Skip to main content
Log in

Generation of energy-minimizing point sets on spheres and their application in mesh-free interpolation and differentiation

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

It is known that discrete sets of uniformly distributed points on the hypersphere \(\mathbb {S}^{d}\subset \mathbb {R}^{d+1}\) can be obtained from minimizing the energy functional corresponding to Riesz s-kernels \(k_s(\boldsymbol {x},\boldsymbol {y})=\lVert \boldsymbol {x}-\boldsymbol {y}\rVert ^{-s}\) (s > 0) or the logarithmic kernel \(k_{\log }(\boldsymbol {x},\boldsymbol {y})=-\log \lVert \boldsymbol {x}-\boldsymbol {y}\rVert +\log 2\). We prove the same for the kernel \(k_{\log }(\boldsymbol {x},\boldsymbol {y})=\lVert \boldsymbol {x}-\boldsymbol {y}\rVert (\log {\frac {\lVert \boldsymbol {x}-\boldsymbol {y}\rVert }{2}}-1)+2\) which is a front-extension of the sequence of derivatives \(k_{\log }, k_{1}, k_{2}, k_{3}, \dots \), up to sign and constants. The boundedness of the kernel simplifies the classical potential-theoretical proof of the asymptotic uniformity of the point distributions. Still, the property of a singular derivative for xy is preserved, with the physical interpretation of infinite repulsive forces for touching particles. The quality of the resulting point distributions is exemplary compared with that of Riesz- and classical logarithmic point sets, and found to be competitive. Originally motivated by problems of high-dimensional data, the applicability of \(\log \)-optimal point sets with a novel concentric interpolation and differentiation scheme is demonstrated. The method is significantly optimized by the introduction of symmetrized kernels for both the generation of the minimum energy points and the spherical basis functions. Both the point generation and the Concentric Interpolation software are available as Open Source software and selected point sets are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mardia, K.V., Jupp, P.E.: Directional Statistics. Wiley, London (2008). ISBN 9780470316979

    MATH  Google Scholar 

  2. Fritzen, F., Kunc, O.: Two-stage data-driven homogenization for nonlinear solids using a reduced order model. Eur. J. Mech. A. Solids 69, 201–220 (2018)

    Article  MathSciNet  Google Scholar 

  3. Dietrich, S., Gebert, J.-M., Stasiuk, G., Wanner, A., Weidenmann, K., Deutschmann, O., Tsukrov, I., Piat, R.: Microstructure characterization of CVI-densified carbon/carbon composites with various fiber distributions. Compos. Sci. Technol. 72(15), 1892–1900 (2012)

    Article  Google Scholar 

  4. Pérez-Ramírez, Ú., López-Orive, J.J., Arana, E., Salmerón-Sánchez, M., Moratal, D.: Micro-computed tomography image-based evaluation of 3D anisotropy degree of polymer scaffolds. Comput. Methods Biomech. Biomed. Engin. 18(4), 446–455 (2015)

    Article  Google Scholar 

  5. Morawiec, A.: Orientations and Rotations: Computations in Crystallographic Textures. Springer, Berlin (2004). ISBN 3540407340

    Book  Google Scholar 

  6. Ma, J., Wang, C., Shene, C.-K.: Coherent view-dependent streamline selection for importance-driven flow visualization. In: Visualization and Data Analysis, 865407 (2013)

  7. Martini, E., Carli, G., Maci, S.: A domain decomposition method based on a generalized scattering matrix formalism and a complex source expansion. Progress In Electromagnetics Research B 19, 445–473 (2010)

    Article  Google Scholar 

  8. Roşca, D.: New uniform grids on the sphere. A&A 520, A63 (2010)

    Article  Google Scholar 

  9. Staniforth, A., Thuburn, J.: Horizontal grids for global weather and climate prediction models: a review. Q. J. Roy. Meteorol. Soc. 138(662), 1–26 (2012)

    Article  Google Scholar 

  10. Andelfinger, P., Jünemann, K., Hartenstein, H.: Parallelism potentials in distributed simulations of kademlia-based peer-to-peer networks. In: Proceedings of the 7th International ICST Conference on Simulation Tools and Techniques, SIMUTools ’14, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), Brussels, Belgium, 41–50 (2014)

  11. Lovisolo, L., Da Silva, E.: Uniform distribution of points on a hyper-sphere with applications to vector bit-plane encoding. IEE Proceedings-Vision, Image and Signal Processing 148(3), 187–193 (2001)

    Article  Google Scholar 

  12. Saff, E.B., Kuijlaars, A.B.J.: Distributing many points on a sphere. Math. Intell. 19(1), 5–11 (1997)

    Article  MathSciNet  Google Scholar 

  13. Weyl, H.: ÜBer die Gleichverteilung von Zahlen mod. eins. Math. Ann. 77 (3), 313–352 (1916)

    Article  MathSciNet  Google Scholar 

  14. Landkof, N.S.: Foundations of Modern Potential Theory, vol. 180 of Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1972)

    Google Scholar 

  15. Brauchart, J.S., Grabner, P.J.: Distributing many points on spheres: Minimal energy and designs. J. Complex. 31(3), 293–326 (2013). oberwolfach

    Article  MathSciNet  Google Scholar 

  16. Hardin, D., Saff, E.: Minimal Riesz energy point configurations for rectifiable d-dimensional manifolds. Adv. Math. 193(1), 174–204 (2005)

    Article  MathSciNet  Google Scholar 

  17. Esmaeilbeigi, M., Chatrabgoun, O., Shafa, M.: Scattered data fitting of Hermite type by a weighted meshless method. Adv. Comput. Math. 44(3), 673–691 (2018)

    Article  MathSciNet  Google Scholar 

  18. Brauchart, J., Hardin, D., Saff, E.: The next-order term for optimal Riesz and logarithmic energy asymptotics on the sphere. Contemp. Math 578, 31–61 (2012)

    Article  MathSciNet  Google Scholar 

  19. Christensen, J.P.R.: On some measures analogous to haar measure. Math. Scand. 26(1), 103–106 (1970)

    Article  MathSciNet  Google Scholar 

  20. Fritzen, F., Kunc, O.: GitHub repository MinimumEnergyPoints. https://github.com/EMMA-Group/MinimumEnergyPoints (2018)

  21. Womersley, R.: Minimum energy points on the sphere S 2, Last updated 24-Jan-2003 https://web.maths.unsw.edu.au/~rsw/Sphere/ (2003)

  22. Hardin, R.H., Sloane, N.J.A., Smith, W.D.: Minimal Energy Arrangements of Points on a Sphere, Last modified June 1 1997 http://neilsloane.com/electrons/ (1997)

  23. Marsaglia, G.: Choosing a point from the surface of a sphere. Ann. Math. Statist. 43(2), 645–646 (1972)

    Article  Google Scholar 

  24. Leopardi, P.: A partition of the unit sphere into regions of equal area and small diameter. Electron. Trans. Numer. Anal. 25(12), 309–327 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Ballinger, B., Blekherman, G., Cohn, H., Giansiracusa, N., Kelly, E., Schürmann, A.: Experimental study of Energy-Minimizing point configurations on spheres. Exp. Math. 18(3), 257–283 (2009)

    Article  MathSciNet  Google Scholar 

  26. Shewchuk, J.R.: Applied Computational Geometry: Towards Geometric Engineering, vol. 1148 of Lecture Notes in Computer Science, Springer-Verlag, 203–222, from the First ACM Workshop on Applied Computational Geometry. In: Lin, M.C., Manocha, D. (eds.) (1996)

  27. Si, H.: TetGen, a delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw. 41(2), 11:1–11:36 (2015). ISSN 0098-3500

    Article  MathSciNet  Google Scholar 

  28. Hesse, K., Sloan, I.H., Womersley, R.S.: Numerical Integration on the Sphere, pp 1185–1219. Springer, Berlin (2010)

    MATH  Google Scholar 

  29. Narcowich, F.J., Petrushev, P., Ward, J.D.: Localized tight frames on spheres. SIAM J. Math. Anal. 38(2), 574–594 (2006)

    Article  MathSciNet  Google Scholar 

  30. Kuijlaars, A., Saff, E.: Asymptotics for minimal discrete energy on the sphere. Trans. Am. Math. Soc. 350(2), 523–538 (1998)

    Article  MathSciNet  Google Scholar 

  31. Cohn, H., Kumar, A.: Universally optimal distribution of points on spheres. J. Am. Math. Soc. 20(1), 99–148 (2007)

    Article  MathSciNet  Google Scholar 

  32. Fritzen, F., Kunc, O.: Github repository ConcentricInterpolation https://github.com/EMMA-Group/ConcentricInterpolation (2018)

  33. Sommariva, A., Womersley, R.: Integration by RBF over the sphere, Applied Mathematics Report AMR05/17, U. of New South Wales

  34. Fasshauer, G.E., Schumaker, L.L.: Scattered data fitting on the sphere, Mathematical Methods for Curves and Surfaces II, pp 117–166 (1998)

  35. Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Journal of Approximation Theory 103(1), 91–118 (2000)

    Article  MathSciNet  Google Scholar 

  36. Womersley, R.S., Sloan, I.H.: How good can polynomial interpolation on the sphere be?. Adv. Comput. Math. 14(3), 195–226 (2001)

    Article  MathSciNet  Google Scholar 

  37. Wang, Y.G., Gia, Q.T.L., Sloan, I.H., Womersley, R.S.: Fully discrete needlet approximation on the sphere. Appl. Comput. Harmon. Anal. 43(2), 292–316 (2017)

    Article  MathSciNet  Google Scholar 

  38. Fasshauer, G., McCourt, M.: Kernel-based approximation methods using MATLAB, vol. 19 World Scientific Publishing Company (2015)

  39. Morris, M.D., Mitchell, T.J., Ylvisaker, D.: Bayesian design and analysis of computer experiments use of derivatives in surface prediction. Technometrics 35(3), 243–255 (1993)

    Article  MathSciNet  Google Scholar 

  40. Tumanov, A.: Minimal biquadratic energy of five particles on a 2-sphere. Indiana University Mathematics Journal 62(6), 1717–1731 (2013)

    Article  MathSciNet  Google Scholar 

  41. Rashidinia, J., Fasshauer, G., Khasi, M.: A stable method for the evaluation of Gaussian radial basis function solutions of interpolation and collocation problems. Computers & Mathematics with Applications 72(1), 178–193 (2016)

    Article  MathSciNet  Google Scholar 

  42. Wright, G.B., Fornberg, B.: Stable computations with flat radial basis functions using vector-valued rational approximations. J. Comput. Phys. 331, 137–156 (2017)

    Article  MathSciNet  Google Scholar 

  43. Fuselier, E., Hangelbroek, T., Narcowich, F.J., Ward, J.D., Wright, G.B.: Localized bases for kernel spaces on the unit sphere. SIAM J. Numer. Anal. 51(5), 2538–2562 (2013)

    Article  MathSciNet  Google Scholar 

  44. Narcowich, F.J., Sun, X., Ward, J.D., Wendland, H.: Direct and inverse Sobolev error estimates for scattered data interpolation via spherical basis functions. Found. Comput. Math. 7(3), 369–390 (2007)

    Article  MathSciNet  Google Scholar 

  45. Leopardi, P.: Discrepancy, separation and Riesz energy of finite point sets on compact connected Riemannian manifolds, Dolomites Research Notes on Approximation 6

  46. Smale, S.: Mathematical problems for the next century. Math. Intell. 20(2), 7–15 (1998)

    Article  MathSciNet  Google Scholar 

  47. Nerattini, R., Brauchart, J.S., Kiessling, M.K.-H.: Optimal $N$-Point configurations on the sphere: “Magic” numbers and Smale’s 7th problem. J. Stat. Phys. 157(6), 1138–1206 (2014)

    Article  MathSciNet  Google Scholar 

  48. Damelin, S.B., Hickernell, F.J., Ragozin, D.L., Zeng, X.: On energy, discrepancy and group invariant measures on measurable subsets of euclidean space. J. Fourier Anal. Appl. 16(6), 813–839 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank the anonymous reviewers for valuable comments.

Funding

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) FR2702/6 (grant no. 257987586) and FR2702/8 (grant no. 406068690) in the scope of the Emmy-Noether and Heisenberg funding lines. Oliver Kunc also received funding by the DFG within the Cluster of Excellence in Simulation Technology (EXC 310/2, grant no. 50131014, Project PN1-23) at the University of Stuttgart.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Fritzen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by: Robert Schaback

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Data availability

All of the point sets used in the numerical examples are available in the MATLAB software package’s subfolder examples/exports (see [20]), and in the C++ software packages subfolder data/directions (see [32]).

Appendices

Appendix 1. Generation of random points on \(\mathbb {S}^d\)

The generation of uniformly random points on \(\mathbb {S}^d\), can be realized in several ways. Two prominent and convenient examples include:

  • Generation using the normal distribution\({\mathcal N}\) (cf. [23]) The easiest way of generating the sought-after points is based on random variables ni following a normal distribution \(\mathcal {N}\). A point \(\boldmath {x}\in \mathbb {S}^{d}\) is obtained by setting the components of its coordinate vector \(x_i \sim \mathcal {N}\) (\(i=1, \dots , d+1\)), followed by normalization of the whole vector. A purely technical improvement of the algorithm is to abandon random samples which have a vector norm close to machine precision before the normalization in order to prevent numerical truncation.

  • Generation using the uniform distribution\({\mathcal U}\)on [− 1, 1] Another option is to seed all components of candidate points according to a uniform distribution \({\mathcal U}\) on the interval [− 1, 1]. Next, points having a norm greater than 1 and smaller than a tolerance determined by machine precision are rejected, i.e., only points contained in a spherical shell are accepted. The remaining points are then projected onto \(\mathbb {S}^{d}\).

The advantage of the method relying on random variables following a normal distribution is that there is virtually no rejection while the second algorithm will lead to a substantial amount of rejected points: for d = 1 the chance for rejection is 21.46%, for d = 2 it is 47.64% and for arbitrary spherical dimension d it is defined by

$$ \begin{array}{@{}rcl@{}} P(\text{candidate is rejected})=1 - \frac{L^{d+1}(\mathbb{ B}^{d+1} )}{ 2^{d+1} }\text{,} \end{array} $$
(74)

where Ld+ 1 denotes the Lebesgue measure in \(\mathbb { R}^{d+1}\) and \(\mathbb { B}^{d+1}=\{\boldmath { x}\in \mathbb { R}^{d+1}:\lVert \boldmath { x}\rVert \leq 1\}\). Since Gaussian random variables are available at little numerical expense in many software libraries, the first algorithm is available as an option in the graphical user interface of our MATLAB software. If it is selected, the resulting point set is passed to Algorithm 1 as initial configuration.

figure a

Appendix 2. Algorithms

For Algorithm 2, the quantity \(\widetilde {f}_{\gamma }\) denotes the surrogate model \(\widetilde {f}\) (cf. (CI)), with respect to the kernel function \(\widetilde {k}(z_{\mathrm {g}})=\exp (-\gamma z_{\mathrm {g}}^2)\), approximating the original function f.

figure b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunc, O., Fritzen, F. Generation of energy-minimizing point sets on spheres and their application in mesh-free interpolation and differentiation. Adv Comput Math 45, 3021–3056 (2019). https://doi.org/10.1007/s10444-019-09726-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-019-09726-5

Keywords

Mathematics Subject Classification (2010)

Navigation