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In many applications, one is faced with an inverse problem, where the
known signal depends in a bilinear way on two unknown input vectors. Often
at least one of the input vectors is assumed to be sparse, i.e., to have only
few non-zero entries. Sparse Power Factorization (SPF), proposed by Lee,
Wu, and Bresler, aims to tackle this problem. They have established recovery
guarantees for a somewhat restrictive class of signals under the assumption
that the measurements are random. We generalize these recovery guarantees
to a significantly enlarged and more realistic signal class at the expense of a
moderately increased number of measurements.

1. Introduction

Many measurement operations in signal and image processing as well as in communica-
tion follow a bilinear model. Namely, in addition to the measurements depending linearly
on the unknown signal, also certain parameters of the measurement procedure enter in a
linear fashion. Hence one cannot employ a linear model (for example, in connection com-
pressed sensing techniques [3]) unless one has an accurate estimate of these parameters.

When such estimates are not available or too expensive to obtain, there are certain
asymmetric scenarios when one of the inputs can be recovered even though the other
one is out of reach (e.g., [4,5], this scenario is sometimes referred to as passive imaging).
In most cases, however, the natural aim will be to recover both the signal and the
parameters, that is, to solve the associated bilinear inverse problem. Even when some
estimates of the parameters are available, such a unified approach will be preferred in
many situations, especially when information is limited. Consequently, the study of
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bilinear inverse problems, including but not limited to the important problem of blind
deconvolution, has been an active area of research for many years [6].

Observing that bilinear maps admit a representation as a linear map in the rank
one outer product of the unknown signal and the parameter vector, one can approach
such problems using tools from the theory of low-rank recovery (see, e.g., [7–9]). Un-
der sparsity assumptions, that is, when the signals and/or parameter vectors admit an
approximate representation using just a small (but unknown) subset of an appropriate
basis (for more details regarding when such assumptions appear in bilinear inverse prob-
lems, see [10]), however, the direct applicability of these approaches is limited, as two
competing objectives arise: one aims to simultaneously minimize rank and sparsity. As
a consequence, the problem becomes considerably more difficult; Oymak et al., for ex-
ample, have demonstrated that minimizing linear combinations of the nuclear norm (a
standard convex proxy for the rank) and the ℓ1 norm (the corresponding quantity for
sparsity) exhibits suboptimal scaling [11]. In fact it is not even clear if without additional
assumptions efficient recovery is at all possible for a near-linear number of measurements
(as it would be predicted identifiability considerations [12]).

Recently, a number of nonconvex algorithms for bilinear inverse problems have been
proposed. For example, for such problems without sparsity constraints several such al-
gorithms have been analyzed for blind deconvolution and related problems[13, 14] with
near-optimal recovery guarantees. In contrast, our understanding of bilinear inverse
problems with sparsity constraints is only in its beginning. Recently, several algorithms
have been analyzed for sparse phase retrieval [15,16] or blind deconvolution with sparsity
constraints [17]. The recovery guarantees for these algorithms, however, are either subop-
timal in the number of necessary measurements or only local convergence guarantees are
available, i.e., one relies on the existence of a good initialization. (A noteworthy exception
are the two related papers [18,19], where a two-stage approach for (sparsity) constrained
bilinear inverse problems is proposed, which achieves recovery at near-optimal rate. How-
ever, the algorithm relies on a special nested structure of the measurements, which is not
feasible for many practical applications.)

In [20] Lee, Wu, and Bresler introduced the sparse power factorization (SPF) method
together with a tractable initialization procedure based on alternating minimization.
They also provide a first performance analysis of their method for random bilinear meas-
urements in the sense that their lifted representation is a matrix with independent Gaus-
sian entries. That is, they work with linear operators A : Cn1×n2 −→ C

m that admit a
representation as

(A (X)) (ℓ) = trace (A∗
ℓX)

for i. i. d. Gaussian matrices Aℓ ∈ C
n1×n2 .

For such measurements they show that with high probability, SPF converges locally to
the right solution, i.e., one has convergence for initializations not too far from the signal
to be recovered.

For signals that have a very large entry, they also devise a tractable initialization pro-
cedure – they call it thresholding initialization – such that one has global convergence to
the right solution. Local convergence has also been shown for the multi-penalty approach
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A-T-LAS1,2 [21], but to our knowledge, comparable global recovery guarantees are not
available to date. This is why we focus on SPF in this paper, using the results of [20] as
our starting point.

The precise condition for their guarantee to hold is that both (normalized) input signals
need to be larger than some c > 1

2 in supremum norm – more than one quarter of its
mass needs to be located in just one entry, that is, the signals must have a very high
peak to average power ratio.

In this paper, we considerably weaken this rather strong restriction in two ways. Firstly,
we show that similar results hold for smaller lower bounds c at the expense of a moder-
ately increased number of measurements. Secondly, we show that similar results can be
obtained when the mass of one of the signals is concentrated in more than one, but still
a small number of entries.

The SPF algorithm, the thresholding initialization, and the resulting recovery guaran-
tees are reviewed in Section 2 before we discuss and prove our results in Section 4 and
Section Section 5.

Notation

Throughout the paper we will use the following notation. By [n] we will denote the set
{1; . . . ;n}. For any set J we will denote its cardinality by |J |. For a vector v ∈ C

m we
will denote by ‖v‖ its ℓ2-norm and by ‖v‖∞ the modulus of its largest entry. If J ⊂ [n] we
will by vJ denote the restriction of v to elements indexed by J . For matrices A ∈ C

n1×n2

we will denote by ‖A‖F its Frobenius norm and by ‖A‖ its spectral norm, i.e., the largest
singular value of A.

2. Sparse Power Factorization: Algorithm and Initialization

2.1. Problem formulation

Let b ∈ C
m be given by

b := B(u, v) + z,

where B : Cn1 × C
n2 → C

m is a bilinear map and z ∈ C
m is noise. Recall that one can

represent the bilinear map B : Cn1 × C
n2 → C

m by a linear map A : Cn1×n2 −→ C
m,

which satisfies
B(u, v) = A(uv∗).

for all vectors u ∈ C
n1 and all v ∈ C

n2 . Note that such a linear map A is characterized
by a (unique) set of matrices {Aℓ}mℓ=1 ⊂ C

n1×n2 such that the ℓth entry of A (X) is given
by

(A (X)) (ℓ) = trace (A∗
ℓX) . (2.1)

In this notation, our goal will be to reconstruct u and v from linear measurements given
by

bℓ = trace (A∗
ℓuv

∗)
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At the core of the Sparse Power Factorization Algorithm, as introduced in [20], are the
linear operators F : Cn2 −→ C

m×n1 and G : Cn1 −→ C
m×n2 defined by

F (y) :=




y∗A∗
1

...
y∗A∗

m


 , G(x) :=




x∗A1
...

x∗Am


 .

A direct consequence of this definition is that

A(xy∗) = [F (y)]x = [G(x)]y

for all x ∈ C
n1 and all y ∈ C

n2 .

2.2. Sparse Power Factorization

The idea of Sparse Power Factorization is to iteratively update estimates ut and vt for
u and v in an alternating fashion. That is, in each iteration one keeps one of vt and ut
fixed and updates the respective other one by solving an (underdetermined) linear system.
Solving each of these linear systems then amounts to solving a linear inverse problem
with sparsity constraints. Hence, many pursuit algorithms proposed in the context of
compressed sensing can be applied such as CoSaMP [22], Hard Thresholding Pursuit [23]
or Basis Pursuit. In [20] the authors used Hard Thresholding Pursuit (HTP) for their
analysis and in this paper, we will also restrict ourselves to HTP. With this, the Sparse
Power Factorization Algorithm reads as follows.

Algorithm 2.1 (Algorithm 1 in [20]).

Input: Operator A, Measurement b, Sparsity Constraints s1, s2, Initialisation v0.
Output: Estimate X̂.

1: t← 0
2: while stop condition not satisfied do

3: t← t+ 1
4: vt−1 ← vt−1∥∥vt−1

∥∥
5: if s1 < n1 then

6: ut ← HTP(F(vt−1), b, s1)
7: else

8: ut ← argmin
x

∥∥b− [F(vt−1)]x
∥∥2

9: end if

10: ut ← ut∥∥ut

∥∥
11: if s2 < n2 then

12: vt ← HTP(G(ut), b̄, s2)
13: else

14: vt ← argmin
b

∥∥b̄− [G(ut)]b
∥∥2

15: end if

16: end while

17: return X̂ ← utv
∗
t

4



The Hard Thresholding Pursuit Algorithm is defined as follows:

Algorithm 2.2. HTP(A, b, s)

Input: Measurement matrix A ∈ C
m×n, measurement b ∈ C

m, sparsity constraint s ∈ N.

Output: x̂ ∈ Cn.

1: t← 0
2: while stop condition not satisfied do

3: t← t+ 1
4: w = xt−1 +A∗ (b−Axt−1)
5: J ← argmax

J⊂[n], |J|=s

‖wJ‖

6: xt ← argmin
x:supp(x)⊂J

‖Ax− b‖

7: end while

8: return x̂← x

2.3. Initialization

As for many other non-convex algorithms (e.g., [24, 25]), the convergence properties of
Sparse Power Factorization depend crucially on the choice of the starting point. In [24,25]
the starting point is chosen via a spectral initialization. That is, one chooses the leading
left- and right-singular vectors of A∗ (y) as the starting point. However, in order to work
this approach requires that the number of measurements is at the order of max {n1, n2},
which will in general not be optimal as it does not take into account the sparsity of the
vectors u and v. One way to incorporate the sparsity assumption would be to solve the
Sparse Principal Component Analysis (SparsePCA) problem.

max Re (ũ∗A∗ (y) ṽ)

subject to ‖ũ‖0 ≤ s1, ‖ũ‖ = 1

‖ṽ‖0 ≤ s2, ‖ṽ‖ = 1,

(2.2)

where ‖ · ‖0 denotes the number of non-zero entries. As it was shown in [20, Proposition
III.4], Algorithm 2.1, if initialized by a solution of (2.2) is able to recover the solution u

and v from a number of measurements at the order of (s1 + s2)max
{

s1
n1
, s2
n2

}
. However,

the SparsePCA problem has been shown to be NP-hard [26]. Nevertheless, in the last fif-
teen years there has been a lot of research on the SparsePCA problem and, in particular,
on tractable (i.e., polynomial-time) algorithms, which yield good approximations to the
true solution. Several computationally tractable algorithms have been proposed for solv-
ing (2.2), e.g., thresholdings algorithms [27], a general version of the power method [28]
and semidefinite programs [29]. From the statistical perspective, a particular emphasis
has been put for computationally efficient or at least tractable algorithms on the analysis
of the single spike model[30–32]. These approaches, however, require that the number of
samples scales with the square of the number of non-zero entries of the signal to estim-
ate (up to log-factors). This raised the question whether there are fundamental barriers
preventing the SparsePCA problem to be solved in polynomial time at a sampling rate
close to the information theoretic limit. Indeed, it has been shown that an algorithm,
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that achieves this, would also allow for an algorithm which solves the k-clique problem in
polynomial time [33, 34]. However, a widely believed conjecture in theoretical computer
science states, that this is not the case, which indicates that this approach will not be
suited for initializing bilinear recovery problems either.

In this manuscript we will analyse the following initialization algorithm, which is the one
proposed in [20]. For a set J1 ⊂ [n], respectively J2 ⊂ [n2] in the following we will denote
by ΠJ1 , respectively ΠJ2 the matrix, which projects a vector onto the components which
belong to J1, respectively J2.

Algorithm 2.3 (Algorithm 3 in [20]).

Input: Operator A, Measurement b, Sparsity Constraints s1, s2,
Output: Initial guess v0 for v ∈ Cn2 .

1: For all i ∈ [n1] let ξi be the ℓ2-norm of the best s2-sparse approximation of the ith row of the

matrix A∗ (b) ∈ Cn1×n2 .

2: Let Ĵ1 ⊂ [n1] be the set of the s2 largest elements in {ξ1; ξ2; . . . ; ξn1
}

3: Choose Ĵ2 to contain the indices of the s2 columns of Π
Ĵ1

A∗ (b) largest in ℓ2 norm, i.e.,

Ĵ2 := argmax
J⊂[n2], |J|=s2

∥∥Π
Ĵ1

[A∗(b)]ΠJ

∥∥
F
. (2.3)

4: return v0, the leading right singular vector of Π
Ĵ1

[A∗(b)]Π
Ĵ2

.

3. Previous results

In the following we will work with the that the model (2.1), i.e., we observe

trace (A∗
ℓuv

∗) + zℓ

where u ∈ C
n1 is s1-sparse, v ∈ C

n2 is s2-sparse, and z ∈ C
m is noise. As in [20], ν (z)

will quantify the Noise-to-Signal Ratio by

ν (z) :=
‖z‖

‖A (uv∗) ‖ . (3.1)

For our analysis, A will be a Gaussian linear operator, that is, all the entries of the
matrices A1, . . . , Am are independent with distribution CN

(
0, 1

m

)
. (Here a complex-

valued random variable X has distribution CN
(
0, 1

m

)
if its real and complex part are

independent Gaussians with expectation 0 and variance
√

σ
2 .)

In [20], the authors derived that Algorithm 2.1, if initialized by Algorithm 2.3, is able
to recover both u and v (up to scale ambiguity), if both u and v belong to a certain
restricted class of signals. More precisely, they proved the following result.

Theorem 3.1 ([20, see Theorems III.7 and Theorem III.10]). Assume that A : Cn1×n2 −→
C
m is a Gaussian linear operator as described above. Let b = A (uv∗) + z, where u is

s1-sparse and v is s2-sparse. Suppose that ‖u‖∞ ≥ 0.78‖u‖, ‖v‖∞ ≥ 0.78‖v‖, and that
the noise level satisfies ν (z) ≤ 0.04. Then, with probability exceeding 1 − exp (−c1m),
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the output of the Algorithm 2.1, initialized by Algorithm 2.3, converges linearly to uv∗

provided that

m ≥ c2 (s1 + s2) log

(
max

{
n1

s1
,
n2

s2

})
,

where c1, c2 > 0 are absolute constants.

Note that in order to apply Theorem 3.1 to signals u and v one needs to require that
more than half of the mass of u and v are located in one single entry, which is a severe
restriction, which can be prohibitive for many applications. Our goal in the following will
be to considerably relax this assumption by slightly increasing the amount of required
measurements. We will relax this assumption in two different ways: On the one hand we
will show that one can replace 0.78 by an arbitrary small constant that will then show
up in the number of measurements. On the other hand we generalize the result to the
case that a significant portion of mass of u is concentrated on a small number of entries
k, rather than just one of them.

4. Main Result

In this section we will state the main result of this article, Theorem 4.1. For that, we
need to define the norm

‖x‖[k] := max
I⊂[n], |I|=k

(∑

i∈I
|xi|2

)1/2

=

(
k∑

i=1

(x∗i )
2

)1/2

,

for any x ∈ C
n1 , where (x∗i )

n1
i=1 denotes the non-increasing rearrangement of (|xi|)n1

i=1.
Our main requirement on the vector u will be that a significant amount of its mass is

located in the largest k entries, i.e., that
‖u‖[k]
‖u‖ is large enough.

Theorem 4.1. Let k ∈ [n1] and 0 < ξ < 1, 0 < µ < 1. Then, there are absolute constants
C1, C2, C3 > 0 such that if

m ≥ C1 max

{
1

ξ4µ4
,
k

ξ2

}
(s1 + s2) log

(
max

{
n1

s1
,
n2

s2

})
, (4.1)

then with probability at least 1− exp (−C2m) the following holds.

For all s1-sparse u ∈ C
n1 with ‖u‖[k] ≥ ξ‖u‖, all s2-sparse u ∈ C

n2 with ‖v‖∞ ≥ µ‖v‖,
and all z ∈ C

m with ν (z) ≤ C3min
{
ξ2µ2; ξ√

k

}
the iterates {Xt}t∈N generated by applying

Algorithm 2.1, initialized by Algorithm 2.3, satisfy

lim sup
t→∞

‖Xt − uv∗‖F
‖uv∗‖F

≤ 8.3ν.

Furthermore, the convergence is linear, i.e., for all t & log
(
1
ε

)
we have that

‖Xt − uv∗‖F
‖uv∗‖F

≤ 8.3ν + ε. (4.2)
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In the following we will discuss some important special cases of Theorem 4.1.

• Peaky signals: In [20] the authors discuss recovery guarantees for signals u and

v with ‖u‖∞
‖u‖ and ‖v‖∞

‖v‖ , both bounded below by an absolute constant µ ≈ 0.78. The
case k = 1 of our theorem yields a direct improvement of this result in the sense
that µ can be chosen arbitrarily small with the number of required measurements
only increasing by a factor of order µ−8. Hence, even when this constant decays
logarithmically in the dimension, the required number of measurements will only
increase by logarithmic factors.

• Signals with multiple large entries: When one of the input signals has
multiple large entries, using the ‖ ·‖[k] norm improves upon the resulting guarantee
as compared to the scenario just discussed. As an example, assume that s1 = s2 = s,
that u and v are normalized with ‖v‖∞ ≥ c1s

−1/8, and that k = c2s
1/2 of the entries

of u are of absolute value at least c3s
−1/4. Then ‖u‖[k] ≥

√
c2c3. Using Theorem 4.1

we obtain that the vectors u and v can be recovered if the number of measurements
is on the order of s3/2, thus below the order of s2 that has been established for
arbitrary sparse signals in [10] (cf. next item). In contrast, applying Theorem 4.1
with k = 1 would yield that the number of measurements would have to be on the
order of s5/2, which is worse than the state-of-the-art.

• Arbitrary sparse signals: Applying Theorem 4.1 to non-peaky signals yields
suboptimal results. Indeed, let u ∈ C

n1 s1-sparse and v ∈ C
n2 s2-sparse be generic

vectors. Observe that ‖v‖∞ ≍ 1√
s2
‖v‖. Consequently, Theorem 4.1 applied with

ξ = 1, k = s1, and µ = 1√
s2

yields that with high probability a generic s1-sparse u

and a generic s2-sparse v can be recovered from y = A (uv∗) + z, if the number of
measurements satisfies

m ≥ Cmax
{
s1; s

2
2

}
(s1 + s2) log

(
max

{
n1

s1
,
n2

s2

})
,

and if the noise level ν is on the order of O
(
max

{
1
s2
; 1√

s1

})
. Previous results (see,

e.g., [10]), in contrast, require m ≥ Cmax
{
s21; s

2
2

}
log
(
max

{
n1
s1
, n2
s2

})
samples.

Remark 4.2. The peakiness assumptions in Theorem 4.1 may seem arbitrary at first
sight but in certain applications they are reasonable. Namely, when u is the signal
transmitted via a wireless channel and v is the unknown vector of channel parameters
it is natural to assume that v has a large entry, as the direct path will always carry
most of the energy. The signal u can be modified by the sender, so some large entries
can be artificially introduced. In this regard, being able to consider multiple entries
of comparable size is of advantage as adding a single very large entry will result in a
dramatic increase of the peak-to-average power ratio.
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5. Proofs

5.1. Technical tools

The goal of this section is to prove Theorem 4.1. We will start by recalling the following
variant of the well-known restricted isometry property.

Definition 5.1 (see [20]). A linear operator A has the (s1, s2, r)-restricted isometry
property with constant δ if

(1− δ) ‖X‖2F ≤ ‖A (X) ‖2 ≤ (1 + δ) ‖X‖2F (5.1)

for all matrices X ∈ C
n1×n2 of rank at most r with at most s1 non-zero rows and at most

s2 non-zero columns.

The following lemma tells us that this property holds with high probability for a number
of measurements close to the information-theoretic limit.

Lemma 5.2 (See, e.g., Theorem III.7 in [20]). There are absolute constants c1, c2 > 0,
such that if

m ≥ c1
δ2

r (s1 + s2) log

(
max

{
n1

s1
,
n2

s2

})
, (5.2)

for some δ > 0, then with probability at least 1−exp (−c2m) A has the (s1, s2, r)-restricted
isometry property with restricted isometry constant δ.

As in [20, Lemma VIII.7] we will need the following quantity, which depends on δ and ν.

ωsup := sup
{
ω ∈ [0, π2 ) : ω ≥ arcsin (Cδ[δ tan(ω) + (1 + δ)ν sec(ω)])

}
(5.3)

Here, the constant Cδ is given by the expression

Cδ = 1.1

√
2

1−δ2
+ 1

1−δ

1−
√

2
1−δ2 δ

,

as it can be seen by an inspection of the proof of Lemma VIII.1 in [20]. The precise value
of Cδ will not be important in the following, we will only use that 2 ≤ Cδ ≤ 5 for δ ≤ 0.04.

A simple estimate for ωsup is given by the following lemma.

Lemma 5.3. Assume that δ ≤ 0.04 and ν ≤ 0.04. Then it holds that

1
2 ≤ sin(ωsup) ≤ 1.

Proof. We observe that in order to show the claim it is enough to verify that ω = arcsin 1
2

fulfills the inequality in (5.3). Indeed, using cosω =
√

3
4 and Cδ ≤ 5 we obtain that

Cδ

[
δ tan

(
arcsin

1

2

)
+ (1 + δ) ν sec

(
arcsin

1

2

)]
= Cδ

[
0.04

1/2√
3/4

+
1.04 · 0.04√

3/4

]

≤ 1

2
.
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The quantity ωsup controls the maximal angle between the initialization v0 and the ground
truth v such that the Sparse Power Factorization is guaranteed to converge as captured
by the following theorem.

Theorem 5.4 (Theorem III.9 in [20]). Assume that

1) A has the (3s1, 3s2, 2)-RIP with isometry constant δ ≤ 0.08,

2) ν ≤ 0.08,

3) the initialization v0 satisfies sin(∠(v0, v)) < sin (ωsup).

Then the iterates {Xt}t∈N generated by Algorithm 2.1, initialized via Algorithm 2.3, satisfy

lim sup
t→∞

‖Xt − uv∗‖F
‖uv∗‖F

≤ 8.3ν.

Furthermore, the convergence is linear in the sense of (4.2).

Thus, it remains to verify that the initialization satisfies sin(∠(v0, v)) < sin (ωsup). The
following lemma gives an upper bound on sin(∠(v0, v)).

Lemma 5.5 (Lemma 8 in [20]). Assume that the (3s1, 3s2, 2)-restricted isometry property
holds for some constant δ > 0. Furthermore, assume that ‖u‖ = ‖v‖ = 1. Let Ĵ1 ⊆ [n1]
and Ĵ2 ⊆ [n2] denote the output resulting from Algorithm 2.3. Denote by v0 the leading
right singular vector of Π

Ĵ1
[A∗(b)]Π

Ĵ2
. Then it holds that

sin(∠(v0, v)) ≤
∥∥ΠĴ1

u
∥∥∥∥Π⊥

Ĵ2
v
∥∥+ (δ + ν + δν)

∥∥Π
Ĵ1
u
∥∥− (δ + ν + δν)

. (5.4)

Furthermore, we will need the following two lemmas for our proof.

Lemma 5.6. [Lemma VIII.12 in [20]] Let u and v be as in Lemma 5.7 and assume that
the measurement operator A satisfies the (3s1, 3s2, 2)-restricted isometry property with
constant δ. Recall that Ĵ1 ⊂ [n1] is the support estimate for v0 given by the initialization
algorithm 2.3. Define

J̃1 := {j ∈ [n1] : |uj | ≥ 2 (δ + ν + δν)} . (5.5)

Then we have that J̃1 ⊂ Ĵ1.

Lemma 5.7. Assume that A has the (3s1, 3s2, 2)-restricted isometry property with iso-
metry constant δ > 0 and assume that u, respectively v, are s1-sparse, respectively s2-
sparse, and satisfy ‖u‖ = ‖v‖ = 1. Let J̃1 be defined as in (5.5). Then, it holds that

∥∥Π
Ĵ1
u
∥∥∥∥Π

Ĵ2
v
∥∥ ≥

∥∥Π
J̃1
u
∥∥‖v‖∞ − 2 (δ + ν + δν) .

Lemma 5.7 is actually a slight generalization of what has been shown in [20, p. 1685]. For
completeness we have included a proof in Section A, which closely follows the proof in [20].
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5.2. Proof of our main result

We will now piece together these ingredients to obtain a sufficient condition; in the
remainder of the section we will then show that the condition holds in our measurement
setup. First note that in order to apply Theorem 5.4 we need to check that sin(∠(v0, v)) <
sin (ωsup) is satisfied. By Lemma 5.5 it is sufficient to show that the right-hand side of
inequality (5.4) is strictly smaller than sin (ωsup). Combining this with the equality
∥∥Π⊥

Ĵ2
v
∥∥ =

√
1−

∥∥Π
Ĵ2
v
∥∥2 we obtain the sufficient condition

∥∥ΠĴ1
u
∥∥
√

1−
∥∥ΠĴ2

v
∥∥2 < sin (ωsup)

(∥∥ΠĴ1
u
∥∥− (δ + ν + δν)

)
− (δ + ν + δν)

Further manipulations yield that this is equivalent to

∥∥ΠĴ1
u
∥∥2 <

(
sin (ωsup)

∥∥ΠĴ1
u
∥∥− (1 + sin (ωsup)) (δ + ν + δν)

)2

+
∥∥ΠĴ1

u
∥∥2∥∥ΠĴ2

v
∥∥2.

(5.6)

Hence, in the following our goal will be to verify (5.6). We already noticed that the angle
ωsup measures how much the vector v0 given by the initializiation has to be aligned with
the ground truth v in order for the Sparse Power Factorization to converge. Consequently,
it is natural to expect that the smaller the constant δ and the noise-to-signal ratio ν, the
less the initializiation vector has to be aligned with the ground truth, i.e., the larger ωsup

can be. This fact is captured by the following lemma.

Lemma 5.8. Let δ ≤ 0.04 and ν ≤ 0.04. Then it holds that

sin(ωsup) ≥ 1−C2
δ (δ + 2δν + 2ν)2 .

Proof. It follows directly from (5.3) that

ωsup = arcsin (Cδ [δ tan (ωsup) + (1 + δ) ν sec (ωsup)]) .

Using trigonometric identities we obtain that

sin (ωsup) = Cδ


δ sin (ωsup)√

1− sin (ωsup)
2
+ (1 + δ) ν

1√
1− sin (ωsup)

2


 .

Lemma 5.3 implies that

sin (ωsup) ≤
sin (ωsup)√

1− sin (ωsup)
2
Cδ (δ + 2 (1 + δ) ν) .

Rearranging terms yields that

sin (ωsup) ≥
√
1− C2

δ (δ + 2δν + 2ν)2.

The claim follows then using the fact that
√
x ≥ x for all x ∈ [0, 1].

11



With these preliminary lemmas, we can now prove the following proposition, which is a
slightly more general form of Theorem 4.1.

Proposition 5.9. There are absolute constants c1, c2, c3 > 0 such that if

m ≥ c1δ
−2 (s1 + s2) log

(
max

{
n1

s1
,
n2

s2

})
, (5.7)

for some 0 < δ < 0.01, then with probability at least 1 − exp (−c2m) the following
statement holds uniformly for all s1-sparse u ∈ C

n1, s2-sparse v ∈ C
n2 and z ∈ C

m such
that ‖u‖ = ‖v‖ = 1 and ν (z) ≤ 0.01:
Let the measurements be given by b = A (uv∗) + z for A Gaussian as above and let J̃1 be
defined by

J̃1 := {j ∈ [n1] : |uj | ≥Mδ,ν} , (5.8)

where
Mδ,ν := 2 (δ + ν + δν) .

Then, whenever ∥∥ΠJ̃1
u
∥∥‖v‖∞ > c3

√
Mδ,ν , (5.9)

the iterates {Xt}t∈N generated by Algorithm 2.1 initialized via Algorithm 2.3, satisfy

lim sup
t→∞

‖Xt − uv∗‖F ≤ 8.3ν.

Furthermore, the convergence is linear in the sense of (4.2).

Proof of Proposition 5.9. Assumption (5.7) and Lemma 5.2 yield that with probability
at least 1 − exp (−cm) the (3s1,3s2,2)-restricted isometry property holds with constant
δ. For the remainder of the proof, we will consider the event that the restricted isometry
property holds for such δ. We obtain

∥∥ΠJ̃1
u
∥∥‖v‖∞ ≥

(√
C2
δ + 1 + 1

)√
Mδ,ν

from 2 ≤ Cδ ≤ 5 and by choosing the constant c3 in assumption (5.9) large enough.
Combining this with Lemma 5.7 we obtain that

∥∥ΠĴ1
u
∥∥∥∥ΠĴ2

v
∥∥ ≥

∥∥Π
J̃1
u
∥∥‖v‖∞ −Mδ,ν .

>
√(

C2
δ + 1

)
Mδ,ν,

(5.10)

where we used that
√
x ≥ x for all x ∈ [0, 1]. This yields a lower bound for the second

summand of the right-hand side of (5.6). To bound the first summand we estimate

sin(ωsup)‖ΠĴ1
u‖ − (sin(ωsup) + 1) (δ + ν + δν)

≥
(
1− C2

δ (δ + 2ν + 2δν)2
)
‖ΠĴ1

u‖ − 2 (δ + ν + δν)

≥‖ΠĴ1
u‖ − C2

δ (δ + 2ν + 2δν)2 − 2 (δ + ν + δν)

≥‖ΠĴ1
u‖ −

(
C2
δ + 1

)
Mδ,ν

≥0.

(5.11)
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In the first line we used Lemma 5.8 and the fact that sin(ωsup) ≤ 1. The second line is
due to ‖ΠĴ1

u‖ ≤ 1 and the third inequality is due to δ ≥ 0, ν ≥ 0. In order to verify
the last inequality it is enough to observe that due to Lemma 5.6 and due to assumption
(5.9) with c3 large enough

‖ΠĴ1
u‖ ≥ ‖Π

J̃1
u‖ ≥ ‖Π

J̃1
u‖
∥∥‖v‖∞ ≥

(
C2
δ + 1

)
Mδ,ν ,

where the last inequality uses that Cδ ≤ 5 and 0 ≤ δ, ν ≤ 0.01. Hence, by squaring (5.11)
we obtain that

(
sin(ωsup)‖ΠĴ1

u‖ − (sin(ωsup) + 1) (δ + ν + δν)
)2

≥
(
‖Π

Ĵ1
u‖ − 1

2

(
C2
δ + 1

)
Mδ,ν

)2

≥‖Π
Ĵ1
u‖2 −

(
C2
δ + 1

)
Mδ,ν‖ΠĴ1

u‖
≥‖Π

Ĵ1
u‖2 −

(
C2
δ + 1

)
Mδ,ν ,

(5.12)

where in the last line we again used that ‖ΠĴ1
u‖ ≤ 1. Together with (5.10) this yields

(5.6), as desired.

Finally, we will deduce Theorem 4.1 from Proposition 5.9.

Proof of Theorem 4.1. We will prove this result by applying Proposition 5.9 with

δ = min

{
ξ

6
√
2k

;
ξ2µ2

8c23

}
. (5.13)

Let u ∈ C
n1 s1-sparse, v ∈ C

n2 s2-sparse and z ∈ C
m such that the assumptions of

Theorem 4.1 are satisfied. Without loss of generality we may assume in the following
that ‖u‖ = ‖v‖ = 1. First, we note that invoking δ, ν < 0.01 and potentially decreasing
the size of C3 we have that

2 (δ + ν (z) + δν (z)) < 2 (δ + 2ν (z)) ≤ ξ√
2k

.

Hence, we obtain that

J̆1 :=

{
j ∈ [n1] : |uj| ≥

ξ√
2k

}
⊂ J̃1, (5.14)

where J̃1 is the set defined in (5.8). Note that

∑

i∈[k]\J̆1

(u∗i )
2 <

∑

i∈[k]\J̆1

ξ2

2k
≤ ξ2

2
,

13



where in the first inequality we have used that u∗i < ξ√
2k

for all i ∈ [k] \J̆1. By the

assumption ‖u‖[k] ≥ ξ this yields that
∑

i∈[k]∩J̆1 (u
∗
i )

2 ≥ ξ2

2 , which in turn implies that

‖ΠJ̆1
u‖ ≥ ξ√

2
. By the inclusion (5.14) we obtain that ‖ΠJ̃1

u‖ ≥ ξ√
2
. Hence, using

the assumption ‖v‖∞ ≥ µ, our choice of δ, the assumption on the noise level ν (z) and
potentially again decreasing the value of the constant C3 we obtain that

‖Π
J̃1
u‖‖v‖∞ ≥

ξµ√
2
≥ c3

√
Mδ,ν.

This shows that (5.9) is satisfied. Hence, we can apply Proposition 5.9 and by inserting
our choice of δ into (5.7), so choosing the constant C1 large enough, we obtain the main
result.

6. Outlook

We see many interesting directions for follow-up work. Most importantly, it remains to
explore whether additional constraints on the signals to be recovered are truly necessary
(cf. our discussion on to SparsePCA in Section 2.3). Even if this is the case, there is
substantial room for improvement with respect to the noise-dependence of the recovery
results. A direction to proceed could be to consider stochastic noise models instead of
deterministic noise. Also in this work we exclusively considered operators A constructed
using Gaussian matrices. However, in many applications of interest, the measurement
matrices possess a significantly reduced amount of randomness. For example, in blind
deconvolution one typically encounters rank-one measurements. That is, the restricted
isometry property as used in this paper does not hold. Thus, one needs additional insight
to study whether there exists a computationally tractable initialization procedure at a
near-optimal sampling rate. First steps in this direction were taken in [35, 36], but a lot
of questions remain open.
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A. Proof of Lemma 5.7

For the proof of Lemma 5.7 we will use the following result.

Lemma A.1. [Lemma A.2 and Lemma A.3 in [20]] Assume that the (3s1, 3s2, 2)-restricted
isometry property is fulfilled for some restricted isometry constant δ > 0. Assume that
the cardinality of J̃1 ⊆ [n1], respectively J̃2 ⊆ [n2] is at most 2s1, respectively 2s2. Then,
whenever u ∈ C

n1 is at most 2s1-sparse and v ∈ C
n2 is at most 2s2-sparse, we have that

‖Π
J̃1
[(A∗A− I)(uv∗)]Π

J̃2
‖ ≤ δ‖uv∗‖F.

Furthermore for all z ∈ C
n and for all J̃1 ⊆ [n1], respectively J̃2 ⊆ [n2], with cardinality

at most s1, respectively s2, we have that

‖ΠJ̃1
[A∗(z)]ΠJ̃2

‖ ≤
√
1 + δ‖z‖ℓ2 .
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Proof of Lemma 5.7. Recall that b = A (X) + z and define k1 and k2 by

k1 := argmax
k∈[n2]

|vk|

k2 := argmax
k∈[n2]

∥∥ΠĴ1
[A∗(b)]Π{k}

∥∥
F
.

(A.1)

The starting point of our proof is the observation that

∥∥ΠĴ1
[A∗(b)]Π{k2}

∥∥
F
≥
∥∥ΠĴ1

[A∗(b)]Π{k1}
∥∥
F
≥
∥∥Π

J̃1
[A∗(b)]Π{k1}

∥∥
F
, (A.2)

where the first inequality is due to the definition of k2 and the second one follows from
J̃1 ⊂ Ĵ1, which is due to Lemma 5.6. The right-hand side of the inequality chain can be
estimated from below by

∥∥Π
J̃1
[A∗(b)]Π{k1}

∥∥
F

≥
∥∥Π

J̃1
uv∗Π{k1}

∥∥
F
−
∥∥Π

J̃1
[(A∗A− I) (uv∗)] Π{k1}

∥∥
F
−
∥∥Π

J̃1
A∗ (z) Π{k1}

∥∥
F

≥
∥∥Π

J̃1
uv∗Π{k1}

∥∥
F
−
(
δ‖uv∗‖F +

√
1 + δ‖z‖

)

≥
∥∥Π

J̃1
u
∥∥‖v‖∞ − (δ + ν + δν) .

(A.3)

In the first inequality we used b = A (uv∗) + z and the triangle inequality. The second
inequality follows from Lemma A.1. The last line follows from ‖uv∗‖F = 1 and ‖z‖ = ν.
Next, we will estimate the left-hand side of (A.2) by

∥∥ΠĴ1
[A∗(b)]Π{k2}

∥∥
F

≤
∥∥Π

Ĵ1
uv∗Π{k2}

∥∥
F
+
(
δ‖uv∗‖F +

√
1 + δ‖z‖

)

≤
∥∥ΠĴ1

u
∥∥∥∥Π{k2}v

∥∥+ (δ + ν + δν)

≤
∥∥ΠĴ1

u
∥∥∥∥ΠĴ2

v
∥∥+ (δ + ν + δν) .

(A.4)

The first two lines are obtained by an analogous reasoning as for (A.3). The last line is
due to {k2} ⊂ Ĵ2, which is a consequence of the definition of Ĵ2 (2.3) and the definition
of {k2} (A.1). We finish the proof by combining the inequality chains (A.2), (A.3), and
(A.4).
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