α∂nu = 0 on Γ (t), (1b)

−βκ+ γ(u− uext) = wΓ on Γ (t). (1c)

Here, wΓ is the velocity (in normal direction) of the boundary Γ (t) := ∂Ω(t). With the
mean curvature κ (positive for convex domains) the first term −βκ in (1c) models the
effect of surface tension, whereas γ(u−uext) models the effect of the osmotic pressure.
The constants β and γ are material constants depending only on the membrane and
the solute. ∂nu is the normal derivative of u with n the outer normal to Ω(t).

With Reynolds’ transport theorem we easily see that (1b) implies conservation of
the total solute:

d

dt

∫
Ω(t)

u dx =

∫
Ω(t)

∂tu︸︷︷︸
=α∆u

dx +

∫
Γ (t)

wΓu ds =

∫
Γ (t)

α∂nu+ wΓu ds = 0. (2)

We notice that in the model a higher concentration at the boundary of the cell
introduces a force that tends to expand the cell. The surface tension force typically
has the opposite tendency. For convex domains it tends to compress the cell. Note
that in this model the domain Ω cannot degenerate. This is due to the fact that
the boundary condition (1b) ensures conservation of the total solute concentration so
that the concentration increases if the cell shrinks. In the case of a shrinking cell, the
concentration will eventually reach a level where the second term in (1c) compensates
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the surface tension force. For an initially simple connected domain Ω0 the system
tends towards the stationary solution of (1) which has a spherical shaped domain Ω∞
with a constant concentration u∞. In Figure 1 an example evolution is shown.

3 Arbitrary-Lagrangian-Eulerian-based finite element
discretization

In this section we derive a discretization method for the osmotic cell swelling prob-
lem based on an Arbitrary-Lagrangian-Eulerian (ALE) description [14, 8] and a finite
element discretization. To this end, we first introduce the geometry description and
a decomposition of the coupled problem into subproblems on the continuous level in
Section 3.1. In Section 3.2 we introduce some notation and a decoupling scheme con-
sisting of discrete subproblems, the treatment of which is discussed one after another
in Sections 3.3 – 3.5. The conservation property (2) is ensured on the discrete level in
the discretization of the time stepping for the concentration field in Section 3.5.

3.1 ALE formulation of the continuous problem

3.1.1 Geometry description through mappings

In an ALE description we deal with the fact that the domain is moving in time by
introducing a reference configuration Ω̂ and describe Ω(t) by a time-dependent trans-
formation

Ψ : Ω̂ × [0, T ]→ Rd. (3)

By w = ∂tΨ we denote the mesh velocity. With abuse of notation, we write Ψ(t) for
the restriction of Ψ to a fixed time t, i.e. the purely spatial function Ψ(t) : Ω̂ → Ω(t).

3.1.2 A generic extension from boundary transformation to volume trans-
formation

For the notation of restrictions of functions to the boundary Γ we use a subindex, e.g.
ΨΓ = Ψ |Γ . The evolution of the domain is determined by (1c),

∂tΨΓ = wΓ n = −βκ n + γ(u− uext) n on Γ (t). (4)

To determine the mesh transformation Ψ(t) in the volume we use a linear extension

operator E : (H
1
2 (Γ (t)))d → (H1(Ω(t)))d to extend the boundary transformation ΨΓ

and the boundary velocity wΓ n to the volume transformations Ψ and w,

Ψ = E(ΨΓ ), =⇒ w = ∂tΨ = ∂tE(ΨΓ ) = E(∂tΨΓ ) = E(wΓ n). (5)

3.1.3 Continuous subproblems

We write the ALE formulation for the continuous problem in terms of subproblems that
are coupled in a time interval (tn−1, tn]. These subproblems are considered separately
in the description of the discretization below:
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1. Fix a time t = t∗. Given Ψ(t∗) and u(t∗), compute wΓ (t∗) as the solution to

wΓ (t∗) = −βκ+ γ(u(t∗)− uext) on Γ (t∗). (6a)

2. Fix a time t = t∗. Given wΓ (t∗), compute a volumetric velocity as a suitable
extension w(t∗):

w(t∗) = E(wΓ (t∗)n). (6b)

3. Given the mesh velocity w(t) in a time interval (tn−1, tn] and the initial trans-
formation at a time step Ψinit, compute Ψ(t), t ∈ (tn−1, tn] as the solution to

∂tΨ(t) = w, t ∈ (tn−1, tn], Ψ(tn−1) = Ψinit. (6c)

4. Given the domain Ω(t) = Ψ(t)(Ω̂) in a time interval (tn−1, tn] and initial con-
centration data for this time interval uinit, compute u(t) as the solution to: ∂tu− α∆u = 0 in Ω(t), t ∈ (tn−1, tn],

wΓu+ α∂nu = 0 on Γ (t), t ∈ (tn−1, tn],
u(tn−1) = uinit in Ω(tn−1).

(6d)

3.2 Preliminaries, notation and decoupling scheme

In the discretization in this study we consider a simplicial triangulation T defining the
reference domain Ω̂. On T we use the standard finite element space

Ûh := {v ∈ C0(Ω̂) | v|T ∈ Pk(T ), ∀ T ∈ T } (7)

with Pk(T ) the space of polynomials of degree at most k. Further, we define the vector
valued space Ûh := (Ûh)d and its trace space ÛΓ

h := Ûh|Γ̂ where Γ̂ := ∂Ω̂. For the

concentration field we introduce the unknown ûh ∈ Ûh corresponding to a mapped
function uh = ûh ◦ Ψ−1h . Correspondingly, we have the unknown transformation field

Ψ that is approximated by Ψh in Ûh. The mesh velocity w is approximated on the

reference domain with ŵh ∈ Ûh so that wh = ŵh ◦Ψ−1h . The vector-valued boundary
velocity wΓ n is approximated with wΓ,h = ŵΓ,h ◦ Ψ−1h with ŵΓ,h in the trace space

ÛΓ
h .

For the discretization in time we consider an equidistant decomposition of (0, T ]
into N time intervals and define time steps ti := i∆t with ∆t = T/N . We denote
the discrete solutions at a time step ti by uih (ûih), wi

h (ŵi
h), wi

Γ,h (ŵi
Γ,h) and Ψ ih.

Further, we introduce the notation Ωih for the mapped domain Ωh(ti) := Ψ ih(Ω̂) and

accordingly define Γ ih := Ψ ih(Γ̂ ).
In the remainder of this study, we consider a weakly coupled first order time inte-

gration scheme for the full discretization of the ALE formulation (6a)–(6d). One time
step in the scheme consists of the successive application of the following steps:

1. Given Ψn−1h , un−1h compute ŵn−1
Γ,h approximating (6a), cf. Section 3.3.
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2. Extend ŵn−1
Γ,h to Ω̂ resulting in ŵn−1

h , cf. Section 3.4.

3. With Ψn−1h and ŵn−1
h given, we approximate (6c) with an explicit Euler step:

Ψnh = Ψn−1h +∆tŵn−1
h . (8)

4. Take Ψn−1h and Ψnh to approximate the domain evolution. With un−1h compute
an approximation unh to (6d), cf. Section 3.5.

Below, for the application of integral transformations corresponding to a mapping Ψ ,
we make use of the following notations for the Jacobian F, the Jacobian determinant
J which is also the ratio of volume measure between preimage and image of Ψ , the
normal to the mapped domain n, the ratio of the surface measures JΓ and the tan-
gential projection onto the mapped domain P:

F(Ψ) := DΨ , (9a)

J(Ψ) := det(F(Ψ)), (9b)

JΓ (Ψ) := ‖F−T (Ψ)n̂‖ J(Ψ), (9c)

n(Ψ) := F−T (Ψ)n̂ ‖F−T (Ψ)n̂‖−1, (9d)

P(Ψ) := I− n(Ψ)⊗ nT (Ψ). (9e)

We notice that det(F(Ψ)) is positive as long as Ψ is sufficiently close to the identity,
i.e. as long as the deformation of the domain does not get too large. We define Fi as
the Jacobian to Ψ ih, i.e. Fi = F(Ψ ih) and define J i, J iΓ , ni and Pi accordingly.

3.3 Discretization of the boundary velocity

We want to approximate wΓ n with wΓ as in (6a) for t∗ = tn−1. Hence, we seek for
an approximation ŵn−1

Γ,h ∈ ÛΓ
h to

ŵn−1
Γ,h ≈ wΓ n = −βκ n + γ(u(t∗)− uext) n on Γn−1h . (10)

Multiplying with a test function sh = ŝh ◦
(
Ψn−1h

)−1
, ŝh ∈ ÛΓ

h and integrating over

Γn−1h yields

∫
Γn−1
h

wn−1
Γ,h · sh ds = −βκnh(sh) + γ

∫
Γn−1
h

(uh − uext)(sh · n) ds, (11)

where κnh(sh) is a discrete curvature linear form. To compute the mean curvature we
make use of two main ideas from [4]. First, we use the Laplace-Beltrami character-
ization of the mean curvature, −κ n = ∆Γ id in a weak formulation, to avoid the
computation of second derivatives. This allows to make sense of a curvature even for
polygonal boundaries. Secondly, it is well-known that an explicit treatment of the cur-
vature in free boundary problems leads to (severe) time step restrictions. These can be
circumvented using an implicit approximation of the curvature. Hence, we aim at com-
puting the curvature at time tn instead of tn−1. As Γnh is not known, we approximate
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the identity operator on the boundary to time tn by x+∆t wn−1
Γ,h = id|Γn−1

h
+∆t wn−1

Γ,h

which yields the discrete curvature linear form

κnh(sh) :=

∫
Γn−1
h

∇Γ id : ∇Γ sh ds +∆t

∫
Γn−1
h

∇Γwn−1
Γ,h : ∇Γ sh ds. (12)

We notice that the superscript n at the linear form indicates that the curvature
computation corresponds to time tn. Hence, our discretization of (6a) is: Find
wn−1
Γ,h = ŵn−1

Γ,h ◦ (Ψn−1h )−1 with ŵn−1
Γ,h ∈ ÛΓ

h , s.t. for all sh = ŝh ◦ (Ψn−1h )−1 with

ŝh ∈ ÛΓ
h there holds∫

Γn−1
h

wn−1
Γ,h · sh ds+β∆t

∫
Γn−1
h

∇Γwn−1
Γ,h : ∇Γ sh ds (13)

= −β
∫
Γn−1
h

∇Γ id : ∇Γ sh ds + γ

∫
Γn−1
h

(uh − uext)(sh · n) ds.

Here, the tangential gradient acts on Γn−1h , i.e. ∇Γ id = P · ∇id = P where P =
I− n⊗ nT is the tangential projection. With the notations from (9) and n̂ the outer
normal to Ω̂, we can write this as an equation on Γ̂ : Find ŵn−1

Γ,h ∈ ÛΓ
h , s.t. for all

ŝh ∈ ÛΓ
h there holds∫

Γ̂

Jn−1Γ ŵn−1
Γ,h · ŝh ds + β∆t

∫
Γ̂

Jn−1Γ

(
P · (Fn−1)−T · ∇ŵn−1

Γ,h

)
:
(
(Fn−1)−T∇ŝh

)
ds

=− β
∫
Γ̂

Jn−1Γ P : (Fn−1)−T∇Γ̂ ŝh ds + γ

∫
Γ̂

Jn−1Γ (ûh − uext)ŝh · ((Fn−1)−T n̂) ds.

(14)

3.4 Extension of the boundary velocity

For a given boundary velocity ŵn−1
Γ,h (respectively wn−1

Γ,h ) we seek for an extension

ŵn−1
h = Eh(ŵn−1

Γ,h ) ∈ Ûh (respectively wn−1
h ) and use the solution operator (in a

standard FEM formulation) of an harmonic extension (on the reference domain), i.e.
we define ŵn−1

h = Eh(ŵn−1
Γ,h ) ∈ Ûh as the solution to

−div[h−1T (∇ŵn−1
h + (∇ŵn−1

h )T )] = 0 in Ω̂, (15a)

ŵn−1
h = ŵn−1

Γ,h on ∂Ω̂, (15b)

where hT (x) is the locally constant grid function assigning to each x ∈ T ∈ T the
diameter of T .

Note that one easily finds more sophisticated choices of the extension operator in
the literature which allow to provide more control on the shape regularity of deformed
mesh for larger deformations, see e.g. [8, Section 5.1.2 and 5.1.3] and the references
therein. In this study we consider only moderate deformations and take the liberty
to consider only the simplified choice of an harmonic extension. We notice however
that this restriction is not crucial for the applicability of the model order reduction
considered below but simplifies the presentation as this extension operator is linear
and parameter independent.
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3.5 Conservative concentration update on a moving domain

We derive a time stepping procedure tailored to preserve the global solute mass. First,
let us assume that a continuous mapping Ψ : Ω̂×(tn−1, tn]→ Rd is known. To v̂ ∈ Ûh,
we define the mapped function v(x, t) = v̂(Ψ−1(t)(x)) and apply Reynolds’ transport
theorem to the product u v where u is the exact solution to (6d). This gives

d

dt

∫
Ω(t)

uv dx =

∫
Ω(t)

∂t(uv) dx +

∫
∂Ω

wΓuv ds

=

∫
Ω(t)

α∆uv − (w · ∇v)u dx +

∫
∂Ω

wΓuv ds (16)

=

∫
Ω(t)

−α∇u · ∇v − (w · ∇v)u dx, t ∈ (tn−1, tn].

where we made use of ∂tu = α∆u (from (6d)), ∂tv = −w · ∇v (chain rule) and the
boundary conditions in (6d). Integration over (tn−1, tn] then yields∫

Ω(tn)

uv dx−
∫
Ω(tn−1)

uv dx =

∫ tn

tn−1

∫
Ω(t)

−α∇u · ∇v − (w · ∇v)u dx dt. (17)

By choosing v = 1 (v̂ = 1) we recover the conservation of the total solute concentration
(2). To arrive at a discretization, we replace the time integral with the right hand side
rule, the exact geometries with Ωn−1h and Ωnh and the solution u with the finite element
approximations un−1h and unh, respectively, yielding the discrete problem:

Find unh = ûnh ◦ (Ψnh )
−1

with ûnh ∈ Ûh s.t. for all vh = v̂h ◦ (Ψnh )
−1

with v̂h ∈ Ûh
there holds∫

Ωnh

unhvh dx +∆t

∫
Ωnh

unh wn−1
h · ∇vh + α∇unh · ∇vh dx =

∫
Ωn−1
h

un−1h vh dx. (18)

Equivalently, we can formulate the discretization with respect to the reference domain
Ω̂: Find ûnh ∈ Ûh, s.t. for all v̂h ∈ Ûh there holds∫
Ω̂

Jn ûnh v̂h dx +∆t

∫
Ω̂

Jn ûnh ŵn−1
h · ((Fn)−T · ∇v̂h)dx (19)

+ α ∆t

∫
Ω̂

Jn ((Fn)−T∇ûnh) · ((Fn)−T∇v̂h) dx =

∫
Ω̂

Jn−1 ûn−1h v̂h dx.

We notice that the conservation property (2) is preserved also on the discrete level.

4 Model order reduction

4.1 Parameterized full order model

As parameters to the problem (1) we consider the initial shape of the osmotic cell, the
diffusivity α and the surface tension parameter β. We notice that with dimensional
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Figure 2: Sketch of possible initial shapes and corresponding graphs.

analysis one easily checks that — up to rescaling of time — γ is not an independent
parameter in the model. Thus, in the following we assume γ to be constant. Possible
other parameters are the initial and the exterior concentration uinit = u(·, 0), uext,
which we will not consider in this study, however. For simplicity, we set uext = 0
in the sequel. Regarding the parameterization of the initial domain Ω0, we consider
only initial shapes which are star-shaped and can be represented as a graph in normal
direction, i.e.

Γ0 = {x + r(x)n(x) | x ∈ S1(0)}, (20)

where S1 is the unit sphere, n is the unit outer normal to S1 and r is C1-smooth on S1,
cf. also Figure 2 for a sketch. As reference domain we choose the unit disk Ω̂ := D2(0).
For simplicity we assume that r is given as a linear combination of the form

r(x) = δ1r1(x) + . . .+ δLrL(x). (21)

More general parameterizations could be considered using the empirical interpolation
procedure described in Section 4.3. In total, the solution will depend on the parameter
vector

µ := (α, β, δ1, . . . , δL) ∈ P ⊂ RL+2, (22)

where P is the set of admissible parameters. The dependence on µ will be signified by
adding the subscript µ to the respective solution fields. The individual components of
a parameter vector µ will be referred to as αµ, βµ, δ1,µ, . . . , δL,µ.

Summarizing the discretization derived in Section 3, the discrete solution fields
ûnh,µ, Ψnh,µ, n = 0, . . . N for µ ∈ P are determined as follows:

As initial conditions we have

û0h,µ = Ih(uinit), Ψ0
h,µ = id +

L∑
l=1

δl,µ · Eh(IΓ,h(rl n)), (23)
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with Ih, IΓ,h denoting linear interpolation operators for Ûh, ÛΓ
h and Eh(ψ̂Γ ) denoting

the solution of the extension problem defined in Section 3.4 for given boundary data
ψ̂Γ .

We introduce some notation for bilinear and linear forms appearing in (14) and
(19) which simplify the presentation of the model order reduction approach below:
Problem (14) becomes

a1(ŵn−1
Γ,h,µ, ŝh;Ψn−1h,µ ) + βµ∆t · a2(ŵn−1

Γ,h,µ, ŝh;Ψn−1h,µ )

= −βµ · l1(ŝh;Ψn−1h,µ ) + γ · l2(ŝh;Ψn−1h,µ , ûn−1h,µ ) ∀ŝh ∈ ÛΓ
h .

(24a)

For the update of the transformation field we have

ŵn−1
h,µ = Eh(ŵn−1

Γ,h,µ), Ψnh,µ = Ψn−1h,µ +∆t ŵn−1
h,µ (24b)

where Eh is the extension operator from (15). The concentration update, cf. (19),
reads as

a3(ûnh,µ, v̂h;Ψnh,µ) +∆t · a4(ûnh,µ, v̂h;Ψnh,µ, ŵ
n−1
h,µ )

+ αµ∆t · a5(ûnh,µ, v̂h;Ψnh,µ) = a3(ûn−1h,µ , v̂h;Ψn−1h,µ ) ∀v̂h ∈ Ûh.
(24c)

In these equation systems, a1, a2 : H
1
2 (Γ̂ )d × H

1
2 (Γ̂ )d → R, l1, l2 ∈ (H

1
2 (Γ̂ )d)′,

a3, a5, a4 : HΩ̂ ×HΩ̂ → R, are bilinear and linear forms given by

a1(q̂, ŝ; ψ̂) :=

∫
Γ̂

c1(ψ̂)q̂ · ŝ ds, a5(û, v̂; ψ̂) :=

∫
Ω̂

c5(ψ̂)∇û · ∇v̂ dx, (25a)

a2(q̂, ŝ; ψ̂) :=

∫
Γ̂

c2(ψ̂) · ∇Γ̂ q̂ : ∇Γ̂ ŝ ds, l1(ŝ; ψ̂) :=

∫
Γ̂

c6(ψ̂) : ∇Γ̂ ŝ ds, (25b)

a3(û, v̂; ψ̂) :=

∫
Ω̂

c3(ψ̂)û v̂ dx, l2(ŝ; ψ̂, ϕ̂) :=

∫
Γ̂

c7(ψ̂, ϕ̂) · ŝ ds, (25c)

a4(û, v̂; ψ̂, η̂) :=

∫
Ω̂

c4(ψ̂, η̂)û · ∇v̂ dx, (25d)

with coefficient functions

c1(ψ̂) := JΓ (ψ̂), c5(ψ̂) := J(ψ̂)F−1(ψ̂)F−T(ψ̂), (26a)

c2(ψ̂) := JΓ (ψ̂)F−1(ψ̂) ·P(ψ̂) · F−T(ψ̂), c6(ψ̂) := JΓ (ψ̂)F−1(ψ̂) ·P(ψ̂), (26b)

c3(ψ̂) := J(ψ̂), c7(ψ̂, ϕ̂) := JΓ (ψ̂)F−T(ψ̂) · n̂ · ϕ̂, (26c)

c4(ψ̂, η̂) := J(ψ̂)F−1(ψ̂) · η̂, (26d)

where we made use of the notation from (9).

4.2 Reduced basis approximation

We construct a ROM for (23), (24) via Galerkin projection onto reduced order ap-
proximation spaces ÛΓ

r ⊂ ÛΓ
h , Ûr ⊂ Ûh, Ûr ⊂ Ûh for the solution fields ŵn

Γ,h,µ, Ψnh,µ
and ûnh,µ, n = 0, .., N .
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Many different strategies have been discussed in the literature for constructing low-
dimensional reduced approximation spaces from solution snapshots of the full order
model (23), (24). In this study we choose a basic proper orthogonal decomposition
(POD, [31]) approach:

We assume that an appropriate finite set of training parameters Strain ⊂ P has
been chosen and compute the snapshot sets

MΓ := {ŵn
Γ,h,µ |µ ∈ Strain, 0 ≤ n ≤ N}, (27a)

MΨ := {Ψnh,µ − id |µ ∈ Strain, 0 ≤ n ≤ N}, (27b)

Mu := {ûnh,µ |µ ∈ Strain, 0 ≤ n ≤ N}, (27c)

of the solution time trajectories of (23), (24) for the parameter vectors µ ∈ Strain. The
affine shift in the definition of MΨ is introduced in accordance with the implementation
used in Section 5, where the mesh deformations Ψkh,µ− id are used as solution variable.

The reduced approximation spaces ÛΓ
r , Ûr, Ûr are now obtained from a POD of

MΓ , MΨ , Mu, respectively, for a given relative truncation error tolerance εrb: The
reduced spaces are spanned by the first K left-singular vectors of the linear mapping
Φ∗ sending the k-th canonical basis vector of R|M∗| to sk where {s1, . . . , s|M∗|} is
an arbitrary enumeration of the snapshot set. The singular value decomposition is
computed w.r.t. the H1(Ω̂)-inner product on Ûh, the (H1(Ω̂))d-inner product on Ûh,
resp. the (L2(Γ̂ ))d-inner product on ÛΓ

h . The truncation rank K is determined as the
minimal K s.t. σK+1(Φ∗)/σ1(Φ∗) < εrb, where σk(Φ∗) denotes the k-th singular value
of Φ∗.

Denoting the H1(Ω̂)-orthogonal projection of Ûh onto Ûr by Pr and the (H1(Ω̂))d-
orthogonal projection of Ûh onto Ûr by Pr, the reduced order model is given as
follows: For µ ∈ P, find ûnr,µ ∈ Ûr, Ψnr,µ ∈ id + Ûr, 0 ≤ n ≤ N with initial data

û0r,µ = Pr(Ih(uinit)), Ψ0
r,µ = id +

L∑
l=1

δl ·Pr(Eh(IΓ,h(rl))), (28)

with the boundary velocity ŵn−1
Γ,r,µ ∈ ÛΓ

r given by

a1(ŵn−1
Γ,r,µ, ŝr;Ψ

n−1
r,µ ) + βµ∆t · a2(ŵn−1

Γ,r,µ, ŝr;Ψ
n−1
r,µ )

= −βµ · l1(ŝr;Ψ
n−1
r,µ ) + γ · l2(ŝr;Ψ

n−1
r,µ , ûn−1r,µ ) ∀ŝr ∈ ÛΓ

r ,
(29a)

with the transformation field update given by

ŵn−1
r,µ = Pr(Eh(ŵn−1

Γ,r,µ)), Ψnr,µ = Ψn−1r,µ +∆tŵn−1
r,µ (29b)

and with the concentration field update given by

a3(ûnr,µ, v̂r;Ψ
n
r,µ) +∆t · a4(ûnr,µ, v̂r;Ψ

n
r,µ, ŵ

n−1
r,µ )

+ αµ∆t · a5(ûnr,µ, v̂r;Ψ
n
r,µ) = a3(ûn−1r,µ , v̂r;Ψ

n−1
r,µ ) ∀v̂r ∈ Ûr.

(29c)

In order to solve (28), (29), we choose orthonormal bases of Ûr, Ûr, ÛΓ
r . We

assemble the matrix of the linear operator Pr ◦ Eh with respect to these bases, as well

12



as the coefficient vectors of Pr(Ih(uinit)), and Pr(Eh(IΓ,h(rl))) for the initial condition
(28). In each time step, we then assemble the matrices and vectors of all bilinear forms
a∗ and linear forms l∗ appearing in (29a), (29c). After that, the effort related to the
computation of the basis coefficients of ûnr,µ, Ψnr,µ is

O((dim ÛΓ
r )3 + dim Ûr · dim ÛΓ

r + (dim Ûr)
3), (30)

where the summands correspond to the solution of (29a), (29b) and (29c). However,
due to the dependence of the bilinear / linear forms on Ψnr,µ, ŵn

r,µ, ûnr,µ, the matrix
assembly has to be carried out in each time step, requiring substantial computational
effort proportional to dim Ûh. In the following section we use empirical interpolation
to overcome this issue.

4.3 Online efficient simulation via empirical interpolation

In order to achieve a fast assembly of (29a), (29c) we use empirical interpolation [5]
to approximate the coefficient functions (26) by linear combinations

ci(ψ̂) ≈
Mi∑
m=1

θmi (ψ̂)cmi , θmi (ψ̂) = [ci(ψ̂)(xmi )]kmi , i 6= 4, 7 (31a)

c4(ψ̂, η̂) ≈
M4∑
m=1

θm4 (ψ̂, η̂)cm4 , θm4 (ψ̂, η̂) = [c4(ψ̂, η̂)(xm4 )]km4 , (31b)

c7(ψ̂, ϕ̂) ≈
M7∑
m=1

θm7 (ψ̂, ϕ̂)cm7 , θm7 (ψ̂, ϕ̂) = [c7(ψ̂, ϕ̂)(xm7 )]km7 , (31c)

where for i = 1, . . . , 7 the functions cmi no longer depend on ψ̂, η̂ or ϕ̂, xmi ∈ Ω̂ (resp.

xmi ∈ Γ̂ ) are interpolation points for ci and kmi are vector indices resp. matrix indices
selecting a scalar component of the evaluation of ci at xmi .

Defining the linear and bilinear forms

am1 (q̂, ŝ) :=

∫
Γ̂

cm1 q̂ · ŝ ds, am5 (û, v̂) :=

∫
Ω̂

cm5 ∇û · ∇v̂ dx, (32a)

am2 (q̂, ŝ) :=

∫
Γ̂

am2 · ∇Γ̂ q̂ : ∇Γ̂ ŝ ds, lm1 (ŝ) :=

∫
Γ̂

cm6 : ∇Γ̂ ŝ ds, (32b)

am3 (û, v̂) :=

∫
Ω̂

cm3 ûv̂ dx, lm2 (ŝ) :=

∫
Γ̂

cm7 · ŝ ds, (32c)

am4 (û, v̂) :=

∫
Ω̂

cm4 û · ∇v̂ dx, (32d)

we obtain approximations ai ≈
∑Mi

m=1 θ
m
i · ami and li ≈

∑Mi

m=1 θ
m
i+5 · lmi yielding the

13



update equations

M1∑
m=1

θm1 (Ψn−1r,µ ) · am1 (ŵn−1
Γ,r,µ, ŝr) + βµ∆t ·

M2∑
m=1

θm2 (Ψn−1r,µ ) · am2 (ŵn−1
Γ,r,µ, ŝr) (33a)

= −βµ ·
M6∑
m=1

θm6 (Ψn−1r,µ ) · lm1 (ŝr) + γ ·
M7∑
m=1

θm7 (Ψn−1r,µ , ûn−1r,µ ) · lm7 (ŝr) ∀ŝr ∈ ÛΓ
r ,

and

M3∑
m=1

θm3 (Ψnr,µ) · am3 (ûnr,µ, v̂r) +∆t ·
M4∑
m=1

θm4 (Ψnr,µ, ŵ
n−1
r,µ ) · am4 (ûnr,µ, v̂r) (33b)

+ αµ∆t ·
M5∑
m=1

θm5 (Ψnr,µ) · am5 (ûnr,µ, v̂r) =

M3∑
m=1

θm3 (Ψn−1r,µ ) · am3 (ûn−1r,µ , v̂r) ∀v̂r ∈ Ûr.

After pre-assembly of the matrices of ami and coefficient vectors of lmi , the effort for
the assembly of the equation systems (33a), (33b) for an arbitrary µ ∈ P is of order

O(M1,2 · (dim ÛΓ
r )2 +M6,7 · dim ÛΓ

r +M3,4,5 · (dim Ûr)
2), (34)

with M1,2 := M1 +M2, M3,4,5 := M3 +M4 +M5 and M6,7 := M6 +M7.

Computation of the interpolation data. We consider training sets of function
evaluations

Ci :={[ci(Ψnh,µ)(xj)]j |µ ∈ Strain, 0≤n≤N, 1≤j≤|Xi|}⊂`∞(Xi)di , i 6= 4, 7,

C4 :={[c4(Ψnh,µ, ŵ
n−1
r,µ )(xj)]j |µ ∈ Strain, 0≤n≤N, 1≤j≤|Xi|}⊂`∞(Xi)d4 , (35)

C7 :={[c7(Ψnh,µ, û
n
h,µ)(xj)]j |µ ∈ Strain, 0≤n≤N, 1≤j≤|Xi|}⊂`∞(Xi)d7 ,

where Xi = {x1, . . . ,x|Xi|} is an appropriate finite subset of Γ̂ (i = 1, 2, 6, 7) resp. Ω̂
(i = 3, 4, 5) and di corresponds to the shape of the values of ci, i.e. d1 = d3 = 1,
d4 = d7 = d and d2 = d5 = d6 = d2. Using the Ci as input for the greedy algorithm

from [5], interpreting tensor fields in `∞(Xi)di ∼= `∞(
⋃̇di
k=1Xi) as scalar functions,

we obtain the desired interpolation basis functions cmi ∈ span(Ci) and interpolation
points xmi ∈ Xi, 1 ≤ kmi ≤ di, which approximate all elements of Ci with a relative
`∞(Xi)di-error smaller than a prescribed tolerance εei.

Note that for the evaluation of the bilinear forms ami and the linear forms lmi , knowl-
edge of the corresponding coefficient function cmi is only required at the finitely many
quadrature points used in the discretization scheme. Hence, it is sufficient to choose
Xi as the set of all these quadrature points. Also note that our approach differs from
[3] in which each coefficient tensor component is interpolated separately, whereas we
perform a single interpolation of the full tensor field using tensor-valued interpolation
basis functions and scalar components of the tensor at given x ∈ Xi as interpolation
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points. Since separate empirical interpolation of the tensor field components will in
general select different interpolation points x ∈ Xi for the individual components, we
expect our approach to be more efficient in general (i.e. require less coefficient tensor
evaluations).

Minimally intrusive implementation of empirical interpolation. In many
cases it is technically difficult to replace in the PDE solver’s matrix assembly code the
analytically defined coefficient functions ci by a vector of function evaluations cmi at
the given quadrature points. In the numerical example in Section 5 we have used the
following less intrusive approach to implement the empirical interpolation procedure,
which in addition does not require knowledge of the exact quadrature points used by
the assembly routine:

Noting that cmi ∈ span(Ci), we can represent cmi , i = 1, 2, 3, 5, as

cmi =
∑

µ∈Strain

N∑
n=1

γm,ni,µ · [ci(Ψnh,µ)(xj)]j , (36)

where the linear coefficients γm,ni,µ can be directly obtained from the execution of the
greedy algorithm. Using this representation, it immediately follows that

ami (·, ·) =
∑

µ∈Strain

N∑
n=1

γm,ni,µ · ai(·, ·;Ψnh,µ). (37)

Since the matrices ai(·, ·;Ψnh,µ) have already been computed by the PDE solver, we
can easily assemble the matrix of ami using this formula. The same argument applies
to a4, lm1 , lm2 .

4.4 Global mass conservation

As discussed in Section 3.5, choosing the test function v̂h ≡ 1 in the concentration
update equation (19) shows that the total mass

∫
Ωnh

unhdx is conserved by the dis-

cretization scheme, i.e.
∫
Ωnh

unhdx =
∫
Ω0
h
u0hdx for all 0 ≤ n ≤ N . By including the

constant functions in the reduced concentration space Ûr,

1 ∈ Ûr, (38)

the same argument can be applied to the reduced concentration field given by (29c):∫
Ωnr,µ

unr,µdx = a3(ûnr,µ, 1;Ψnr,µ) +∆t · a4(ûnr,µ, 1;Ψnh,µ, ŵ
n−1
r,µ )︸ ︷︷ ︸

=0

+αµ∆t · a5(ûnr,µ, 1;Ψnr,µ)︸ ︷︷ ︸
=0

= a3(ûn−1r,µ , 1;Ψn−1r,µ ) =

∫
Ωn−1
r,µ

un−1r,µ dx. (39)
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Here, Ωnr,µ := Ψnr,µ(Ω̂) is the deformed domain at time step n given by the reduced
transformation field Ψnr,µ and unr,µ := ûnr,µ ◦ (Ψnr,µ)−1 the reduced concentration field
on this domain.

Note, however, that the argument in (39) is no longer valid when replacing the
bilinear forms a3, a4, a5 by their empirical interpolants (33b): While it still holds that

M4∑
m=1

θm4 (Ψnr,µ, ŵ
n−1
r,µ ) · am4 (ûnr,µ, 1)︸ ︷︷ ︸

=0

=

M5∑
m=1

θm5 (Ψnr,µ) · am5 (ûnr,µ, 1)︸ ︷︷ ︸
=0

= 0, (40)

the total mass at time step n is only approximately given by the empirical interpolant
of a3: ∫

Ωnr,µ

unr,µdx ≈
M3∑
m=1

θm3 (Ψnr,µ) · am3 (ûnr,µ, 1). (41)

One way to recover exact mass conservation in the ROM is to apply the empirical
interpolation procedure only to the coefficient functions of a4, a5, whereas a3(·, ·;Ψnr,µ)
is evaluated exactly. For d = 2, we can evaluate a3 as

a3(·, ·,Ψnr,µ) = ā3(·, ·,Ψnr,µ,Ψnr,µ), (42)

where ā3 is the 4-tensor given by

ā3(û, v̂, ψ̂, η̂) =

∫
Ω̂

(∂1ψ̂1 · ∂2η̂2 − ∂1ψ̂2 · ∂2η̂1) · û · v̂ dx. (43)

The effort to assemble the matrix of a3(·, ·;Ψnr,µ) from the coefficients of ā3 w.r.t. a basis

of Ûr is of order O((dim Ûr)
2 · (dim Ûr)

2). Although highly efficient implementations
for this operation are available, the higher computational complexity in comparison to
(30), (34) will lead to dominating runtime costs for large reduced space dimensions.
In three spatial dimensions (d = 3), the matrix of a3 can be assembled exactly by the
same argument with a computational effort of O((dim Ûr)

2 · (dim Ûr)
3). We expect

this to be non-favorable, even for relatively small dimensions of Ûr. However, to
ensure mass conservation, only the functional a3(·, 1;Ψnr,µ) needs to be known exactly,
the matrix of which can be computed by the same argument with a reduced effort of
O((dim Ûr) · (dim Ûr)

d).
Thus, choosing a basis ϕ̂i, 1 ≤ i ≤ dim Ûr for Ûr such that ϕ1 = 1, we define the

reduced bilinear form ã3(ûr, v̂r; ψ̂r) on Ûr by

ã3(ûr, ϕ̂i; ψ̂r) :=

{
a3(ûr, 1; ψ̂r) i = 1∑M3

m=1 θ
m
3 (ψ̂r) · am3 (ûr, ϕ̂i) 2 ≤ i ≤ dim Ûr,

(44)

and use as exactly mass conservative concentration update equation:

ã3(ûnr,µ, v̂r;Ψ
n
r,µ) +∆t ·

M4∑
m=1

θm4 (Ψnr,µ, ŵ
n−1
r,µ ) · am4 (ûnr,µ, v̂r)

+ αµ∆t ·
M5∑
m=1

θm5 (Ψnr,µ) · am5 (ûnr,µ, v̂r) = ã3(ûn−1r,µ , v̂r;Ψ
n−1
r,µ ) ∀v̂r ∈ Ûr. (45)
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Figure 3: Initial boundary Γ0 for different parameter combinations δ1, δ2 in the nu-
merical experiment (solid line).

In total, this equation system can then be assembled with an effort of

O(M3,4,5 · (dim Ûr)
2 + (dim Ûr) · (dim Ûr)

d). (46)

5 Numerical experiments

As a test for the developed reduced order modeling workflow we consider the pa-
rameterized model from Section 4.1 in two spatial dimensions and a two-dimensional
parameterization (L = 2) of the initial boundary Γ0 given by

r1(x) := e−θ(x)
2 · x, θ(x) := atan2(x), (47a)

r2(x) := 10−1 sin(10 · θ(x)) · x, (47b)

where atan2(x) denotes the (−π, π]-valued angle between x and the
[
1 0

]
-axis (cf.

Figure 3). We choose γ = 0.1 and T = 1 as final simulation time. The resulting ALE
formulation is discretized using a first-order finite element approximation with 3,988
degrees of freedom per spatial variable, i.e. 11,964 degrees of freedom in total. As
time step size we choose ∆t = 0.01.

The solution trajectories of the solution fields ûnh and Ψnh are visualized in Figure 4
for µ∗ = (0.1, 0.1, 1, 1). The corresponding reconstruction unh on the deformed domain
Ωnh is shown in Figure 1.

The discrete model and its reduction was implemented using NGSolve [29] and
pyMOR [19]. All computations were performed on a single core of dual-socket Intel
Xeon E5-2698 compute server with 256GB RAM.

5.1 Lagrangian vs. Eulerian viewpoint

To assess the viability of our approach, consider for the same parameter µ∗ the em-
beddings

Λnh : L2(Ωnh ) −→ L2(R2) (48)
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t ûnh (Ψnh − id)1 (Ψnh − id)2

0.00

0.25

0.50

0.75

1.00

0.67 1 1.53 −0.10 1.07 −0.43 0 0.45

Figure 4: Solution of the ALE discretization of the example problem for parameters
α = 0.1, β = 0.1, δ1 = 1, δ2 = 1. Depicted are the concentration field ûnh as well as
the scalar components of the deformation field Ψnh − id for different times t.
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(a) Eulerian embedding of the concentra-
tion field trajectory un

h,eul at time t =
0.25.

0 50 100

101

10−1

10−3

10−5

10−7

si
n

g
u

la
r

va
lu

e
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(b) Singular value decay of the concentra-
tion and transformation field trajectories
ûn
h, Ψn

h vs. Eulerian concentration field
trajectory un

h,eul.

Figure 5: Eulerian embedding and singular value decay for the solution trajectory
depicted in Figure 4.

given by extending functions on Ωnh with zero outside of Ωnh . To numerically approx-
imate this mapping we consider a fixed reference mesh on a sufficiently large domain
containing

⋃
0≤n≤N Ω

n
h and compute the first order finite element functions unh,eul on

this mesh given by Lagrange interpolation of unh (cf. Figure 5a). These functions unh,eul
can be seen as representatives for solution trajectories of discretizations of (1) that
take an Eulerian viewpoint, as opposed to the presented Lagrangian formulation, e.g.
phase-field discretizations with the size of the diffuse interface tending to zero.

In Figure 5b we compare the singular value decay of the Lagrangian solution field
trajectories ûnh, Ψnh to the singular value decay of the Eulerian concentration field
trajectory unh,eul. As expected, due to the smooth time dependence of ûnh and Ψnh ,
both trajectories show a much faster singular value decay compared to the unh,eul
trajectory, which is non-differentiable in time due to its moving jump at the boundary
of Ωnh .

Remark 1 We notice that exchanging the extensions Λnh in (48), e.g. applying recent
ideas from unfitted finite elements [16] to compute smooth extensions of the concen-
tration field outside of Ω(t), may improve the approximability for the Eulerian formu-
lation. However, even if the approximability can be improved drastically, it is unclear
how hyper-reduction can be effectively applied (i.e. with a small number of interpolation
points) in such an unfitted setting.

In [2] a different approach is taken, effectively considering the approximation prob-
lem over multiple spaces, by truncating approximating vectors defined on L2(Rn) to
the respective domain Ω(t).
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Figure 6: Reduced space dimensions (left) and number of empirical interpolation points
(right) vs. training tolerance for the numerical experiment.

5.2 Parametric model order reduction

To test the parameterized model order reduction approach discussed in Section 4, we
consider the parameter domain

(α, β, δ1, δ2) ∈ P := [0.1, 1]× [0.001, 0.1]× [0, 1]2 ⊂ R4, (49)

of which we choose a training set Strain ⊂ P of 34 equidistant parameters. From the
corresponding snapshot trajectories we compute the reduced approximation spaces Ûr,
Ûr, ÛΓ

r and empirical interpolations of c1, . . . , c7 for varying relative training error
tolerances εrb, εei (cf. Figure 6). To assess the quality of the resulting ROMs, we
compute the maximum relative model order reduction errors for 100 randomly chosen
test parameters Stest ⊂ P (cf. Figure 7). We can observe an exponential error decay
in both solution variables for simultaneously decreasing training error tolerances. For
εrb = εei = 10−3 we observe errors of 1.36 ·10−2 for ûnr,µ and of 2.99 ·10−3 for Ψnr,µ. For
εei � εrb we observe the usual instability of ROMs employing empirical interpolation
for hyper-reduction. The computational speedup of the ROM over the finite element
ALE discretization is shown in Figure 8b (surface plot). For εrb = εei = 10−3 the
speedup is 41.

Next we consider the effect of not enforcing total mass conservation of the ROM:
Whereas all previous computations were performed using the mass conservative con-
centration update equation (45), we now compute solutions of the ROM obtained
using (33b) for the concentration update and consider the maximum relative mass
conservation error

|
∫
ΩNr,µ

ûnr,µdx−
∫
Ω0
r,µ
û0r,µdx|∫

Ω0
r,µ
û0r,µdx

(50)

over all µ ∈ Stest (Figure 8a). We observe that the error decays with, but is almost
always larger than εei, whereas it is mostly independent of εrb. At the same time,
computing (33b) instead of (45) is only slightly faster (Figure 8b, mesh plot). For

20



10−410−310−210−1

10−4

10−3

10−2

10−1

10−3

10−2

10−1

100

εrb
εei

Model Order Reduction Error – ûnr,µ
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Figure 7: Model order reduction errors for the numerical experiment. Depicted is the
maximum relative error over all 0 ≤ n ≤ N and µ ∈ Stest for a test set Stest ⊂ P of
100 randomly chosen parameters. The errors were truncated at a maximum value of
1 to improve the readability of the plots.

εrb = εei = 10−3 the speedup grows from 41 to 43. The model order reduction errors
are of the same order of magnitude.

One important use case of parametric model order reduction is to quickly compute
a certain quantity of interest from the state-space solution of the ROM. As an example,
we here consider the variance of the concentration field ûnr,µ

V nr,µ :=

∫
Ωnr,µ

(ûnr,µ − ūnr,µ)2dx∫
Ωnr,µ

1dx
, ūnr,µ :=

∫
Ωnr,µ

unr,µdx∫
Ωnr,µ

1dx
, (51)

which can be computed from the ROM as

V nr,µ =
ã3(ûnr,µ − ūnr,µ, ûnr,µ − ūnr,µ;Ψnr,µ)

ã3(1, 1;Ψnr,µ)
, ūnr,µ =

ã3(ûnr,µ, 1;Ψnr,µ)

ã3(1, 1;Ψnr,µ)
. (52)

In Figure 9 we have computed Vr,µ for εrb = εei = 10−3 and 50×50 equidistant values
of δ1 and δ2 whereas α = β = 0.1 were fixed. The computation of these 2, 500 outputs
took 36 minutes.

Conclusion and outlook

We presented the application of projection-based model order reduction for a model
free boundary problem with unknown evolving geometry. By using ALE mappings
to describe the geometry evolution of the model, we were able to apply standard re-
duced basis and empirical interpolation techniques. An appropriate time discretization
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Figure 8: Total mass conservation errors and model order reduction speedups for the
numerical experiment (cf. Figure 7).

allowed us to obtain a globally mass conservative Galerkin ROM by including the con-
stant functions in the reduced state space. Through a rank-one modification of the
empirically interpolated reduced mass matrix we could preserve this property in the
final fully online-efficient Galerkin-EI ROM.

In this work we have focussed on the reduced order modeling aspects specific to
free boundary problems. The integration of more advanced techniques such as greedy
basis generation based on a posteriori error indicators for the ROM should be straight-
forward.

We believe that the methodology can also be applied to different and even more
complex free boundary problems. However, an obvious limitation of the presented
approach lies in the dependency on one reference domain w.r.t. which all other domains
can be expressed. For problems with large deformations or topology changes this will
be insufficient and different discretizations with suitable reduced order modeling have
to be considered.

Without changing the general approach, remeshing in the high-dimensional prob-
lem could be considered by considering multiple meshes on the reference domain Ω̂
and using reduced basis techniques for mesh-adaptive schemes such as [35, 33, 1, 11].
However in the presence of large deformations, Ω(t)-dependent norms will have to be
considered in the schemes in contrast to the currently fixed function spaces norms
w.r.t. the reference domain.

Very attractive for the discretization would be the use of unfitted (or embedded)
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Figure 9: Variance V nr,µ (51) of the concentration field ûnr,µ for 50 × 50 combinations
of the deformation parameters δ1, δ2, α = 0.1, β = 0.1.

discretizations. In such a setting a naive approximation fails as we have seen in Section
5.1. It would be interesting if the slow decay of the Kolmogorov n-widths could be
repaired by choosing a suitable embedding to define a joint approximation space (see
also Remark 1). How hyper-reduction could be effectively applied in such an approach
is unclear, however.

Software availability

The source code used to produce the numerical results in Section 5 can be obtained
from https://doi.org/10.5281/zenodo.1232550 under an open source license.
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[19] René Milk, Stephan Rave, and Felix Schindler. pyMOR – Generic Algorithms and
Interfaces for Model Order Reduction. SIAM Journal on Scientific Computing,
38(5):S194–S216, 2016.

[20] M. Ohlberger and F. Schindler. Error control for the localized reduced basis
multiscale method with adaptive on-line enrichment. SIAM J. Sci. Comput.,
37(6):A2865–A2895, 2015.

[21] Mario Ohlberger and Stephan Rave. Nonlinear reduced basis approximation of
parameterized evolution equations via the method of freezing. Comptes Rendus
Mathematique, 351(23–24):901–906, 2013.

[22] Mario Ohlberger and Stephan Rave. Reduced basis methods: Success, limitations
and future challenges. In Proceedings of ALGORITMY 2016, 20th Conference on
Scientific Computing, Vysoke Tatry, Podbanske, Slovakia, March 13-18, 2016,
pages 1–12. Publishing House of Slovak University of Technology in Bratislava,
2016.

[23] Stanley Osher and Ronald Fedkiw. Level set methods and dynamic implicit sur-
faces, volume 153. Springer Science & Business Media, 2006.

[24] Goran Peskir and Albert Shiryaev. Optimal stopping and free-boundary problems.
Springer, 2006.

[25] Christophe Prud’homme, Dimitrios V. Rovas, Karen Veroy, Lieven Machiels,
Yvon Maday, Anothony T. Patera, and Gabriel Turinici. Reliable real-time solu-
tion of parametrized partial differential equations: Reduced-basis output bound
methods. Journal of Fluids Engineering, 124(1):70–80, 2001.

[26] Alfio Quarteroni, Andrea Manzoni, and Federico Negri. Reduced Basis Methods for
Partial Differential Equations, volume 92 of La Matematica per il 3+2. Springer
International Publishing, 2016.

[27] Andreas Rätz. Diffuse-interface approximations of osmosis free boundary prob-
lems. SIAM Journal on Applied Mathematics, 76(3):910–929, 2016.

[28] Magnus Redeker and Bernard Haasdonk. A POD-EIM reduced two-scale model
for crystal growth. Advances in Computational Mathematics, 41(5):987–1013,
2015.
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