Skip to main content
Log in

Computing the closest real normal matrix and normal completion

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this article, we consider the problems (unsolved in the literature) of computing the nearest normal matrix X to a given non-normal matrix A, under certain constraints, that are (i) if A is real, we impose that also X is real; (ii) if A has known entries on a given sparsity pattern Ω and unknown/uncertain entries otherwise, we impose to X the constraint xij = aij for all entries (i,j) in the pattern Ω. As far as we know, there do not exist in the literature specific algorithms aiming to solve these problems. For the case in which all entries of A can be modified, there exists an algorithm by Ruhe, which is able to compute the closest normal matrix. However, if A is real, the closest computed matrix by Ruhe’s algorithm might be complex, which motivates the development of a different algorithm preserving reality. Normality is characterized in a very large number of ways; in this article, we consider the property that the square of the Frobenius norm of a normal matrix is equal to the sum of the squares of the moduli of its eigenvalues. This characterization allows us to formulate as equivalent problem the minimization of a functional of an unknown matrix, which should be normal, fulfill the required constraints, and have minimal distance from the given matrix A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bakonyi, M., Woerdeman, H.J.: Matrix Completion, moments, and sums of hermitian squares. Princeton University Press (2011)

  2. Bebiano, N., Furtado, S.: Structured distance to normality of tridiagonal matrices. Linear Algebra Appl. 552, 239–255 (2018)

    Article  MathSciNet  Google Scholar 

  3. Barl, F.: Higher-Rank Numerical Range of Almost Normal Matrices. Master’s Thesis, Univ. Krakow (2014)

  4. Bathia, R., Choi, M.D.: Corners of normal matrices. Proc. Indian Acad. Sci. Math Sci. 116, 393–399 (2006)

    Article  MathSciNet  Google Scholar 

  5. Chu, M.T.: Least squares approximation by real normal matrices with specified spectrum. SIAM J. Matrix Anal. Appl. 12, 115–127 (1991)

    Article  MathSciNet  Google Scholar 

  6. Elsner, L., Ikramov, K.D.: Normal matrices: an update. Linear Algebra Appl. 285, 291–303 (1998)

    Article  MathSciNet  Google Scholar 

  7. Elsner, L., Paardekooper, M.H.C.: On measures of nonnormality of matrices. Linear Algebra Appl. 92, 107–124 (1987)

    Article  MathSciNet  Google Scholar 

  8. Gabriel, R.: The normal Δ h-matrices with connection to some Jacobi-like methods. Linear Algebra and Appl 91, 181–194 (1987)

    Article  MathSciNet  Google Scholar 

  9. Goldstine, H., Horwitz, L. P.: A procedure for the diagonalization of normal matrices. JACM 6, 176–195 (1959)

    Article  MathSciNet  Google Scholar 

  10. Grone, R., Johnson, C.R., Sa, E.R., Wolkowicz, H.: Normal matrices. Linear Algebra Appl. 92, 213–225 (1987)

    Article  MathSciNet  Google Scholar 

  11. Guglielmi, N., Lubich, C.: Differential equations for roaming pseudospectra: paths to extremal points and boundary tracking. SIAM J. Matrix Anal. Appl. 49, 1194–1209 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Guglielmi, N., Lubich, C.: Low-rank dynamics for computing extremal points of real pseudospectra. SIAM J. Matrix Anal. Appl. 34, 40–66 (2013)

    Article  MathSciNet  Google Scholar 

  13. Guglielmi, N., Mehrmann, V., Lubich, C.: On the nearest singular matrix pencil. SIAM J. Matrix Anal. Appl. 38, 776–806 (2017)

    Article  MathSciNet  Google Scholar 

  14. Henrici, P.: Bounds for iterates, inverses, spectral variation and fields of values of non-normal matrices. Numer. Math. 4, 24–40 (1962)

    Article  MathSciNet  Google Scholar 

  15. Higham, N.J.: Normal matrices: an update. Proceedings of the IMA Conference on Applications of Matrix Theory, pp. 1–27. Oxford University Press (1988)

  16. Hall, M., Ryser, H.J.: Normal completions of incidence matrices. Am. J. Math. 76, 581–589 (1954)

    Article  MathSciNet  Google Scholar 

  17. Kato, T.: Perturbation Theory for Linear Operators. Springer, New York (1995)

    Book  Google Scholar 

  18. Kaliuzhnyi-Verbovetskyi, D., Spitkovsky, I., Woerdeman, H.J.: Matrices with normal defect one. Oper. Matrices 30, 401–438 (2009)

    Article  MathSciNet  Google Scholar 

  19. Lee, S.L.: A practical upper bound for departure from normality. SIAM J. Matrix Anal. Appl. 16, 462–468 (1995)

    Article  MathSciNet  Google Scholar 

  20. Lee, S.L.: Best available bounds for departure from normality. SIAM J. Matrix Anal. Appl. 17, 984–991 (1996)

    Article  MathSciNet  Google Scholar 

  21. Li, C.K., Sze, N.S.: Canonical forms, higher rank numerical ranges, totally isotropic subspaces, and matrix equation. Proc. Amer. Math. Soc. 136, 3013–3023 (2008)

    Article  MathSciNet  Google Scholar 

  22. Noschese, S., Pasquini, L., Reichel, L.: The structured distance to normality of an irreducible real tridiagonal matrix. Electronic. Trans. Numer. Anal. 23, 65–77 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Noschese, S., Reichel, L.: The structured distance to normality of Toeplitz matrices with application to preconditioning. Linear Algebra Appl. 18, 429–447 (2007)

    Article  MathSciNet  Google Scholar 

  24. Noschese, S., Reichel, L.: The structured distance to normality of banded Toeplitz matrices. BIT Numer. Math. 49, 629–640 (2009)

    Article  MathSciNet  Google Scholar 

  25. Noschese, S., Reichel, L.: The structured distance to normality of Toeplitz matrices with application to preconditioning. Numer. Linear Algebra Appl. 18, 429–447 (2011)

    Article  MathSciNet  Google Scholar 

  26. Psarrakos, P., Tsatsomeros, M.: Numerical range: (in) a matrix nutshell (2012)

  27. Ruhe, A.: Closest normal matrix finally found!. BIT 27, 585–598 (1987)

    Article  MathSciNet  Google Scholar 

  28. Trefethen, L.N., Embree, R.: Spectra and pseudospectra : The behaviour of nonnormal matrices and operators. Princeton University Press (1993)

  29. Woerdeman, H.J.: The separability problem and normal completions. Linear Algebra Appl. 376, 85–95 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank the anonymous referees for their helpful comments and suggestions. N. Guglielmi also thanks the Italian M.I.U.R. (Ministero dell’Istruzione dell’Universita’ e della Ricerca).

Funding

The authors thank the Italian INdAM-GNCS (Gruppo Nazionale di Calcolo Scientifico) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Guglielmi.

Additional information

Communicated by: Lothar Reichel

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guglielmi, N., Scalone, C. Computing the closest real normal matrix and normal completion. Adv Comput Math 45, 2867–2891 (2019). https://doi.org/10.1007/s10444-019-09717-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-019-09717-6

Keywords

Mathematics Subject Classification (2010)

Navigation