Skip to main content
Log in

Optimal approximation with exponential sums by a maximum likelihood modification of Prony’s method

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We consider a modification of Prony’s method to solve the problem of best approximation of a given data vector by a vector of equidistant samples of an exponential sum in the 2-norm. We survey the derivation of the corresponding non-convex minimization problem that needs to be solved and give its interpretation as a maximum likelihood method. We investigate numerical iteration schemes to solve this problem and give a summary of different numerical approaches. With the help of an explicitly derived Jacobian matrix, we review the Levenberg-Marquardt algorithm which is a regularized Gauss-Newton method and a new iterated gradient method (IGRA). We compare this approach with the iterative quadratic maximum likelihood (IQML). We propose two further iteration schemes based on simultaneous minimization (SIMI) approach. While being derived from a different model, the scheme SIMI-I appears to be equivalent to the Gradient Condition Reweighted Algorithm (GRA) by Osborne and Smyth. The second scheme SIMI-2 is more stable with regard to the choice of the initial vector. For parameter identification, we recommend a pre-filtering method to reduce the noise variance. We show that all considered iteration methods converge in numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adamjan, V.M., Arov, D.Z., Krein, M.G.: Analytic properties of the Schmidt pairs of a Hankel operator and the generalized Schur-Takagi problem. Math. USSR-Sbornik 15(1), 31–73 (1971)

    Article  MATH  Google Scholar 

  2. Andersson, F., Carlsson, M., de Hoop, M.V.: Sparse approximation of functions using sums of exponentials and AAK theory. J. Approx. Theory 163, 213–248 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andersson, F., Carlsson, M.: Fixed-point algorithms for frequency estimation and structured low-rank approximation. Appl. Comput. Harmon. Anal. 46(1), 40–65 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bai, Z.D., Rao, C.R., Chow, M., Kundu, D.: An efficient algorithm for estimating the parameters of superimposed exponential signals. J. Statist. Plann. Inference 110(1), 23–34 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beylkin, G., Monzón, L.: On approximation of functions by exponential sums. Appl. Comput. Harmon. Anal. 19, 17–48 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beylkin, G., Monzón, L.: Approximation by exponential sums revisited. Appl. Comput. Harmon. Anal. 28, 131–148 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bian, J., Peng, H., Xing, J., Liu, Z., Li, H.: An efficient algorithm for estimating the parameters of superimposed exponential signals in multiplicative and additive noise. Int. J. Appl. Math. Comput. Sci. 23(1), 117–129 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boßmann, F., Plonka, G., Peter, T., Nemitz, O., Schmitte, T.: Sparse deconvolution methods for ultrasonic NDT. J. Nondestruct. Eval. 31, 225–244 (2012)

    Article  Google Scholar 

  9. Braess, D., Hackbusch, W.: On the efficient computation of high-dimensional integrals and the approximation by exponential sums. In: DeVore, R.A., Kunoth, A. (eds.) Multiscale, Nonlinear and Adaptive Approximation. Springer, Berlin (2009)

  10. Bresler, Y., Macovski, A.: Exact maximum likelihood parameter estimation of superimposed exponential signals in noise. IEEE Trans. Acoust., Speech, Signal Process. ASSP 34(5), 1081–1089 (1986)

    Article  Google Scholar 

  11. Dogan, Z., Gilliam, C., Blue, T., Van de Ville, D.: Reconstruction of finite rate of innovation signals with model-fitting approach. IEEE Trans. Signal Process. 63(22), 6024–6036 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dragotti, P.L., Vetterli, M., Blu, T.: Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets Strang–Fix. IEEE Trans. Signal Process. 55, 1741–1757 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feilat, E.A.: Prony analysis technique for estimation of the mean curve of lightning impulses. IEEE Trans. Power Del. 21(4), 2088–2090 (2006)

    Article  Google Scholar 

  14. Golub, G.H., Pereyra, V.: The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate. SIAM J. Numer. Anal. 10(2), 413–432 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hanke, M.: One shot inverse scattering via rational approximation. SIAM J. Imaging Sci. 5(1), 465–482 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hua, Y., Sarkar, T.K.: On the total least squares linear prediction method for frequency estimation. IEEE Trans. Acoust. Speech Signal Process., ASSP 38(12), 2186–2189 (1990)

    Article  Google Scholar 

  17. Ishteva, M., Usevich, K., Markovsky, I.: Factorization approach to structured low-rank approximation applications. SIAM J. Matrix Anal. Appl. 35(3), 1180–1204 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kahn, M.H., Mackisack, M.S., Osborne, M.R., Smyth, G.K.: On the consistency of Prony’s method and related algorithms. J. Comp. Graph. Statist. 1, 329–349 (1992)

    MathSciNet  Google Scholar 

  19. Kumaresan, R., Scharf, L.L., Shaw, A.K.: An algorithm for pole-zero modeling and spectral analysis. IEEE Trans. Acoust. Speech Signal Process. ASSP 34(3), 637–640 (1986)

    Article  Google Scholar 

  20. Li, J., Stoica, P., Liu, Z.-S.: Comparative study of IQML and mode direction-of-arrival estimators. IEEE Trans. Signal Process. 46(1), 149–160 (1998)

    Article  Google Scholar 

  21. Markovsky, I.: Low-Rank Approximation: Algorithms, Implementation, Applications, 2nd edn. Springer (2018)

  22. Markovsky, I., Usevich, K.: Software for weighted structured low-rank approximation. J. Comput. Appl. Math. 256, 278–292 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ortbandt, C., Dzienis, C., Matussek, R., Schulte, H.: Parameter estimation in electrical power systems using Prony’s method. J. Phys. 659(1), 012013 (2015)

    Google Scholar 

  24. Osborne, M.R.: Some Special nonlinear least square problems. SIAM J. Numer. Anal. 12, 571–592 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  25. Osborne, M.R., Smyth, G.K.: A modified Prony algorithm for fitting functions defined by difference equations. SIAM J. Sci. Stat. Comput. 12, 362–382 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. Osborne, M.R., Smyth, G.K.: A modified Prony algorithm for exponential function fitting. SIAM J. Sci. Comput. 16(1), 119–138 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Peter, T., Plonka, G.: A generalized Prony method for reconstruction of sparse sums of eigenfunctions of linear operators. Inverse Probl. 29, 025001 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pisarenko, V.F.: The retrieval of harmonics from a covariance function. Geophys. J. Roy. Astron. Soc. 33, 347–366 (1973)

    Article  MATH  Google Scholar 

  29. Plonka, G., Pototskaia, V.: Application of the AAK theory for sparse approximation of exponential sums. arXiv:1609.09603 (2016)

  30. Plonka, G., Tasche, M.: Prony methods for recovery of structured functions. GAMM-Mitt. 37(2), 239–258 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Plonka, G., Potts, D., Steidl, G., Tasche, M.: Numerical Fourier Analysis. Springer (2019)

  32. Potts, D., Tasche, M.: Nonlinear approximation by sums of nonincreasing exponentials. Appl. Anal. 90, 609–626 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Potts, D., Tasche, M.: Parameter estimation for nonincreasing sums by Prony-like methods. Linear Algebra Appl. 439(4), 1024–1039 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Roy, R., Kailath, T.: ESPRIT estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process 37, 984–995 (1989)

    Article  MATH  Google Scholar 

  35. Schmidt, R.O.: A signal subspace approach to multiple emitter location and spectral estimation, PhD thesis, Stanford University (1981)

  36. de la O Serna, J.A.: Synchrophasor estimation using Prony’s method. IEEE Trans. Instrument. Measur. 62(8), 2119–2128 (2013)

    Article  Google Scholar 

  37. Skrzipek, M.-R.: Signal recovery by discrete approximation and a Prony-like method. J. Comput. Appl Math. 326, 193–203 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Therrien, C.W., Velsaco, C.H.: An iterative method for ARMA signal modeling. IEEE Trans. Signal Process. 43(1), 358–361 (1995)

    Article  Google Scholar 

  39. Usevich, K., Markovsky, I.: Variable projection for affinely structured low-rank approximation in weighted 2-norms. J. Comput. Appl. Math. 272, 430–448 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for many valuable suggestions to improve this manuscript essentially.

Funding

This work was funded by the NSFC (11571078), by a CSC Scholarship, and by the German Research Foundation within the framework of the RTG 2088.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerlind Plonka.

Additional information

Communicated by: Tomas Sauer

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Plonka, G. Optimal approximation with exponential sums by a maximum likelihood modification of Prony’s method. Adv Comput Math 45, 1657–1687 (2019). https://doi.org/10.1007/s10444-019-09692-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-019-09692-y

Keywords

Mathematics Subject Classification (2010)

Navigation