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Abstract

We consider model order reduction based on proper orthogonal decomposition (POD) for
unsteady incompressible Navier-Stokes problems, assuming that the snapshots are given by
spatially adapted finite element solutions. We propose two approaches of deriving stable POD-
Galerkin reduced-order models for this context. In the first approach, the pressure term and
the continuity equation are eliminated by imposing a weak incompressibility constraint with
respect to a pressure reference space. In the second approach, we derive an inf-sup stable
velocity-pressure reduced-order model by enriching the velocity reduced space with suprem-
izers computed on a velocity reference space. For problems with inhomogeneous Dirichlet
conditions, we show how suitable lifting functions can be obtained from standard adaptive
finite element computations. We provide a numerical comparison of the considered methods
for a regularized lid-driven cavity problem.
Keywords: Model Order Reduction, Proper Orthogonal Decomposition, Adaptive Finite El-
ement Discretization, Navier-Stokes Equations, Incompressible Flow, Inhomogeneous Dirichlet
Conditions

1 Introduction

Many tasks in computational fluid dynamics involving incompressible and multi-phase flow are
challenging since the underlying system of equations are expensive to solve. Two ways to decrease
the associated simulation costs are spatially adaptive discretizations and model order reduction.
Our approach to simulation-based model order reduction combines both strategies.
The novelty of this paper consists in the application of model order reduction based on proper
orthogonal decomposition with space-adapted snapshots [18, 41] to the context of simulation of
unsteady flow problems governed by the incompressible Navier-Stokes equations. As a result, the
challenge arises of deriving a stable reduced-order model, since for space-adapted snapshots the
weak divergence-free property only holds true in the respective adapted finite element space. For
this reason, the contribution of this paper lies in proposing two approaches to formulating a stable
reduced-order model. In the first approach, we use a projection of either the velocity snapshot
data or the velocity POD basis onto a reference space. The projection is constructed in such a
way that the resulting velocity POD modes are weakly divergence-free with respect to a pressure
reference space. Consequently, the pressure term in the weak form of the Navier-Stokes system
vanishes and the continuity equation is fulfilled by construction. This approach can be viewed
as a generalization of the method of [34] to space-adapted snapshots. The second approach is a
Galerkin projection of the primitive equations onto a POD space for the pressure field and an
enriched POD space for the velocity field, in the spirit of [6, 33]. The enrichment functions are
computed from the pressure POD in order to achieve inf-sup stability with respect to a pair of
reference velocity and pressure spaces.
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An efficient and sufficiently accurate reduction of the high-fidelity systems by POD reduced-
order models based on space-adapted snapshots allows to use these models in a multi-query scenario
like uncertainty quantification, where an ensemble of simulations is required to estimate statistical
quantities, or optimal control, where a system of equations has to be solved repeatedly in order to
find a minimum of a given cost functional. We intend to study this in future work.

Reduced-order modeling is applied to flow systems in the pioneering works [8, 29]. POD model
order reduction for optimal control of fluids is studied in [31], for example. An adaptive control
strategy within optimal control of flows is given in [1]. In order to adapt the reduced-order model
for a flow control problem within the optimization, a trust-region POD framework is proposed
in [4]. A theoretical investigation providing error estimates for POD approximations of a general
equation in fluid dynamics is carried out in [24]. Reduced basis methods using an offline/online
procedure are applied to parametrized Navier-Stokes equations in [30] addressing the pressure
treatment and stability issues. POD-Galerkin reduced-order modeling for incompressible flows
with stochastic Dirichlet boundary conditions is studied in [40]. We refer to [26] for a general review
on model order reduction for fluid dynamics in the case of static spatial discretizations. Recently,
stabilization techniques for reduced-order methods for parametrized incompressible Navier-Stokes
equations, where the full-order approximation is based on finite volume schemes, are investigated
in [35].

A number of publications have considered model order reduction by projection onto a reduced
space generated from space-adapted snapshots: Reduced basis methods with space-adapted snap-
shots are considered by [3, 36] in the context of parametrized partial differential equations. The
authors derive estimates of the error with respect to the infinite-dimensional truth solution. The
key ingredient for these estimates is the use of a wavelet discretization scheme, which allows a nu-
merical approximation of the dual norm of the infinite-dimensional residual. A different approach
is taken by [46, 47, 48], where bounds for the dual norm of the residual are provided for the case
of minimum-residual mixed formulations of parametrized elliptic partial differential equations. An
adaptive Galerkin finite element formulation is considered in [41], where computational issues of
POD-Galerkin modeling in the presence of space-adapted snapshots are resolved by resorting to
a common finite element mesh. Thus, an exact representation of the snapshots in the associated
common finite element space is ensured. In the case of hierarchical, nested meshes, the construc-
tion of a common finite element mesh is given by an overlay of all adapted meshes and is cheap to
construct. An a priori error analysis as well as an infinite-dimensional perspective in the context of
evolution equations is provided by [18]. This view also allows finite element discretizations in which
the overlay of the adapted meshes leads to cut elements. For this case, a numerical implementa-
tion of the snapshot gramian is provided which, however, can be computationally demanding. In
contrary to the just mentioned offline adaptive strategies, an online adaptive method is proposed
in [12] which provides a reduced-order analogon to h-refinement and is based on a splitting of the
reduced basis vectors.

Our work is structured as follows: In section 2 we introduce the basic problem setting of
an incompressible Navier-Stokes problem in strong and weak form. For ease of presentation,
we first consider the setting with homogeneous Dirichlet boundary conditions. We provide an
implicit Euler discretization in time and an adaptive Taylor-Hood finite element discretization in
space. The adaptivity is achieved by combining residual-based error estimation, Dörfler marking
and newest vertex bisection. Section 3 introduces the fundamental concepts required to build a
POD reduced basis from a set of functions. This section also defines an abstract reduced-order
model, providing a framework for the following developments. Section 4 proposes a reduced-order
model for the velocity field. It is based on a POD basis which is divergence-free in a weak sense
with respect to a reference pressure space. A coupled velocity-pressure reduced-order model is
introduced in section 5. In order to ensure its stability, a set of supremizer functions is added to
the velocity POD basis. A detailed presentation of the incorporation of inhomogeneous Dirichlet
data is given in section 6. Finally, the benchmark problem of a regularized lid-driven cavity flow
serves as numerical test setting in section 7, in order to compare the methods regarding accuracy
and computation time.
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2 Problem setting

We consider an unsteady incompressible flow problem governed by the Navier-Stokes equations in
a bounded domain Ω ⊂ R2 with boundary ∂Ω over a time interval [0, T ] with T > 0. The governing
equations for the velocity field y = (y1, y2) and pressure p are

yt + (y · ∇)y −Re−1∆y +∇p = f in (0, T )× Ω, (1a)

∇ · y = 0 in (0, T )× Ω, (1b)

y = 0 in (0, T )× ∂Ω, (1c)

y = y0 in {0} × Ω, (1d)

where Re is the Reynolds number, f denotes a given body force and y0 is an initial velocity field
with ∇ · y0 = 0 in Ω.

2.1 Weak formulation

The finite element and reduced-order models considered in this work are based on a weak form of
the problem given by (1). We provide the necessary functional analytic framework by introducing
the Hilbert spaces V = H1

0 (Ω), Q = L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω
qdx = 0} and W 1

? (0, T ;V) = {v ∈
L2(0, T ;V) : vt ∈ L1(0, T ;V ′)}. For clarity, we use the same notation for vector-valued functions,
meaning that all components of a vector-valued function belong to the corresponding scalar function
space. The same holds for vector- and scalar-valued operators. As short-hand notations we use
(·, ·) := (·, ·)L2(Ω) and 〈·, ·〉 = 〈·, ·〉V′,V . We define (u, v)V = (∇u,∇v) and ‖v‖2V = (v, v)V for all
u, v ∈ V and we set (p, q)Q = (p, q) and ‖q‖Q = ‖q‖L2(Ω) for all p, q ∈ Q. We introduce the
space Hdiv = {w ∈ L2(Ω): ∇ ·w = 0, (w · νΩ)|∂Ω = 0}, where νΩ denotes the outward unit normal
vector. Finally, we introduce the notations a(u, v) := Re−1(u, v)V , c(w, u, v) := ((w · ∇)u, v) and
b(v, q) := −(q,∇ · v).

The weak form of (1) reads as follows: For given f ∈ L2(0, T ;V ′) and y0 ∈ Hdiv, find a velocity
y ∈W 1

? (0, T ;V) satisfying y(0) = y0 and a pressure p ∈ L2(0, T ;Q) such that

d

dt
(y(t), v) + c(y(t), y(t), v) + a(y(t), v) + b(v, p(t)) = 〈f(t), v〉 ∀v ∈ V, (2a)

b(y(t), q) = 0 ∀q ∈ Q, (2b)

for almost all t ∈ (0, T ). For existence and uniqueness of a solution to (2) we refer to [38, chapter
3, theorems 3.1 and 3.2].

2.2 Discretization

We first discretize in time and then discretize in space. This allows us to use a different finite
element space at each time instance. We apply the implicit Euler scheme to discretize (2) in time.
To this end, we introduce a time grid 0 = t0 < · · · < tn = T with n ∈ N. For simplicity, we
assume an equidistant spacing with a time step size ∆t = T/n. The time-discrete system consists
in finding sequences y1, . . . , yn ∈ V and p1, . . . , pn ∈ Q, for given y0 = y0 ∈ Hdiv, satisfying the
system (yj − yj−1

∆t
, v
)

+ c(yj , yj , v) + a(yj , v) + b(v, pj) = 〈f(tj), v〉 ∀v ∈ V, (3a)

b(yj , q) = 0 ∀q ∈ Q (3b)

for j = 1, . . . , n. Note that we have applied the box rule in order to approximate the right-hand
side time integral. An initial pressure field can be obtained from an additional pressure Poisson
equation, if required, see e.g. [20].

For the spatial discretization, we utilize adaptive finite elements based on LBB stable P2 − P1

Taylor-Hood elements. For each time instance, we use spatially adapted finite element spaces
{V 1, . . . , V n} ⊂ V and {Q1, . . . , Qn} ⊂ Q, which we specify in section 2.3. The fully discrete
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Navier-Stokes problems read as follows: Given y0
h = y0 ∈ Hdiv, find y1

h ∈ V 1, . . . , ynh ∈ V n and
p1
h ∈ Q1, . . . , pnh ∈ Qn such that

(yjh − yj−1
h

∆t
, v
)

+ c(yjh, y
j
h, v) + a(yjh, v) + b(v, pjh) = 〈f(tj), v〉 ∀v ∈ V j , (4a)

b(yjh, q) = 0 ∀q ∈ Qj (4b)

for j = 1, . . . , n. In each step of the implicit Euler method we compute an inner product of the
velocity yj−1

h at the previous time level with test functions v ∈ V j of the current time level.

Alternatively, it is possible to interpret the inner product as an L2(Ω)-projection of yj−1
h onto V j

under a weak divergence-free constraint with respect to Qj , see [9, Lemma 4.1]. For existence of a
unique solution to (4), we refer to [38, Chapter 3, §5 Scheme 5.1].

2.3 Adaptive finite element method

In the following, we describe the choice of the mixed finite element pairs (V 1, Q1), . . . , (V n, Qn).
As a starting point we define an initial finite element grid T init

h . We obtain adapted grids T jh by
refining this initial grid. For each adapted grid, we can define a corresponding Taylor-Hood finite
element pair (V j , Qj). The procedure that leads to the individual finite element pairs for a given
initial grid can be described by the standard solve-estimate-mark-refine cycle. The details for each
of these steps are provided in algorithm 1, an explanation is given below.

Algorithm 1: Adaptive finite element algorithm.

Input: Initial mesh T init
h , tolerance ε > 0, number of time instances n, refinement parameter

θ ∈ (0, 1).
Output: y1

h ∈ V 1, . . . , ynh ∈ V n and p1
h ∈ Q1, . . . , pnh ∈ Qn

1: Set T 1
h := T init

h .
2: for j = 1, . . . , n do
3: loop
4: Define (V j , Qj) as the Taylor-Hood finite element pair corresponding to T jh .
5: Solve (4) for given j.
6: Estimate the error contributions ηjT from (5) for given j for all T ∈ T jh .

7: if
∑
T ∈T j

h
ηjT < ε then

8: Construct T j+1
h by coarsening T jh once and uniting with T init

h .
9: break

10: end if
11: Mark the smallest set T jhD ⊂ T

j
h which fulfills the Dörfler criterion (6).

12: Refine T jh using newest vertex bisection for given T jhD.
13: end loop
14: end for

For each j, the first part of the adaptive procedure is the solution of the system of equations
(4) given a mixed finite element pair (V j , Qj). The solution of (4) leads to a non-linear algebraic
saddle point problem, which must be solved for the velocity and pressure at the new time instance,
given the velocity at the old time instance. We solve the non-linear system with Newton’s method,
using a standard sparse direct solver for the solution of the linear systems in each Newton iteration.

The error estimation relies on a residual based a posteriori error estimator in the spirit of [2]. In
particular, we obtain error indicators for the spatial error at each time step by adding the discrete
time derivative to an error estimator for the stationary Navier-Stokes problem in [23, section 4.4],
or, equivalently, adding a convection term to an error estimator for the unsteady Stokes problem
in [43, section 5.4]. The resulting estimator can also be found in [42, section IV.2.2.]. It is given
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by

ηjT =

(
h2
T

∥∥∥∥∥yjh − yj−1
h

∆t
+ yjh · ∇y

j
h −Re

−1∆yjh +∇pjh − f(tj)

∥∥∥∥∥
2

L2(T )

+
∥∥∥∇ · yjh∥∥∥2

L2(T )
+

1

2

∑
E∈∂T \∂Ω

hE

∥∥∥[−Re−1∇yjh · νΩ + pjhνΩ

]
E

∥∥∥2

L2(E)

) 1
2

(5)

for all T ∈ T jh and for j = 1, . . . , n, assuming f(tj) ∈ L2(Ω). Here, h2
T is the triangle area, hE is

the edge length and [·]E denotes a jump over the edge E .
We use the Dörfler criterion [15] as a marking strategy. This means, for refinement we select

the smallest subset T jhD of T jh fulfilling the requirement∑
T ∈T j

hD

ηjT ≥ (1− θ)
∑
T ∈T j

h

ηjT , (6)

where θ ∈ (0, 1) is the refinement parameter.
As a refinement procedure, we use the newest vertex bisection method [27], which has the

advantage that the resulting meshes are nested. The smallest common mesh of two adapted
meshes is their overlay [13, 37].

In order to construct the starting mesh for the next time step, we mark every triangle of the
current triangulation T jh and perform one coarsening step. We unite the result with T init

h in order
to guarantee that the mesh does not become coarser than the initial mesh. This strategy ensures
that it is possible to reach the initial mesh T init

h after a finite number of time steps. Although
this choice might lead to a finer triangulation compared to starting from the initial triangulation
T init
h in each time step, we expect the advantage that only a small number of refinement steps are

needed when proceeding from one time step to the other.

3 POD-Galerkin modeling

In practice, solving (4) can easily lead to large non-linear algebraic systems of equations, which
are computationally expensive to solve. For this reason, we apply model order reduction in order
to replace the high-dimensional systems of equations by a low-dimensional approximation, which
represents the original problem reasonably well. We use proper orthogonal decomposition (POD)
in order to provide low-dimensional approximation spaces and use them in a Galerkin framework
to derive the reduced-order models. In the following, we first provide a general description of
POD. Then, we introduce an abstract Galerkin model, which provides a common foundation for
the concrete models described in sections 4 and 5.

In order to formulate the POD, assume a set of functions u1, . . . , un ∈ X is given, where X
is a Hilbert space. In the context of model order reduction, these functions are usually called
snapshots. They could, for instance, be infinite-dimensional velocity or pressure fields of the time-
discrete problem (3), or corresponding finite-dimensional approximations. In principle, the number
of time instances and the number of snapshots could be chosen differently. However, for the sake
of simplicity we take the same number n of snapshots as the number of time instances in the scope
of this work.

The POD method consists of finding functions φ1, . . . , φR ∈ X with R ≤ n, which solve the
equality constrained minimization problem

min
φ1,...,φR

n∑
j=1

αj

∥∥∥∥∥uj −
R∑
i=1

(uj , φi)X φi

∥∥∥∥∥
2

X

s.t. (φi, φj)X = δij for 1 ≤ i, j ≤ R, (7)

with {αj}nj=1 denoting non-negative weights and δij the Kronecker symbol. This minimization
problem can be solved using a generalized eigenvalue decomposition of a snapshot Gramian, see [34]
for instance. The functions φ1, . . . , φR are called POD basis functions. IfR ≤ dim(span(u1, . . . , un)),
then φ1, . . . , φR ∈ span(u1, . . . , un). An R-dimensional POD space is given by span(φ1, . . . , φR).
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In order to derive a reduced-order model (ROM) of the time-discrete weak form (3), we intro-
duce abstract reduced spaces VR ⊂ V and QR ⊂ Q for the velocity and pressure, respectively. The
index R is related, but not necessarily equal, to the dimensions of VR or QR. Concrete choices of
VR and QR are provided in sections 4 and 5.

Replacing the original spaces V andQ in (3) with the respective reduced spaces VR and QR leads
to the following abstract reduced-order problem: For given y0

R = y0 ∈ Hdiv, find y1
R, . . . , y

n
R ∈ VR

and p1
R, . . . , p

n
R ∈ QR such that

(yjR − yj−1
R

∆t
, v
)

+ c(yjR, y
j
R, v) + a(yjR, v) + b(v, pjR) = 〈f(tj), v〉 ∀v ∈ VR, (8a)

b(yjR, q) = 0 ∀q ∈ QR (8b)

for j = 1, . . . , n. We note that (8) constitutes a system of algebraic equations for the expansion
coefficients of the reduced solutions. In this view, the system does not depend on the full spatial
dimension of (4), see [34, part III, section 1].

The stability of equation (8) is not guaranteed for all pairs of VR and QR. In the following, we
provide two choices for (VR, QR) which result in stable reduced-order models.

The first approach is a velocity reduced-order model, presented in section 4. It relies on a
reference pressure finite element space paired with a velocity POD space, where the POD basis
functions are weakly divergence-free with respect to the reference pressure space. This enables a
cancellation of the pressure term in (8a) and the continuity equation (8b) is fulfilled by construction.
The stability of the resulting system is then given by [14, 38].

The second approach is a velocity-pressure reduced-order model, investigated in section 5. It
combines a pressure POD space with a velocity POD space which is augmented by supremizer
functions in order to achieve stability, see [6, 33].

In the following, we make use of a reference velocity space Ṽ ⊂ V and an associated reference
pressure space Q̃ ⊂ Q, such that the pair (Ṽ , Q̃) is inf-sup stable. We do not impose further
assumptions on these reference spaces and they are therefore kept general. One choice could be
to take the common finite element spaces Ṽ and Q̃ which contain all finite element spaces, i.e.
V 1, . . . , V n ⊂ Ṽ and Q1, . . . , Qn ⊂ Q̃. For example, if the meshes T 1

h , . . . , T nh are obtained by

successive newest vertex bisections applied to a common coarse grid, then the spaces Ṽ and Q̃ can
be constructed using the overlay of all meshes. However, it is also possible to choose Ṽ and Q̃
which are independent of the snapshot spaces.

4 Velocity reduced-order model

Our goal is to derive a reduced-order model which only contains the velocity as an unknown.
This can be achieved with a weakly divergence-free POD basis. If the given snapshots are weakly
divergence-free with respect to one and the same test space, then this property carries over to the
POD basis, see [22, 34, 44]. An analysis of a general POD-Galerkin flow model can be found in
[24], for example.

The challenge in the context of adaptive spatial discretizations is that “weakly divergence-
free” refers to the test space, which can be a different space at each time instance, in general. In
particular, the solutions yjh ∈ V j , j = 1, . . . , n of (4) fulfill a weak divergence-free property with
respect to the corresponding pressure spaces Qj :

b(yjh, q) = 0 ∀q ∈ Qj , j = 1, . . . , n.

However, yjh is not necessarily weakly divergence-free with respect to the other spaces Qi for
i 6= j. As a consequence, no weak divergence-free property can be guaranteed for arbitrary linear
combinations of snapshots. This means, if we compute a POD of y1

h, . . . , y
n
h, then the resulting

POD basis functions are not necessarily weakly divergence-free. Therefore, we use y1
h, . . . , y

n
h to

construct a modified velocity POD basis which is weakly divergence-free with respect to a reference
pressure space. This allows an elimination of the pressure term in (8a), and the continuity equation
(8b) is fulfilled by construction. As a result, we directly obtain a velocity reduced-order model.

We introduce two approaches to constructing a suitable modified velocity POD basis. The first
approach is based on projected snapshots, meaning that we first project the snapshots such that
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they are weakly divergence-free and then compute a POD basis from the projected snapshots (first-
project-then-reduce, section 4.2). The second approach is based on projected POD basis functions,
implying that we first compute a POD basis from the original snapshots and then project the
POD basis functions such that they fulfill a weak divergence-free property (first-reduce-then-project,
section 4.3).

4.1 Optimal projection onto a weakly divergence-free space

Our aim is to define weakly divergence-free approximations in a more general sense. We provide
a procedure that can be applied to problems with inhomogeneous Dirichlet data as well. To this
end, we introduce a Dirichlet lifting function g , which will be specified in section 6. In the context
of homogeneous Dirichlet data, we set g = 0. We would like to approximate a function u ∈ X with
a function ũ ∈ Ṽ ⊂ X such that ũ+ g is weakly divergence-free with respect to a space Q̃. More
precisely, we want to solve the following equality constrained minimization problem:

Problem 1 For given u ∈ X and sufficiently smooth g, find ũ ∈ Ṽ ⊂ X which solves

min
v∈Ṽ

1

2
‖v − u‖2X subject to b(v + g, q) = 0 ∀q ∈ Q̃.

Note that problem 1 has a unique solution ũ ∈ Ṽ . We define the projection u 7→ Pg (u) = ũ. In
order to compute the solution to problem 1, the usual Lagrange approach can be followed, see e.g.
[21]. The resulting system is the following saddle point problem:

Problem 2 For given u ∈ X and sufficiently smooth g, find ũ ∈ Ṽ ⊂ X and λ ∈ Q̃ such that

(ũ, w)X + b(w, λ) = (u,w)X ∀w ∈ Ṽ ,
b(ũ, q) = −b(g, q) ∀q ∈ Q̃.

Note that the solution ũ ∈ Ṽ to problem 2 is unique. If Ṽ and Q̃ form an inf-sup stable pair of
spaces, then the uniqueness of λ ∈ Q̃ in problem 2 is given. If we choose X = V, then problem 2
is a Stokes problem. For the choice X = L2(Ω), problem 2 is a weak formulation of the Leray
projection, see e.g. [14, 38].

4.2 Reduced-order modeling based on projected snapshots

The basic idea is to project the original velocity solutions of (4) in order to obtain functions
which are weakly divergence-free with respect to the reference pressure space Q̃. Consequently, a
resulting POD basis inherits this property by construction (first-project-then-reduce). For given
snapshots y1

h ∈ V 1, . . . , ynh ∈ V n, we solve problem 2 with g = 0. Then, the projected snapshots
ỹ1 = P0(y1

h), . . . , ỹn = P0(ynh) live in

Ṽdiv := {v ∈ Ṽ : b(v, q) = 0 ∀q ∈ Q̃}. (9)

From these projected snapshots ỹ1, . . . , ỹn, we compute a POD basis according to (7) with Hilbert
spaceX = V, snapshot weights α1 = · · · = αn = ∆t and POD dimensionRy ≤ dim(span(ỹ1, . . . , ỹn)).

The resulting POD space VR := span(φ1, . . . , φRy ) fulfills the property VR ⊂ Ṽdiv ⊂ Ṽ . Thus,
b(w, q) = 0 holds true for all w ∈ VR and all q ∈ Q̃. Consequently, for this choice of VR in
(8), together with QR = Q̃, the pressure term vanishes and the continuity equation is fulfilled
by construction. The resulting velocity ROM reads as follows: For given y0

R = y0 ∈ Hdiv, find
y1
R, . . . , y

n
R ∈ VR such that(yjR − yj−1

R

∆t
, w
)

+ c(yjR, y
j
R, w) + a(yjR, w) = 〈f(tj), v〉 ∀w ∈ VR, (10)

for j = 1, . . . , n.
Concerning the computational complexity, we note that problem 1 has to be solved for each

snapshot, which means the solution of a saddle point problem with reference spaces Ṽ and Q̃,
followed by the computation of a POD basis for the velocity field. Concerning the online compu-
tational costs, in each time step we solve a non-linear algebraic system of equations with Newton’s
method. In each Newton step, we need to build a Jacobian matrix and a right-hand side and,
subsequently, solve a dense linear system using a direct method. Therefore, we find that solving
the velocity ROM (10) is of order O(R3

y ).
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4.3 Reduced-order modeling based on projected POD basis functions

The basic idea of this approach is to compute a POD basis from the original velocity solutions
of (4) and project the resulting POD basis functions onto a weakly divergence-free space (first-
reduce-then-project). For given snapshots y1

h ∈ V 1, . . . , ynh ∈ V n, we define interpolated snapshots

ŷj = IṼ y
j
h ∈ Ṽ for j = 1, . . . , n, where IṼ denotes the Lagrange interpolation operator onto the

velocity reference space Ṽ . From these interpolated snapshots, we compute POD basis functions
φ̂1, . . . , φ̂Ry ∈ Ṽ according to (7) with Hilbert space X = V, snapshot weights α1 = · · · = αn = ∆t
and POD dimension Ry ≤ dim(span(ŷ1, . . . , ŷn)). These POD basis functions in general do not

live in Ṽdiv. Thus, they are projected onto the space Ṽdiv by solving problem 2 with g = 0.
Then, the projected POD basis functions φ1 = P0(φ̂1), . . . , φRy = P0(φ̂Ry ) live in Ṽdiv. Choosing
VR := span(φ1, . . . , φRy ) in (8) together with QR = Q̃ leads to a velocity ROM of the form (10).
Note that, in general, the reduced space constructed in this approach does not coincide with the
reduced space constructed according to section 4.2.

The computational complexity of the approach described in this subsection comprises the com-
putation of a POD basis and, afterwards, the solution of problem 1 for each POD basis function,
i.e. Ry times. This makes the current approach cheaper than the approach of section 4.2, which
required n solutions of problem 1, and Ry ≤ n. Otherwise the costs of setting up and solving the
reduced-order model are equivalent.

Remark 1 Obviously, the velocity ROM (10) only depends on the velocity variable and the pres-
sure is eliminated. However, many applications require an approximate pressure field. For example,
the pressure is needed for the computation of lift and drag coefficients of an airfoil or for low-order
modeling of shear flows, see e.g. [28]. In the case of snapshot generation on static spatial meshes,
it is possible to reconstruct a reduced pressure afterwards by solving a discrete reduced pressure
Poisson equation, see [40], for example. A transfer of this concept to the case of space-adapted
snapshots is not carried out within the scope of this work. In the following section 5, we introduce
a reduced-order model which depends on both velocity and pressure. Thus, it delivers directly a
reduced pressure approximation without any post-processing recovery.

5 Velocity-pressure reduced-order model

We want to derive a POD-Galerkin model which can be solved for reduced-order representations
of the velocity and pressure fields. To this end, we need to choose reduced spaces such that the
reduced-order model resulting from (8) becomes inf-sup stable. We obtain a suitable pressure
reduced space by a truncated POD of a set of pressure snapshots. For the velocity reduced space,
we take a truncated POD basis of a set of velocity snapshots and add suitable functions to guarantee
the fulfillment of the inf-sup stability criterion, compare [6, 33].

5.1 POD spaces

Let y1
h ∈ V 1, . . . , ynh ∈ V n and p1

h ∈ Q1, . . . , pnh ∈ Qn be the solutions of the fully discrete problem

(4). We define interpolated velocity snapshots ŷj = IṼ y
j
h ∈ Ṽ and interpolated pressure snapshots

p̂j = IQ̃p
j
h ∈ Q̃ for j = 1, . . . , n, where IṼ and IQ̃ are Lagrange interpolation operators onto the

velocity reference space Ṽ and the pressure reference space Q̃, respectively.
In order to define a POD of the interpolated velocity snapshots in the sense of section 3, we

specify a Hilbert space X = V, a set of snapshot weights α1 = · · · = αn = ∆t and a POD
dimension Ry ≤ dim(span(ŷ1, . . . , ŷn)). As a result, we obtain velocity POD basis functions
φ1 . . . , φRy ∈ span(ŷ1, . . . , ŷn). For the pressure, we choose the space X = Q, a set of weights
α1 = · · · = αn = ∆t and a POD dimension Rp ≤ dim(span(p̂1, . . . , p̂n)). A POD provides pressure
POD basis functions ψ1 . . . , ψRp ∈ span(p̂1, . . . , p̂n). The POD bases approximate the respective
interpolated snapshots optimally in the sense of (7).

5.2 Stabilization with supremizer functions

The stability of the velocity-pressure reduced-order model provided by (8) depends on the choice
of the subspaces VR and QR. We use QR = span(ψ1 . . . , ψRp ) as a pressure subspace, with basis
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functions according to section 5.1. In order to derive a stable reduced-order model, we define the
velocity subspace

VR := span(φ1, . . . , φRy , φ̄1, . . . , φ̄Rp ), (11)

where the basis functions φ1, . . . , φRy are defined in section 5.1 and the additional basis functions
φ̄1, . . . , φ̄Rp ∈ Ṽ are chosen such that an inf-sup stability constraint can be verified.

We express the inf-sup stability constraint as follows: There exists a βR > 0 defined by

βR := inf
q∈QR

q 6=0

sup
w∈VR

w 6=0

b(w, q)

‖w‖V‖q‖Q
.

In the following we show how suitable functions φ̄1, . . . , φ̄Rp can be found such that the stability
condition is fulfilled [6, 33].

We introduce a linear map T : Q → Ṽ by the following problem: For given q ∈ Q, find Tq ∈ Ṽ
such that

(Tq, w)V = b(w, q) ∀w ∈ Ṽ . (12)

From the Riesz representation theorem follows

‖Tq‖Ṽ = sup
w∈Ṽ
w 6=0

b(w, q)

‖w‖V
= sup
w∈Ṽ
w 6=0

(Tq, w)V
‖w‖V

∀q ∈ Q, (13)

which means that

Tq = arg sup
w∈Ṽ
w 6=0

(Tq, w)V
‖w‖V

∀q ∈ Q. (14)

Therefore, we enrich the velocity space with functions φ̄i = Tψi for i = 1, . . . , Rp .
To show that the stability condition is fulfilled for the proposed choice of enrichment functions,

we relate the stability constant βR of the reduced-order model with the stability constant β̃h of
the reference spaces (Ṽ , Q̃), see [5, 10, 25]. We proceed like Proposition 2 of [6] and Lemma 3.1 of
[33]:

0 < β̃h := inf
q∈Q̃
q 6=0

sup
w∈Ṽ
w 6=0

b(w, q)

‖w‖V‖q‖Q

QR⊂Q̃
≤ inf

q∈QR

q 6=0

sup
w∈Ṽ
w 6=0

b(w, q)

‖w‖V‖q‖Q

(13),(14)
= inf

q∈QR
q 6=0

b(Tq, q)
‖Tq‖V‖q‖Q

≤ inf
q∈QR

q 6=0

sup
w∈{Tp : p∈QR}

w 6=0

b(w, q)

‖w‖V‖q‖Q

(11)

≤ inf
q∈QR

q 6=0

sup
w∈VR

w 6=0

b(w, q)

‖w‖V‖q‖Q
= βR.

The final relation 0 < β̃h ≤ βR states that the POD model with an enriched velocity space is
inf-sup stable as long as (Ṽ , Q̃) is an inf-sup stable pair of spaces.

Note that (12) allows a computation of the stabilizer functions based on the pressure snapshots
instead of the pressure POD. Section 5.1 states that ψ1, . . . , ψRp ∈ span(p̂1, . . . , p̂n). Consequently,
for each r = 1, . . . , Rp we can write

φ̄r = Tψr = T
n∑
j=1

p̂jξjr =

n∑
j=1

(Tp̂j)ξjr , (15)

where the coefficients ξ1
r , . . . , ξ

n
r can be obtained from the pressure POD computation. This means,

in a first step, we compute Tp̂1, . . . ,Tp̂n via (12). This involves the solution of a linear system of
equations on the reference finite element space for each pressure snapshot. In a second step, we
compute φ̄1, . . . , φ̄Rp by linearly combining Tp̂1, . . . ,Tp̂n according to (15). The result is equivalent
to the supremizers obtained from the pressure POD basis functions.
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5.3 Complexity

Concerning the complexity of constructing a reduced-order model, there are two main differences
between the velocity ROM approach and the velocity-pressure ROM approach. First of all, in
the velocity ROM approach a POD basis is computed only for the velocity variable, whereas
in the velocity-pressure ROM approach an additional POD basis is computed for the pressure
snapshots. Second, the construction of divergence-free POD modes in the velocity ROM approach
requires the solution of problem 2, whose complexity depends on dim(Ṽ ) + dim(Q̃). In contrast,
the construction of the supremizer functions in the velocity-pressure ROM approach requires the
solution of equation (12), whose complexity depends on dim(Ṽ ).

For the complexity of solving a velocity-pressure reduced-order model, we concentrate on the
setup and solution of a linear system in a Newton step. The setup of the system matrix and
right-hand side involves the third-order tensor originating from the convective terms. The solution
of the linear system requires the factorization of a dense matrix which contains a zero block in case
of the velocity-pressure approach. As a result, the complexity of solving a velocity-pressure ROM
is of order O((Ry +Rp)3) while the complexity of solving a velocity ROM is only of order O(R3

y ).

Remark 2 Since the computation of supremizer functions can be expensive in practical applica-
tions, we like to mention some variations and alternatives to the stabilization using supremizer
enrichment. In [6] an approximate supremizer computation is proposed which enables an efficient
offline-online decomposition while preserving stability properties. An alternative to stabilization
with supremizers is given in [7, 11, 45] as a velocity-pressure reduced-order model with a residual-
based stabilization approach. A transfer of the supremizer stabilization technique to the context of
finite volume approximations is carried out in [35], where a comparison to a stabilization based on
a pressure Poisson equation in the online phase is provided.

6 Inhomogeneous Dirichlet data

So far, we have studied the incompressible Navier-Stokes problem with homogeneous Dirichlet
boundary conditions. In the following, we extend the scope to problems involving inhomogeneous
Dirichlet data. The main idea is to subtract a suitable chosen lifting function from the snapshot
data leading to homogeneous Dirichlet boundary conditions for the reduced basis functions and then
add the lifting function in the expansion of the velocity field. For PDEs with a single parametrized
Dirichlet boundary this is referred to as control function method in [17] and generalized to multiple
parameters in [19, 40].

In the context of POD-Galerkin modeling based on adaptive finite element snapshots, the main
challenge is to find such lifting functions for each space-adapted snapshot. For the derivation of a
velocity POD-Galerkin model, we further must ensure that these continuous extensions fulfill the
correct weak divergence-free property.
Another alternative to handle inhomogeneous Dirichlet conditions is the penalty method [17], where
the snapshot data is not homogenized but the inhomogeneous Dirichlet data is enforced in a weak
form in the Galerkin projection. Moreover, in [19] a different approach is proposed which uses a
modification of the POD basis utilizing a QR decomposition such that some of the reduced basis
functions fulfill the homogeneous and some fulfill the inhomogeneous boundary data. A transfer
of these approaches to the case of space-adapted snapshots is not carried out within the scope of
this work.

We extend (1) to the case of inhomogeneous Dirichlet boundary conditions by introducing
Dirichlet boundary data yD : [0, T ) × ∂Ω → R. The resulting problem reads as follows: Find a
velocity field y̌ and a pressure field p such that

y̌t + (y̌ · ∇)y̌ −Re−1∆y̌ +∇p = f in (0, T )× Ω, (16a)

∇ · y̌ = 0 in (0, T )× Ω, (16b)

y̌ = yD in (0, T )× ∂Ω, (16c)

y̌ = y0 in {0} × Ω, (16d)

where ∇ · y0 = 0 in Ω and y0 = yD(0) on ∂Ω. In the following, we derive a homogenized version
of this problem, which provides a foundation for the subsequent finite element discretization and
reduced-order modeling.
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6.1 Homogenized equations

We assume that the function yD is sufficiently regular, so that it can be continuously extended by
a function g : [0, T ) × Ω̄ → R with g(t)|∂Ω = yD(t) for t ∈ (0, T ). The regularity requirements on
g are such that a unique weak solution exists, see [32]. In section 6.2 we provide a concrete choice
of g by computation.

We homogenize (16) by subtracting the boundary function from the inhomogeneous velocity
solution such that the homogeneous velocity field is given by y = y̌ − g . Substituting y̌ in (16), we
obtain the following homogenized problem: Find y and p such that

yt + (y · ∇)y + (g · ∇)y + (y · ∇)g −Re−1∆y +∇p
= f − (g · ∇)g +Re−1∆g − gt in (0, T )× Ω, (17a)

∇ · y = −∇ · g in (0, T )× Ω, (17b)

y = 0 in (0, T )× ∂Ω, (17c)

y = y0 − g in {0} × Ω, (17d)

where ∇ · y0 = 0 in Ω and y0 = g(0) on ∂Ω. We proceed like in section 2, but now using the
homogenized equations.

In order to derive a time-discrete weak form of the homogenized problem, we implement the
time integrals involving the Dirichlet data using the right rule, which evaluates the Dirichlet data at
the new time instance. For ease of notation, we define f j := f(tj) and gj := g(tj) for j = 0, . . . , n.
As a result, the time-discrete weak form of the homogenized problem consists in finding sequences
y1, . . . , yn ∈ V and p1, . . . , pn ∈ Q, for given y0 = y0 − g0 with y0 ∈ Hdiv, such that(yj − yj−1

∆t
, v
)

+ c(yj , yj , v) + c(gj , yj , v) + c(yj , gj , v) + a(yj , v) + b(v, pj)

= 〈f j , v〉 − c(gj , gj , v)− a(gj , v)−
(gj − gj−1

∆t
, v
)
∀v ∈ V, (18a)

b(yj , q) = −b(gj , q) ∀q ∈ Q (18b)

for j = 1, . . . , n.
We utilize an adaptive finite element method, so that the fully discrete homogenized Navier-

Stokes problem reads as follows: For given y0
h = y0−g0 with y0 ∈ Hdiv, find y1

h ∈ V 1, . . . , ynh ∈ V n
and p1

h ∈ Q1, . . . , pnh ∈ Qn such that

(yjh − yj−1
h

∆t
, v
)

+ c(yjh, y
j
h, v) + c(gj , yjh, v) + c(yjh, g

j , v) + a(yjh, v) + b(v, pjh)

= 〈f j , v〉 − c(gj , gj , v)− a(gj , v)−
(gj − gj−1

∆t
, v
)
∀v ∈ V j , (19a)

b(yjh, q) = −b(gj , q) ∀q ∈ Qj (19b)

for j = 1, . . . , n.

6.2 Lifting function

Based on (19), we compute approximations to the inhomogeneous solutions y̌(tj) of (16) by adding
the continuous extension of the Dirichlet data, i.e. ŷjh := yjh+gj for j = 0, . . . , n. Regardless of the
choice of lifting functions g0, . . . , gn, we can guarantee that ŷ0

h fulfills the initial condition (16d)
and ŷ1

h, . . . , ŷ
n
h fulfill the Dirichlet condition (16c) by construction. Nevertheless, in order to solve

(19) numerically, concrete candidates of g0, . . . , gn must be fixed, at least implicitly. Our approach
to reduced-order modeling is not restricted to a particular choice. In the following, we provide
suitable candidates which can be realized without the need to modify usual finite element codes.

Note that for the velocity finite element spaces it holds V j ⊂ V = H1
0 (Ω). Thus, for the context

of inhomogeneous Dirichlet conditions, we start by introducing the spaces V jD for j = 1, . . . , n, which
denote the spaces spanned by the union of the finite element basis functions of V j and the finite
element basis functions associated with the corresponding Dirichlet boundary nodes. We assume
that in (19) the integrals involving gj are approximated by a numerical quadrature which consists
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of substituting the Lagrange interpolation of gj onto V jD and integrating the resulting piecewise
polynomials exactly. We assume that by a finite number of refinements of any V 1

D, . . . , V
n
D one can

find a common reference finite element space ṼD such that V 1
D, . . . , V

n
D ⊂ ṼD. Now, for j = 1, . . . , n,

we define lifting functions gj as a sufficiently smooth continuous extension of the Dirichlet data
yD(tj) into the domain Ω such that gj is zero at all nodes of the reference finite element space Ṽ .
This is equivalent to the standard approach of using an approximate Dirichlet lifting given by a
Lagrangian interpolation of the Dirichlet data onto the finite element space at the boundary and
a subsequent continuous extension using the finite element space in the interior, because we have{

gj = yD(t) at all Dirichlet nodes of V jD,

gj = 0 at all interior nodes of V jD,

for j = 1, . . . , n. A disadvantage of the standard approach is that it implies a Dirichlet lifting
which satisfies the boundary data only in an approximate sense. Our description, on the other
hand, delivers an output which is exact at the boundary. In particular, we have

ŷjh = yjh at all interior nodes of ṼD

ŷjh = gj at all Dirichlet nodes of ṼD

yjh = 0 at all Dirichlet nodes of ṼD.

This holds for all ṼD which fulfill our assumptions, without the need to specify a concrete candidate
of ṼD during the adaptive finite element simulation. When the adaptive finite element simulation
is finished and V 1

D, . . . , V
n
D are available, some ṼD can be computed by refinement and gj can be

evaluated at all nodal points of ṼD. Therefore, we are even able to formulate a finite element
discretization of (18) on (Ṽ , Q̃) using the same g0, . . . , gn as in (19). Moreover, we are able to
solve (18) on subspaces of (Ṽ , Q̃) using the same g0, . . . , gn as in (19).

Remark 3 In principle, it is possible to impose a weak divergence-free constraint on the homog-
enized velocity finite element solution by using lifting functions which are computed such that
b(gj , q) = 0 for all q ∈ Qj and j = 0, . . . , n. But this would require the solution of an additional
stationary finite element problem for each gj. Moreover, this would not automatically imply a weak
divergence-free property with respect to a reference pressure space Q̃. An alternative to the implicit
choice of the Dirichlet lifting function is its explicit choice at the level of the strong formulation
(17). Disadvantages would be a possibly larger support of such a lifting function and the effort of
actually finding a suitable function. Also in this case, it would be attractive to impose a strong
divergence-free constraint on gj, because this implies a weakly divergence-free homogenized velocity
field yjh. Still, finding a suitable candidate may be challenging in general.

6.3 Velocity POD-Galerkin model

In the following, we derive a reduced-order model for the velocity field, based on the semi-discretized
problem (18). We introduce the projections PV,Qg according to problem 1 by

Problem 3 For given u ∈ X, sufficiently smooth g and given spaces V and Q, find PV,Qg (u) =
ũ ∈ V which solves

min
v∈V

1

2
‖v − u‖2X subject to b(v + g, q) = 0 ∀q ∈ Q.

We use X = V in the following. By definition of this projection onto a divergence-free space,
we have b(PV,Qgj (0) + gj , q) = 0 for all q ∈ Q and j = 0, . . . , n. In (18), we substitute gj =

gj + PV,Qgj (0)− PV,Qgj (0) and reformulate the equations so that we can set ỹj = yj − PV,Qgj (0). We

obtain the following problem, which is equivalent to (18): For given ỹ0 = y0 − g̃0 with y0 ∈ Hdiv

and g̃j = gj + PV,Qgj (0) for j = 0, . . . , n, find ỹ1, . . . , ỹn ∈ V and p1, . . . , pn ∈ Q such that( ỹj − ỹj−1

∆t
, v
)

+ c(ỹj , ỹj , v) + c(g̃j , ỹj , v) + c(ỹj , g̃j , v) + a(ỹj , v) + b(v, pj)

= 〈f j , v〉 − c(g̃j , g̃j , v)− a(g̃j , v)−
( g̃j − g̃j−1

∆t
, v
)
∀v ∈ V, (20a)

b(ỹj , q) = 0 ∀q ∈ Q (20b)
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for j = 1, . . . , n.
It can be shown that (19) is a discretization of (20) by replacing (V,Q) with (V j , Qj) for j =

1, . . . , n in (20). Then, for the resulting solution holds ỹj = yjh−P
V j ,Qj

gj (0) if g̃j = gj +PV
j ,Qj

gj (0)

for j = 0, . . . , n. In this way, (19) can be used to obtain approximate solutions of (20).
We base the model equation on a discretization of (20) using the pair of reference spaces (Ṽ , Q̃)

as test spaces together with g̃j = gj + P Ṽ ,Q̃gj (0). The resulting solutions are approximations to

the solutions of (20) using the original pair of spaces (V,Q). We have shown that the solutions of

(20) using the original pair of spaces (V,Q) are approximated by yjh − P
V j ,Qj

gj (0) for j = 1, . . . , n

resulting from (19). But these solutions are not weakly divergence-free with respect to the reference
pair of spaces (Ṽ , Q̃). Therefore, we have to modify them.

Following the velocity-ROM approach based on projected snapshots in section 4.2 we substi-

tute yjh − P
V j ,Qj

gj (0) by their approximations P Ṽ ,Q̃gj (yjh) − P Ṽ ,Q̃gj (0) for j = 1, . . . , n. Using now

P Ṽ ,Q̃gj (yjh)− P Ṽ ,Q̃gj (0) as snapshots in a POD yields POD basis functions

φi ∈ span
(
Pg1(y1

h)− Pg1(0), . . . , Pgn(ynh)− Pgn(0)
)
⊂ Ṽdiv ∀i = 1, . . . , Ry

for some Ry ≤ n, which define a POD space VR := span(φ1, . . . , φRy ) ⊂ Ṽdiv.

In the time-discrete equation (20), we use the pair (VR, Q̃) as test and trial spaces. Con-
sequently, the continuity equation is fulfilled by construction. For the pressure term, we have
b(v, pj) = 0 for all v ∈ VR and all pj ∈ Q̃. The resulting reduced-order model is given by the

following set of equations: For y0
R = y0− g̃0 with y0 ∈ Hdiv and g̃j = gj +P Ṽ ,Q̃gj (0) for j = 0, . . . , n,

find y1
R, . . . , y

n
R ∈ VR such that

(yjR − yj−1
R

∆t
, v
)

+ c(yjR, y
j
R, v) + c(g̃j , yjR, v) + c(yjR, g̃

j , v) + a(yjR, v)

= 〈f j , v〉 − c(g̃j , g̃j , v)− a(g̃j , v)−
( g̃j − g̃j−1

∆t
, v
)
∀v ∈ VR (21)

for j = 1, . . . , n.

Remark 4 Concerning the computational complexity, we have to additionally consider the pro-

jections P Ṽ ,Q̃gj (0) for j = 0, . . . , n in comparison to the homogeneous case. Therefore, the solution
of problem 1 has to be computed n + 1 times additionally to the projections of the homogeneous
solutions yjh.

Following the velocity-ROM approach based on projected POD basis functions in section 4.3, we

first introduce a set of modified homogeneous solutions ŷj−P Ṽ ,Q̃gj (0), for j = 1, . . . , n. These mod-
ified snapshots can be constructed using e.g. a Lagrange interpolation of the original homogeneous

solutions yjh onto the reference space Ṽ and an approximation of PV
j ,Qj

gj (0) for j = 1, . . . , n. From

these modified snapshots, we compute a POD basis φ̂1, . . . , φ̂Ry ∈ Ṽ . Note that these modes are in
general not divergence-free. Thus, they are then projected onto the space Ṽdiv by solving problem 2
with g = 0. This leads to a divergence-free velocity POD space VR = span{φ1, . . . , φRy } ⊂ Ṽdiv.
Replacing (V,Q) by the pair (VR, Q̃) in (20) leads to a reduced-order model of the form (21).

6.4 Velocity-pressure POD-Galerkin model

To derive a velocity-pressure reduced-order model of the homogenized problem (19), we require a
suitable inf-sup stable pair of reduced spaces. Since the homogenization does not alter the bilinear
form b(·, ·), the inf-sup stability criterion stays the same. Therefore, we compute a pressure reduced
space QR and a velocity reduced space VR like in section 5, but using Lagrange-interpolated velocity
and pressure snapshots of (19) instead of (4). We derive a stable POD-Galerkin model from the
time-discrete problem (18) by using the pair (QR, VR) as test and trial spaces.

We solve the reduced-order model for the POD approximations y1
R, . . . , y

n
R of the homogeneous

velocity fields and the POD approximations p1
R, . . . , p

n
R of the pressure fields. Finally, yjR + gj is a

time-discrete reduced-order approximation of the velocity solution of the inhomogeneous problem.
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Figure 1: Initial triangulation T init
h (left) and overlay of all adapted triangulations (right).

7 Numerical Example

We use a regularized lid-driven flow in a cavity as a numerical example. It describes the evolution of
a flow in a confined domain Ω = (0, 1)×(0, 1) with boundary ∂Ω during the time interval [0, 1]. The
governing equations are the incompressible Navier-Stokes equations with inhomogeneous Dirichlet
data, as provided by (16). We specify a Reynolds number Re = 100 and set f(t, x) = 0. We choose
a regularized lid-velocity according to [16, 23], which has a quadratic velocity profile in x1-direction
and leads to a smooth transition to a zero velocity at the upper corners. In particular, it implies
∇ · y = 0 in the corners and avoids a singularity of the pressure in the upper right corner. An
additional regularization in time allows for a smooth startup from y0(x) = 0. Hence, the Dirichlet
data is given by yD(t, x) = ytD(t)yxD(x) for all (t, x) ∈ [0, 1]× ∂Ω, where

ytD(t) =

{
1− 1

4 (1− cos((0.1− t)π/0.1))2 if t ∈ [0, 0.1),

1 if t ∈ [0.1, 1],

yxD(x) =


1− 1

4 (1− cos((0.1− x1)π/0.1))2 if x2 = 1, x1 ∈ [0, 0.1],

1 if x2 = 1, x1 ∈ (0.1, 0.9),

1− 1
4 (1− cos((x1 − 0.9)π/0.1))2 if x2 = 1, x1 ∈ [0.9, 1],

0 otherwise.

7.1 Discretization

We discretize the example problem using a space-adaptive extension of our Matlab finite element
code [39]. The initial finite element mesh T init

h is given by a criss-cross triangulation of a 8 × 8
square pattern, see figure 1 on the left. We choose ε = 0.01 as a stopping tolerance and θ = 0.1
as a refinement parameter in the adaptive algorithm 1. For the time discretization, we set the
number of discrete time intervals equal to n = 100, so that ∆t = 0.01.

We run the fully discrete Navier-Stokes problem (19) with the provided discretization param-
eters to compute a set of velocity and pressure solutions. Figure 2 presents the components of
the adaptive finite element solution at times t = 0.1, 0.3, 1.0 as well as the corresponding adapted
finite element meshes.

7.2 Model order reduction

We need to specify suitable Hilbert spaces and snapshot weights in order to define the construction
of POD basis functions from the adaptive finite element snapshots according to section 3. We also
require a set of reference spaces to derive our proposed reduced-order models.

Regarding the choice of Hilbert spaces, we choose the ones that are already used in the weak
form and in the finite element error estimator. This means, we take X = V for the velocity POD
and X = Q for the pressure POD in terms of (7) and we choose X = V for the divergence-free
projection in problem 2.

Regarding the choice of weights, we interpret the sum in the POD minimization problem (7)
as a quadrature of a time integral. A reasonable choice is αj = ∆t for j = 1, . . . , n, which is
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Figure 2: Adapted triangulations T jh , corresponding finite element velocities yjh = (yjh,1, y
j
h,2)T

and pressures pjh (top to bottom). The columns represent times t = 0.1, 0.3, 1.0 (left to right).
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Table 1: Descriptions of reduced-order approximations.

method description

unstable ROM velocity-pressure reduced-order model of section 5, but no supremizers

naive ROM velocity reduced-order model of section 4.2, but using Lagrange interpola-
tions instead of divergence-free projections of the FE solutions

div-free ROM(1) velocity reduced-order model of section 4.2

div-free ROM(2) velocity reduced-order model of section 4.3

div-free POD optimal approximation of the adaptive FE solutions in terms of the reduced
basis of section 4.3

stabilized ROM(1) velocity-pressure reduced-order model of section 5

stabilized ROM(2) velocity-pressure reduced-order model of section 5, but computed from the
pressure snapshots according to (15)

stabilized POD optimal approximation of the adaptive FE solutions in terms of the reduced
basis of section 5

equivalent to a right-sided rectangle quadrature rule. This complies with the interpretation of the
implicit Euler scheme as a discontinuous Galerkin method.

We define the reference pair of finite element spaces (Ṽ , Q̃) ⊂ (V,Q) as the pair of finite element
space which corresponds to the overlay of all adapted meshes. Figure 1 on the right provides a
plot of the overlay of all snapshot meshes of the example simulation. The chosen reference spaces
are able to exactly represent all functions in the adapted finite element spaces. Our methods also
cover other choices of reference spaces, which enables the decoupling of the POD spatial mesh from
the snapshot meshes. However, this can lead to additional interpolation errors depending on the
respective resolution.

7.3 Accuracy

We compare the considered approaches to model order reduction regarding their accuracy depend-
ing on the number of velocity basis functions. In the case of the velocity-pressure model, we set
the number of pressure basis functions and the number of stabilizer functions equal to the number
of velocity POD basis functions. Descriptions of the tested methods are given in table 1.

We measure the error in the reduced-order velocity approximations with the relative norm
implied by the velocity POD, namely

rel erry = (

n∑
j=1

∆t‖yjh − y
j
R‖

2
V)

1
2 /(

n∑
j=1

∆t‖yjh‖
2
V)

1
2 . (22)

The results are provided in figure 3.
We observe that the relative errors of our proposed approaches show an exponential decay up

to Ry = 6. Thereafter, the decay stagnates at an error slightly above 10−3. The stagnation of the
relative errors in the div-free ROMs and the stabilized ROMs is due to the use of space-adapted
snapshots and is related to the finite element discretization error. For more details, we refer to
[18, 41].

The divergence-free velocity reduced-order models and the stabilized velocity-pressure reduced-
order models perform similar in terms of accuracy depending on the number of velocity basis func-
tions. Considering the additional degrees of freedom associated with the pressure basis functions
and the stabilizing functions, however, the velocity-pressure models are more expensive than the
velocity models at the same number of velocity basis.

Both variants of the stabilized velocity-pressure reduced-order model give exactly the same
results, in accordance with (15). The difference between the two variants of the divergence-free
velocity reduced-order model is in the order of about one percent of the error and, therefore,
visually not distinguishable.

Reference curves are given by the projections of the finite element velocity solutions onto the
velocity bases used in the reduced-order models. We observe that the errors of the proposed
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Figure 3: Relative velocity errors of different reduced-order approximations in the sense of (22),
depending on the number of velocity POD basis functions.

reduced-order models are close to the corresponding optimal errors up to the point where the
convergence of the reduced-order model stagnates.

To compare our approaches with less sophisticated methods. A naive reduced-order model
is derived by using a non divergence-free velocity basis and neglecting the pressure term and the
continuity equation. Nevertheless, the Dirichlet condition is implemented with a weakly divergence-
free function, as usual in POD-Galerkin modeling with fixed discretization spaces. The initial
convergence of the naive approach is on par with our approach, but if the number of basis functions
is increased, the solution starts to diverge. As a second simple alternative, we introduce a velocity-
pressure model without stabilizers. Such a model provides a reduced-order solution, but the
magnitude of its relative error is of order 1 and, thus, not satisfactory.

7.4 Cost

We present computation times of the setup and solution of selected reduced-order models to illus-
trate the main differences in their computational complexity. We restrict our consideration to a
fixed number of velocity basis functions, namely Ry = 30. The results are presented in table 2.

Regarding the finite element solution times, we have proved that our adaptive finite element
implementation is reasonably efficient by verifying that most of the computation time is spent
solving linear systems of equations within the Newton iteration. As initial guess for the Newton
iteration, we use the solution at the previous time instance, which is sufficiently accurate to give
fast convergence in all our test cases. Considering the total setup times of the proposed methods,
we find that they are roughly the same and dominated by the cost of computing the snapshots.

The time to solve the reduced-order model for the time-discrete coefficients of the reduced basis
expansion is mainly affected by the setup and solution of the reduced-order linear systems appearing
within the nonlinear iteration. The setup costs of the corresponding matrices and right-hand sides
are dominated by the third-order convective tensor, whose dimension is equal to the number of
velocity unknowns. The solution costs amount to factorizing a dense matrix. Because the velocity
models have a smaller number of unknowns, they are significantly more efficient than the velocity-
pressure models in terms of solution time. This is also reflected in the measured solution times.
The comparison of the full-order simulation with the reduced-order solution gives a speedup factor
of 3760 for the div-free method and a factor of 1253 for the stabilized approach. In view of multi-
query scenarios like uncertainty quantification or optimal control, where the underlying systems
are solved repeatedly, we expect a large gain concerning the computational expenses.
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Table 2: Computation times in seconds for selected reduced-order models using Ry = 30.

div-free ROM(2) stabilized ROM(1) naive ROM

FE solution 488.87 488.87 488.87

reference FE space 37.32 37.32 37.32

velocity POD 0.97 0.99 0.97

pressure POD – 0.14 –

div-free projection 3.10 – 0.86

supremizers – 0.59 –

ROM setup 1.59 4.51 1.59

ROM solution 0.13 0.39 0.13

8 Conclusions

In this work, we have extended the framework of POD model order reduction for space-adapted
snapshots to incompressible flow problems described by the Navier-Stokes equations. In order to
derive a stable POD reduced-order model, two approaches are proposed.

In the first approach, a velocity reduced-order model is derived by projecting the velocity
snapshots or, alternatively, the POD basis functions onto a weakly divergence-free space. In this
way, the continuity equation in the POD reduced-order model is fulfilled by construction and the
pressure term vanishes. The structural advantage of this approach is that the resulting reduced-
order velocity solution is weakly divergence-free with respect to a pressure finite element space
regardless of the number of reduced basis functions.

In the second approach, a pair of reduced spaces for the velocity and for the pressure are con-
structed. Stability is ensured by augmenting the velocity reduced space with pressure supremizer
functions. The advantage of this method is that it directly delivers a reduced-order approximation
of the pressure field, which is required in many practical applications. The reduced-order velocity,
however, is only weakly divergence-free with respect to the pressure reduced space. Moreover, the
velocity-pressure reduced-order model is less efficient than the velocity reduced-order model due
to the additional degrees of freedom associated with the pressure basis and the supremizers.

Our numerical experiments show that the results of both approaches are very similar in terms
of the error between the reduced-order velocity solution and the finite element velocity solution
depending on the number of velocity POD basis functions. This implies that the velocity reduced-
order model is significantly more efficient than the velocity-pressure reduced-order model in terms
of computation time.
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