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Abstract

We study the complexity of approximating integrals of smooth functions
at absolute precision ε > 0 with confidence level 1− δ ∈ (0, 1). The optimal
error rate for multivariate functions from classical isotropic Sobolev spaces
W r

p (G) with sufficient smoothness on bounded Lipschitz domains G ⊂ R
d is

determined. It turns out that the integrability index p has an effect on the
influence of the uncertainty δ in the complexity. In the limiting case p = 1
we see that deterministic methods cannot be improved by randomization. In
general, higher smoothness reduces the additional effort for diminishing the
uncertainty. Finally, we add a discussion about this problem for function
spaces with mixed smoothness.

Keywords. Monte Carlo integration; Sobolev functions; information-based
complexity; standard information; asymptotic error; confidence intervals.

1 Introduction

We want to compute the integral

INT(f) =

∫

G

f(x) dx (1)

of f : G → R from the unit ball BW of a (semi-)normed linear space W of func-
tions defined on a domain G ⊂ R

d where we are only allowed to use function
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values as information within randomized algorithms. The focus lies on the (ε, δ)-
complexity nMC

prob(ε, δ,W), that is, the minimal number n of function values needed
for randomized algorithms An in order to approximate the integral (1) such that

P{|An(f)− INT f | > ε} ≤ δ for all f with ‖f‖W ≤ 1, (2)

where ‖·‖W is the (semi-)norm of W. A method with this property of guaranteeing
a small (absolute) error ε > 0 with confidence 1− δ ∈ (0, 1) (or uncertainty δ) for
inputs from the unit ball BW is called (ε, δ)-approximating in W, see also [16]. We
also consider the n-th minimal probabilistic Monte Carlo error at uncertainty δ,
defined by

eMC
prob(n, δ,W) := inf {ε > 0 | ∃ (ε, δ)-approximating algorithm An in W} . (3)

The probabilistic error criterion from above is less common in information-based

complexity (IBC) where the standard notion of Monte Carlo error is some type
of mean error. In general, for some ℓ ≥ 1 the n-th minimal ℓ-mean Monte Carlo

error is given by

eMC
ℓ-mean(n,W) := inf

An

sup
‖f‖W≤1

(
E |An(f)− INT f |ℓ

)1/ℓ
. (4)

Here, the infimum is taken over all randomized algorithms which use at most n
function values. Most frequently studied are the root mean squared error (RMSE),
that is, eMC

2-mean, as well as the expected error eMC
1-mean. Accordingly, we define the

ε-complexity nMC
ℓ-mean(ε,W) as the minimal number of function values needed by a

randomized algorithm that guarantees a worst case ℓ-mean error smaller than ε.
For more details on IBC we refer to the books [22, 23, 24, 26].

One might argue that the error criterion does not matter. However, this is not
true. For example, using Markov’s inequality it is always possible to construct
(ε, δ)-approximating algorithms once we know methods which work for arbitrarily
small mean errors. That way, however, the cost estimates are not optimal in
terms of the δ-dependence, namely polynomial rather than logarithmic. In some
situations this can be fixed by using more advanced inequalities such as Hoeffding
bounds. In other situations commonly known algorithms may need to be modified
which lead to more robust methods less prone to outliers. For this reason the
probabilistic criterion is frequently used in statistics, see for example [8, 11, 12, 13].
Furthermore, there are numerical problems which can be solved with respect to the
probabilistic (ε, δ)-criterion but the mean error is unbounded, see [16]. In other
words, this criterion seems to be the right one for the concept of solvability.

In Section 2 we provide two generic lower bounds for the n-th minimal prob-
abilistic Monte Carlo error based on bump functions. In Section 3 we discuss
several approaches for deriving upper error bounds on Sobolev classes and discuss
in which cases they lead to optimal rates. We mainly consider classical isotropic
Sobolev spaces W r

p (G) on domains G ⊆ R
d. For integer smoothness r ∈ N0 and
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integrability parameter 1 ≤ p ≤ ∞, these spaces are given by

W r
p (G) :=

{
f ∈ Lp(G)

∣∣∣∣ ‖f‖W r
p (G) :=

( ∑

α∈Nd
0

|α|1≤r

‖Dαf‖pLp(G)

)1/p

<∞
}
,

with the usual modification for p = ∞ and the weak derivative Dαf = ∂α1

x1
· · ·∂αd

xd
f

for multi-index α = (α1, . . . , αd) ∈ N
d
0. Note that for r = 0 we obtain the Lebesgue

spaces Lp(G).
Our main result is for spaces W r

p (G) on bounded Lipschitz domains G ⊂ R
d

(see [21] for a definition), and with sufficient smoothness, rp > d. In asymptotic
notation (see definitions below) it states

eMC
prob(n, δ,W

r
p (G)) ≍ n−r/d min

{
1,

(
log δ−1

n

)1−1/q
}

(5)

with q := min{p, 2}, or equivalently

nMC
prob(ε, δ,W

r
p (G)) ≍ min

{
ε−d/r, ε−1/( r

d
+ q−1

q ) (log δ−1)1/(
q

q−1
· r
d
+1)
}
, (6)

see Theorem 2.3 and Theorem 3.6. The condition rp > d guarantees that the
space W r

p (G) is compactly embedded in the space of continuous functions, see
for instance [1]. Only then function evaluations are well defined and there exist
deterministic integration methods, which in this case provide error bounds with
rate n−r/d. These worst case bounds come into play if we demand extremely high
confidence 1− δ close to 1. It also turns out that for p = 1 the uncertainty δ does
not play any role, which shows that deterministic methods are optimal in that
case. In the power of n, we recover the well known gain of 1 − 1/p for 1 < p < 2,
and 1/2 for p ≥ 2, which Monte Carlo methods achieve compared to deterministic
methods. The influence of the uncertainty δ grows with the gain in the error rate.
In terms of the complexity (6) we observe that the higher the smoothness r the
weaker the dependence on δ.

Asymptotic notation: For functions e, f : N×(0, 1) → R we use the notation
e(n, δ) � f(n, δ), meaning that there is some n0 ∈ N and δ0 ∈ (0, 1) such that
e(n, δ) ≤ cf(n, δ) with some (possibly (d, r)-dependent) constant c > 0 for all
n ≥ n0 and δ ∈ (0, δ0). Sometimes we add the restriction n � log δ−1, then
e(n, δ) ≤ cf(n, δ) is only meant to hold for δ ∈ (0, δ0) and n ≥ n0 log δ

−1. Similarly
we denote asymptotics for complexity functions n(ε, δ), describing a behaviour
for small ε, δ > 0. Asymptotic equivalence e(n, δ) ≍ f(n, δ) is a shorthand for
e(n, δ) � f(n, δ) � e(n, δ). The notion e(n, δ) ≺ f(n, δ) means “e(n, δ) � f(n, δ)
but not f(n, δ) � e(n, δ)”.

2 Lower bounds

We start with the lower bounds as these are easily obtained for the whole parameter
range of the function spaces we consider.
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2.1 Auxiliary lemmas

As before, let W be a space of functions defined on a domain G, equipped with
a (semi-)norm ‖ · ‖W . An abstract Monte Carlo algorithm defined for such func-

tions is a family An = (Aω
n)ω∈Ω of mappings Aω

n : W
Nω

−−→ R
n φω

−→ R, indexed
with elements ω from a probability space (Ω,Σ,P), such that the error functional
ω 7→ |Aω

n(f)− INT f | is measurable. Here,

y = Nω(f) = (f(xω
1 ), . . . , f(x

ω
n))

is the information we collect about a problem instance f , from which the output
Aω

n(f) = φω(y) is generated. One might consider adaptive strategies to acquire
information, that is, xω

i might depend on the previously obtained information
y1, . . . , yi−1. Our lower bounds do hold for this type of algorithms, but the upper
bounds we present are based on non-adaptive methods. For simplicity, in this
paper we restrict to methods with fixed cardinality n. In general, the number of
function values an algorithm collects might be random and even depend on the
input, see for instance [8, 12, 16]. Let us mention here that our auxiliary lemmas
on lower bounds, Lemma 2.1 and 2.2, would then still hold with slightly worse
constants.

In the spirit of Bakhvalov [4], for proving lower bounds we switch to an average

input setting with a discrete probability measure µ supported within the input
set—which in our case is the unit ball BW of the space W—and make use of the
relation

sup
‖f‖W≤1

P{|An(f)− INT f | > ε} ≥
∫

BW

∫

Ω

1{|Aω
n(f)−INT f |>ε} dP(ω) dµ(f)

=

∫

Ω

∫

BW

1{|Aω
n(f)−INT f |>ε} dµ(f) dP(ω)

≥ inf
Qn

µ{f : |Qn(f)− INT f | > ε} , (7)

where the infimum is taken over all deterministic integration methods Qn that use
n function values. (For fixed ω, the realisation Aω

n of a given algorithm can be
regarded as a deterministic algorithm.) In the proof of the lower bounds we use
the implication

sup
‖f‖W≤1

P{|An(f)− INT(f)| > ε} > δ =⇒ eMC
prob(An, δ,W) ≥ ε , (8)

where eMC
prob(An, δ,W) is the infimum of all ε > 0 such that the algorithm An is

(ε, δ)-approximating in W.
Depending on the integrability index p of the Sobolev classes we choose different

probability measures µ in order to obtain appropriate lower bounds. Similarly
to [20, Proposition 1 and 2 in Section 2.2.4] we have the following two generic
lemmas, now for the probabilistic instead of the root mean squared error. The
first one applies for integrability 2 ≤ p ≤ ∞.
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Lemma 2.1. For n ≥ 17 and a natural number N ≥ 5n + 6, assume that there

are functions fi : G→ R, with i = 1, . . . , N , satisfying the following conditions:

1. for i = 1, . . . , N , the sets Gi := {x ∈ G : fi(x) 6= 0} are pairwise disjoint,

and INT(fi) = γ for some γ > 0;

2. for signs si ∈ {±1}, the function fs :=
∑N

i=1 si fi is an element of the input

set BW , that is, ‖fs‖W ≤ 1.

Then, for any uncertainty level 0 < δ < 1/3, we have

eMC
prob(n, δ,W) ≥ γ min

{
n1/2

√
log4

1

3δ
, n

}
.

Proof. Let µ be the uniform distribution on the finite set

F :=

{
fs =

N∑

i=1

sifi : si ∈ {±1}
}

⊂ BW .

Let Qn : F → R be a deterministic algorithm using n function values. Without
loss of generality, we may assume that the algorithm computes function values
yi = f(xi) with xi ∈ Gi for i = 1, . . . , n. Hence, from the i-th piece of information
we learn whether si = +1 or −1 for f = fs.

Note that, given the information y = N(f), there are still k := N−n unknown
signs si. The conditional distribution of INT(f) given y can be represented as the
distribution of

gy + γXk

where

gy := γ
n∑

i=1

si , and Xk :=
k∑

i=1

Zi with Zi
iid∼ Rademacher.

Since this is the situation for all information y =̂ (s1, . . . , sn), we obtain

µ{|Qn(f)− INT f | > ε} ≥ inf
a∈R

P{γ |Xk − a| > ε}

= inf
a∈R

2−k
k∑

j=0

(
k

j

)
1{γ |2j − k − a| > ε} .

At most k′ := ⌊ε/γ⌋+ 1 terms are removed from the binomial sum, optimally the
central ones, so we have

µ{|Qn(f)− INT f | > ε} ≥ 2−k

[⌊k−k′

2

⌋

∑

j=0

(
k

j

)
+

k∑

j=⌈k+k′+1

2 ⌉

(
k

j

)]
.
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We employ Lemma A.1 twice, namely, for odd k with

t = ⌈(k′ − 1)/2⌉ and t = ⌈k′/2⌉ ≤ ε/(2γ) + 1

as well as for even k with

t = ⌈k′/2⌉ and t = ⌈(k′ + 1)/2⌉ ≤ ε/(2γ) + 3/2.

In order to match the conditions of Lemma A.1, we restrict to ε/γ ≤ (k − 6)/4.
Hence under that assumption we have

µ{|Qn(f)− INT f | > ε} ≥ 1

1 + 2/
√
π

exp

(
−4 (log 2) (ε/γ + 2)2

k

)
. (9)

Note that k = N − n ≥ (5n+ 6)− n = 4n+ 6, so then the condition ε/γ ≤ n is
sufficient for (9) to hold. The right-hand side of (9) can be further simplified via
(ε/γ + 2)2 ≤ 2 (ε2/γ2 + 4), exploiting k > 4n and also n ≥ 17. For 0 < ε ≤ γn this
leads to

µ{|Qn(f)− INT f | > ε} > 2−8/n

1 + 2/
√
π
2−2 ε2/(n γ2) >

1

3
4−ε2/(n γ2) . (10)

By Bakhvalov’s trick (7) this is a lower bound for the worst case uncertainty
sup‖f‖W≤1 P{|An(f) − INT(f)| > ε}, holding for any Monte Carlo algorithm An.
Regarding the right-hand side of (10) as a given δ, the implication (8) finally
provides the assertion. Pay attention that for too small δ, namely 0 < δ < 1

3
4−n,

isolating ε in (10) is misleading to delusive error bounds exceeding γn which,
however, violates the conditions on ε. In this case we can only conclude that
ε = γn is a lower bound for eMC

prob(n, δ,W).

The following result will be useful for integrability 1 < p < 2.

Lemma 2.2. For n ∈ N and a natural number N ≥ 4n, assume that there are

functions fi : G→ R, with i = 1, . . . , N , satisfying the following conditions:

1. for i = 1, . . . , N , the sets Gi := {x ∈ G : fi(x) 6= 0} are pairwise disjoint,

and INT(fi) = γ for some γ > 0;

2. for I ⊂ {1, . . . , N} with #I = M for some given natural number M ≤ N ,

and for signs si ∈ {±1}, the function fI,s :=
∑

i∈I si fi is an element of the

input set BW , that is, ‖fI,s‖W ≤ 1.

Then, for any 0 < δ < 1
2
2−⌈M/2⌉, we have

eMC
prob(n, δ,W) ≥ 1

2
γM .

6



Proof. Let µ be the uniform distribution on the finite set

F :=

{
∑

i∈I
sifi : I ⊂ {1, . . . , N} with #I =M , si ∈ {±1}

}
⊂ BW .

Let Qn : F → R be a deterministic algorithm using n function values. Without
loss of generality, we may assume that the algorithm computes function values
yi = f(xi) with xi ∈ Gi for i = 1, . . . , n. Hence, from the i-th piece of information
we learn whether i ∈ I, and if so, whether si = +1 or −1 within the representation

f = fI,s :=
∑

i∈I
sifi .

Let m(f) := #(I ∩ {1, . . . , n}) denote the number of detected subdomains Gi

where the function f is non-zero. Under µ, the random variable m(·) is dis-
tributed according to a hypergeometric distribution with population of size N
containing M ≤ N items of interest and admitting n < N draws without replace-
ment. The expected value is

∫

F
m(f) dµ(f) =

n

N
M ≤ 1

4
M ,

and using Markov’s inequality we conclude

µ
{
f : m(f) ≤ 1

2
M
}

≥ 1

2
. (11)

Given the information (f(x1), . . . , f(xn)) = y with m(f) = m, there are still
k :=M −m unknown si for subdomains Gi where the function does not vanish and
the conditional distribution of INT(f) is given similarly to the proof of Lemma 2.1
(only n is substituted by m). Hence, the conditional uncertainty can be quantified
via a binomial sum. For 0 < ε ≤ 1

2
Mγ, up to k′ := ⌊ε/γ⌋+ 1 ≤ ⌈1

2
M⌉ terms are

removed, and we obtain

µ
(
|Qn(f)− INT(f)| > ε

∣∣ (f(x1), . . . , f(xn)) = y, m(f) = m
)

≥ 2−k

[⌊ k−k′

2

⌋

∑

j=0

(
k

j

)
+

k∑

j=⌈k+k′+1

2 ⌉

(
k

j

)]
.

This bound is the same for all information outcomes y with the same number
m(f) = m of detected non-zero subdomains, and for k ≥ k′, by Lemma A.2, we
further estimate

µ (|Qn(f)− INT(f)| > ε | m(f) = m) ≥ 2−k′. (12)

7



Note that m ≤ 1
2
M implies k =M −m ≥ ⌈1

2
M⌉ ≥ k′, so (12) can be used under

the condition formulated in (11). Hence,

µ{|Qn(f)− INT(f)| > ε}

≥
⌈M/2⌉∑

m=0

µ (|Qn(f)− INT(f)| > ε | m(f) = m) · µ{f : m(f) = m}

(12)

≥ 2−k′ · µ{f : m(f) ≤ 1
2
M} ≥ 1

2
2−⌈M/2⌉.

By Bakhvalov’s trick (7) this is a lower bound for the worst case uncertainty
sup‖f‖W≤1 P{|An(f)− INT(f)| > ε}, and for 0 < δ < 1

2
2−⌈M/2⌉ the implication (8)

proves the assertion.

2.2 Lower bounds for Sobolev classes

The norms of classical Sobolev spaces W r
p (G) with integrability index p possess the

property that for any decomposition of the support of a function f ∈ W r
p (G) into

essentially disjoint sub-domains, say G1, . . . , GM , we have

‖f‖W r
p (G) =

(
M∑

i=1

‖f‖pW r
p (Gi)

)1/p

≤ M1/p max
i=1,...,M

‖f‖W r
p (Gi) . (13)

The smoothness has an effect on scalings, namely for functions ϕ : Rd → R and
ψ(x) := ϕ(mx − i), with m > 0 and i ∈ R

d, we have the following well known
relation between the derivatives,

‖Dαψ‖Lp(Rd) = m|α|1−d/p ‖Dαϕ‖Lp(Rd) , for α ∈ N
d
0.

For m ≥ 1 this leads to the scaling property

‖ψ‖W r
p (R

d) ≤ mr−d/p ‖ϕ‖W r
p (R

d) . (14)

If suppϕ, suppψ ⊆ G, then this relation holds also for the norms of the restricted
space W r

p (G).

Theorem 2.3. Let G ⊂ R
d be a domain with nonempty interior. Further, let

r ∈ N0, 1 ≤ p ≤ ∞ and define q := min{p, 2}. Then we have the asymptotic lower

bound

eMC
prob(n, δ,W

r
p (G)) � min

{
n−r/d, n−(r/d+1−1/q) (log δ−1)1−1/q

}
.

Proof. Since the interior of G is nonempty there exists a cubic subdomain. We
restrict to functions which are supported within that rectangular subdomain, and
by scaling, without loss of generality, we may assume G = [0, 1]d.

Let ϕ : Rd → R be a sufficiently smooth function supported on [0, 1]d with
‖ϕ‖W r

p ([0,1]
d) ≤ 1 and γ0 := INTϕ > 0. We call ϕ bump function. For m ∈ N we

8



split [0, 1]d into N = md subcubes Gi with i ∈ [m]d := {0, . . . , m− 1}d and equip
each subcube with a scaled, shifted bump function ψi(x) := ϕ(mx− i).

If 2 ≤ p ≤ ∞, we choose m := ⌈(5n + 6)1/d⌉ and fi := m−r ψi. Hence, by (13)
and (14) with M = N we have

∥∥∥∥∥
∑

i∈[m]d

sifi

∥∥∥∥∥
W r

p ([0,1]
d)

≤ 1 for arbitrary si ∈ {±1}. (15)

Then γ = INT fi = m−r−d γ0. Restricting to n ≥ 17 and 0 < δ ≤ 1/3, we can
apply Lemma 2.1 and obtain

eMC
prob(n, δ,W

r
p ([0, 1]

d)) ≥ γ0m
−r−d min

{
n1/2

√
log4

1

3δ
, n

}

� min{n−r/d−1/2
√

log δ−1, n−r/d} .

If 1 ≤ p < 2, we restrict to 0 ≤ δ < 1/4 and choose m := ⌈(4n)1/d⌉. In the
case 2−2n−1 ≤ δ, we take M = 2⌈log2(4δ)−1⌉ ≤ 2 log2(2δ)

−1, and easily see that
M ≤ 4n ≤ N is fulfilled. Here, put fi := m−r (N/M)1/p ψi, and note that by (13)
and (14) we have

∥∥∥∥∥
∑

i∈I
sifi

∥∥∥∥∥
W r

p ([0,1]
d)

≤ 1 , for arbitrary si ∈ {±1} and I ⊆ [m]d with #I =M .

We have γ = INT fi = m−r−d+d/pM−1/p, and Lemma 2.2 implies

eMC
prob(n, δ,W

r
p ([0, 1]

d)) ≥ 1
2
γ0m

−r−d+d/pM1−1/p � n−(r/d+1−1/p)
(
log δ−1

)1−1/p
.

For small δ ∈ (0, 2−2n−1), however, we may just choose M = 4n, and similarly we
obtain

eMC
prob(n, δ,W

r
p ([0, 1]

d)) � n−r/d ,

which finishes the proof.

Remark 2.4 (Lower bounds for non-integer smoothness). There are several ap-
proaches to generalize Sobolev spaces for non-integer smoothness r > 0. For
example the Slobedeckii space W r

p (G) is given as the set of functions with finite
norm

‖f‖W r
p (G) :=


‖f‖p

W
⌊r⌋
p (G)

+
∑

|α|1=⌊r⌋

∫

G

∫

G

|Dαf(x)−Dαf(z)|p
|x− z|d+(r−⌊r⌋)p dx dz




1/p

,

where 1 ≤ p < ∞, see for instance the book of Triebel [27, p. 36]. For such
spaces the inequality (13) does not hold anymore. However, we can still construct
fooling functions composed of bumps on disjoint subcubes with random sign, but
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we need to introduce an additional constant in order to take the non-local nature
of fractional derivatives into account.

Let us consider an easier example: Namely, classes of Hölder continuous func-
tions with fractional smoothness 0 < β ≤ 1 (and integrability parameter p = ∞)
given by

Cβ([0, 1]d) :=

{
f : [0, 1]d → R

∣∣∣∣∣ |f |Cβ := sup
x,z∈[0,1]d

|f(x)− f(z)|
|x− z|β∞

<∞
}
. (16)

With the choice fi :=
1
2
m−β ψi, within the proof above, one can ensure (15). Thus,

loosing just a factor 1/2, we still have the same order as should be expected from
generalizing the integer smoothness case,

eMC
prob(n, δ, C

β([0, 1]d)) � n−β/d min

{
1,

√
log δ−1

n

}
. (17)

This fits very well to the upper bounds of Theorem 3.9.

3 Upper Bounds

3.1 Probability amplification

One of the most elementary methods of ‘probability amplification’ is the so-called
‘median trick’, see Alon et al. [2] and Jerrum et al. [14]. The following proposition
is a minor modification of [19, Proposition 2.1, in particular (2.6)] from Niemiro
and Pokarowski, now adapted to the language of algorithms and IBC.

As in Section 2.1, we consider a general function space W equipped with a
(semi-)norm ‖ · ‖W and take its unit ball BW as input set.

Proposition 3.1 (Median trick). For ε > 0 let Am be an arbitrary Monte Carlo

algorithm such that

sup
‖f‖W≤1

P{|Am(f)− INT f | > ε} ≤ α ,

where 0 < α < 1/2. For an odd natural number k, define

Ak,m(f) := med
{
A(1)

m (f), . . . , A(k)
m (f)

}

as the median of k independent realisations of Am. Then

sup
‖f‖W≤1

P{|Am,k(f)− INT f | > ε} ≤ 1

2
(4α(1− α))k/2 < 2k−1 αk/2 .

The previous proposition can be used to derive upper bounds for the prob-
abilistic (ε, δ)-complexity nMC

prob(ε, δ,W) in terms of the ℓ-mean error complexity
nMC
ℓ-mean(ε,W), compare (4).

10



Theorem 3.2. Let ℓ ≥ 1 and 0 < δ ≤ 1/2. Then for the (ε, δ)-complexity holds

nMC
prob(ε, δ,W) ≤ 2 log2 δ

−1 · nMC
ℓ-mean

(
8−1/ℓ ε, W

)
.

In particular, if eMC
ℓ-mean(n,W) � n−̺ for some ̺ > 0, then we have

eMC
prob(n, δ,W) �

(
log δ−1

n

)̺

for n � log δ−1.

Proof. Without loss of generality, we assume that nMC
ℓ-mean(8

−1/ℓε,W) < ∞, oth-
erwise the claimed inequality is trivial. Hence, there is an m ∈ N such that
eMC
ℓ-mean(m,W) < 8−1/ℓε. This implies that there is a Monte Carlo algorithm Am

such that

eMC
ℓ-mean(Am,W) := sup

‖f‖W≤1

(
E ‖Am(f)− INT f‖ℓ

)1/ℓ ≤ 8−1/ℓε.

Thus, for any f ∈ BW by Markov’s inequality we have

P{|Am(f)− INT f | > ε} ≤
(
eMC
ℓ-mean(Am,W)

ε

)ℓ

≤ 1

8
.

Now we aim to apply Proposition 3.1 with k chosen as the smallest odd natural
number that satisfies k ≥ 2 log2(2δ)

−1. (Note that k ≤ 2 log2 δ
−1 for 0 < δ ≤ 1/2.)

Then we obtain the desired complexity bound

nMC
prob(ε, δ,W) ≤ k · nMC

ℓ-mean

(
8−1/ℓ ε,W

)
≤ 2 log2 δ

−1 · nMC
ℓ-mean

(
8−1/ℓ ε, W

)
.

In terms of the error quantities, for fixed m and odd k ≥ 2 log2(2δ)
−1 we can state

eMC
prob(km, δ,W) ≤ 8−1/ℓ eMC

ℓ-mean(m,W) .

Assuming eMC
ℓ-mean(m,W) ≤ C m−̺ for m ≥ m0 ∈ N, and given an information bud-

get n ≥ 2m0 log2 δ
−1, put m := ⌊n/(2 log2 δ−1)⌋ ≍ n/ log δ−1. Then the assertion

follows by the assumption with hidden constant
(

2
log 2

(1 + 1/m0)
)̺ · C.

Remark 3.3 (Integrating Lp-functions). The lower bounds of Theorem 2.3 match
the upper bounds from Theorem 3.2, iff the rate of convergence is related to the
integrability index by ̺ = 1− 1/q where q := min{p, 2}. This is only the case for
smoothness r = 0, i.e., when Lp-balls are the considered input sets. In that case,

eMC
prob(n, δ, Lp) ≍

(
log δ−1

n

)1−1/q

, for n � log δ−1. (18)

Here we used estimates of the q-mean error for the standard i.i.d.-based Monte
Carlo method applied to Lp-functions which, for example, can be found in [3,
Theorem 2], [9, Proposition 5.4], [20, Sect. 2.2.8, Proposition 3], as well as [25,
Proof of Theorem 1].
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Remark 3.4 (Alternatives to the median trick). Catoni [5] proposes an alternative
scheme based on random samples of Lp-functions, which suppresses outliers and
(in contrast to the median trick) is symmetric in the sense that permuting the
sample data does not change the result. Compare also Huber [13] where this
approach is combined with the median trick. Unfortunately, their methods are
not homogeneous and shift invariant, that is, for the algorithm, say A, in general
A(af + b) = aA(f) + b does not hold.

3.2 Separation of the main part

Separation of the main part, also known as control variates, is a well established
technique of variance reduction which uses the approximation of functions with
respect to an Lq-norm in order to exploit the smoothness of the given input set.

Within this section we assume that G ⊂ R
d is a bounded Lipschitz domain,

see [21] for details. For q ≥ 1 let Lq(G) be the Lebesgue space equipped with the
norm ‖ · ‖Lq(G). Let W ⊂ Lq(G) be a normed linear space with corresponding unit
ball BW and assume that function evaluations are continuous (well-defined) on W.
For the approximation step we only consider linear methods

An : W → Lq(G), f 7→ g :=
n∑

i=1

f(xi) gi , (19)

with nodes xi ∈ G and functions gi ∈ Lq(G), where
∫
G
gi(x) dx is known for any

i = 1, . . . , n. The minimal Lq-approximation error of such methods is denoted by

edet(n,W →֒ Lq) := inf
An

sup
‖f‖W≤1

‖An(f)− f‖Lq(G) , (20)

and the ε-complexity ndet(ε,W →֒ Lq) is the minimal number of function evalu-
ations needed in order to achieve an Lq-approximation error smaller than ε. The
idea is to apply a Monte Carlo integration method Mn : Lq → R to the difference
f−g between approximating and original function, while the integral of g = An(f)
is considered to be known. This approach leads to the following theorem.

Theorem 3.5 (Separation of the main part). For any n ∈ N we have

eMC
prob(2n, δ,W) ≤ edet(n,W →֒ Lq) · eMC

prob(n, δ, Lq) .

Proof. Let An be a linear approximation method, see (19), which guarantees for
any f ∈ BW and some α > 0 that

‖An(f)− f‖Lq(G) ≤ α.

Further, let Mω
n be a Monte Carlo method which approximates INTh for inputs

h ∈ Lq. With this we define a new Monte Carlo method Qω
2n (a randomized

quadrature rule) as follows:

12



1. Compute the approximation g := An(f) ∈ Lq(G), using function values f(xi)
at nodes x1, . . . ,xn ∈ G.

2. Return
Qω

2n(f) := INT g + αMω
n

(
α−1(f − g)

)

where Mn evaluates α−1(f − g) at random nodes Xω
n+1, . . . ,X

ω
2n ∈ G. (If Mn

is homogeneous, that is, Mω
n (λf) = λMω

n (f) for any λ ∈ R, then α cancels
out.)

Note that, the information y = (f(x1), . . . , f(xn), f(X
ω
n+1), . . . , f(X

ω
2n)) suffices to

execute the algorithm, namely,

INT g =

n∑

i=1

f(xi) INT gi , and

[α−1(f − g)](Xω
n+j) = α−1

(
f(Xω

n+j)−
n∑

i=1

f(xi) gi(X
ω
n+j)

)
for j = 1, . . . , n.

Indeed, INT gi is assumed to be precomputed and computing function values of gi
is considered to belong to the combinatorial cost, rather than the information cost
of the algorithm.

By writing ε = αε′, the uncertainty of the algorithm can be traced back to the
uncertainty of Mn. Namely, if Mn is (ε′, δ)-approximating in Lq(G), then

P {|Q2n(f)− INT f | > ε} = P
{
|Mn(α

−1(f − g))− INT(α−1(f − g))| > ε′
}

≤ δ .

Optimal methodsAn andM
ω
n lead to α → edet(n,W →֒ Lq) and ε

′ → eMC
prob(n, δ, Lq),

while keeping the uncertainty bounded by δ, thus letting ε approach the stated
error bound.

As long as function evaluations are continuous, it suffices to work with deter-
ministic approximation methods of the form (19). Note that for isotropic Sobolev
spaces W r

p (G) on bounded Lipschitz domains G ⊂ R
d, this is the case iff rp > d.

In this setting it is well known that with q := min{p, 2},
edet

(
n,W r

p (G) →֒ Lq(G)
)
≍ n−r/d , if rp > d. (21)

ForG = [0, 1]d, this result can be achieved with piecewise polynomial interpolation,
see for instance Heinrich [9, Proposition 5.1], technical details of approximation
methods are contained in Ciarlet [6]. For the general case of bounded Lipschitz
domains G ⊂ R

d, see Novak and Triebel [21, Theorem 23]. From this we conclude
optimal upper bounds.

Theorem 3.6. Let G ⊂ R
d be a bounded Lipschitz domain. Further let r ∈ N and

1 ≤ p ≤ ∞ with rp > d. Then we have the asymptotic rate

eMC
prob

(
n, δ,W r

p (G)
)
≍ n−r/d min

{
1,

(
log δ−1

n

)1−1/q
}
,
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where q := min{2, p}.

Proof. The lower bounds follow from Theorem 2.3.
For n � log δ−1, we combine (18) with (21) via Theorem 3.5 and obtain

eMC
prob

(
n, δ,W r

p (G)
)
� n−r/d

(
log δ−1

n

)1−1/q

.

For n ≺ log δ−1 we rely on deterministic quadrature. This problem is easier than
approximation in the sense that if g ∈ Lq(G) is an approximation of f , then
| INT f − INT g| ≤ Vold(G)

1−1/q · ‖f − g‖Lq(G). Hence,

edet(n,W r
p (G)) := inf

An

sup
‖f‖W≤1

|An(f)− INT f |

� edet(n,W r
p (G) →֒ Lq(G)) ≍ n−r/d .

See also Novak [20, 1.3.12] for a direct derivation on G = [0, 1]d.

Remark 3.7 (Lower smoothness). The condition rp > d is necessary to guarantee
that the evaluation of functions on W r

p (G) for 1 < p ≤ ∞ is well-defined. (For
p = 1, the condition r = d is also sufficient, but then deterministic methods already
provide the optimal error rates.) In the cases 1 < p <∞ with rp ≤ d one can still
use separation of the main part, but with a randomized approximation scheme,
see Heinrich [10] for the case G = [0, 1]d. That way, for any 1 ≤ p ≤ ∞ and
general r ∈ N we have

eMC
1-mean(n,W

r
p ([0, 1]

d)) ≍ n−(r/d+1−1/q) ,

with q := min{p, 2}. Probability amplification, see Theorem 3.2, yields

eMC
prob(n, δ,W

r
p ([0, 1]

d)) ≍
(
log δ−1

n

)r/d+1−1/q

, for n � log δ−1.

The power of log δ−1 in this upper bound may exceed the power of the lower bound
by r/d which can get close to 1 for p → 1. We conjecture that the influence of δ
is smaller at least if one is close to the regime where functions are continuous.

Instead of deterministic algorithms of the form (19) one might also consider
general randomized methods for the approximation of functions in W. For those
let eMC

prob(n, δ,W →֒ Lq) be the smallest ε > 0, such that there exists a general
randomized approximation algorithm satisfying

P{‖An(f)− f‖Lq
> ε} ≤ δ for all ‖f‖W ≤ 1.

Similarly to Theorem 3.5 one can show that

eMC
prob(2n, δ,W) ≤ eMC

prob(n, δ/2,W →֒ Lq) · eMC
prob(n, δ/2, Lq) . (22)
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Such an approach, however, seems to rely on complicated algorithms, since non-
linearity might be inevitable in order to suppress outliers. There might be easier
implementable Monte Carlo methods for integration which achieve a better order
of convergence without relying on the approximation of functions. Such methods
are needed in spaces of mixed smoothness, see the discussion in Section 4.

Anyway, studying Sobolev embeddings W r
p (G) →֒ Lq(G) in terms of approx-

imation with high confidence within the regime d(q − p) < rqp ≤ dq for general
integrability parameters 1 ≤ p, q <∞, is an interesting problem on its own, com-
pare Heinrich [10].

3.3 Stratified sampling

Let us introduce stratified sampling for the approximation of INT f for integrable
functions defined on G = [0, 1]d. For m ∈ N we split the unit cube [0, 1]d into
md subcubes given by

Gi =

d∏

j=1

[
ij
m
,
ij + 1

m

)
,

with i ∈ [m]d := {0, . . . , m− 1}d and i = (i1, . . . , id). Let (Xi)i∈[m]d be a sequence
of independent random variables with Xi uniformly distributed in Gi. Then, strat-
ified sampling is given by

Sd
m(f) :=

1

md

∑

i∈[m]d

f(Xi) , (23)

which uses md function evaluations of f . Compared to the separation of the main
part, stratified sampling is easier to implement. In some cases we show that it
provides optimal results in terms of the (ε, δ)-complexity. Since the structure only
depends on the information budget and not on δ (compare the median trick), we
obtain a universal method in terms of the uncertainty.

We use Hoeffding’s inequality which is, for the convenience of the reader, stated
in the following proposition.

Proposition 3.8 (Hoeffding’s inequality). Let Y1, . . . , Yn be independent random

variables supported on intervals of length bi > 0, that is, ess sup Yi− ess inf Yi ≤ bi.
Then, for Sn := 1

n

∑n
i=1 Yi and ε > 0 we have

P {|Sn − ESn| > ε} ≤ 2 exp

(
− 2n2 ε2∑n

i=1 b
2
i

)
.

First, we consider Hölder classes Cβ([0, 1]d) with smoothness β ∈ (0, 1], see (16).
Compare also [4] for the result in terms of the root mean squared error.

Theorem 3.9. For the classes of Hölder-continuous functions on [0, 1]d, stratified
sampling achieves the optimal rate of convergence, namely

eMC
prob

(
n, δ, Cβ([0, 1]d)

)
≍ n−β/d min

{
1,

√
log δ−1

n

}
.
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Proof. Concerning the lower bounds, see (17) in Remark 2.4.
For the upper bounds, we start with the case n = md with m ∈ N and em-

ploy Sd
m. Obviously, this method is unbiased, i.e., ESd

m(f) = INT f . By Hölder
continuity, the random variables Yi = f(Xi) are spread on intervals of length
bi ≤ m−β for |f |Cβ ≤ 1. This implies |Sd

m(f)− INT f | ≤ m−β = n−β/d. Hoeff-
ding’s inequality, Proposition 3.8, leads to

P{|Sd
m(f)− INT f | > ε} ≤ 2 exp

(
− 2m2d ε2

md ·m−2β

)
= 2 exp

(
−2md+2βε2

)
.

This is guaranteed to be at most δ for

ε =
1√
2
m−(β+d/2)

√
log

2

δ
=

1√
2
n−(β/d+1/2)

√
log

2

δ
.

Given an information budget n ∈ N, we choose m := ⌊n1/d⌋. Employing the
method Sd

m, see (23), we actually only use md ≤ n function values. For n ≥ 2d we
have m ≥ 1

2
n1/d, hence we obtain the stated asymptotics.

Now we consider the isotropic Sobolev classes W 1
p ([0, 1]

d) of smoothness 1. For
Hoeffding’s inequality to be applicable, we need W 1

p ([0, 1]
d) →֒ L∞([0, 1]d) which

is the case for p > d.

Theorem 3.10. Stratified sampling leads to

eMC
prob(n, δ,W

1
p ([0, 1]

d)) � n−1/d min
{
1, n−(1−1/q)

√
log δ−1

}
, for p > d,

where q := min{p, 2}. For p ≥ 2, this perfectly matches the lower bounds from

Theorem 2.3.

Proof. We start with the one-dimensional case considering the method S1
n, see (23).

Hence, the unit interval [0, 1] is split into intervals G0, . . . , Gn−1 of length n
−1. For

x1 < x2 from [0, 1] we have

|f(x2)− f(x1)| =
∣∣∣∣
∫

[x1,x2]

f ′(x) dx

∣∣∣∣ ≤
∫

[x1,x2]

|f ′(x)| dx .

Hence, on the ith interval Gi we have

bi ≤
∫

Gi

|f ′(x)| dx ≤ n−1

(
n

∫

Gi

|f ′(x)|q dx
)1/q

= n−(1−1/q) ‖f ′‖Lq(Gi) ,

where we used Jensen’s inequality. Furthermore

‖f ′‖Lq([0,1]) =

(
n∑

i=1

‖f ′‖qLq(Gi)

)1/q

≥ n1−1/q

(
n∑

i=1

bqi

)1/q

≥ n1−1/q

(
n∑

i=1

b2i

)1/2

,
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exploiting q ≤ 2 in the last inequality. Applying Hoeffding’s inequality, Proposi-
tion 3.8, for ‖f‖W 1

p ([0,1]) ≤ 1 we obtain

P{|S1
n(f)− INT f | > ε} ≤ 2 exp

(
−2n4−2/q ε2

)
.

This is guaranteed to be at most δ for

ε =
1√
2
n−(2−1/q)

√
log

2

δ
,

which shows the assertion for d = 1.
In higher dimension, d ≥ 2, splitting [0, 1]d into md subcubes Gi with i ∈ [m]d,

we exploit the embedding W 1
p ([0, 1]

d) →֒ L∞([0, 1]d). Namely, incorporating scal-
ing we bound the spread of function values within Gi by

bi := ess sup
Gi

f − ess inf
Gi

f ≤ C md/p−1 ‖f‖W 1
p (Gi) ,

with some constant C > 0 depending only on p and d. From this, with p > d ≥ 2,
we conclude

(
∑

i∈[m]d

b2i

)1/2

≤ md(1/2−1/p)

(
∑

i∈[m]d

bpi

)1/p

≤ C m−(1−d/2) ‖f‖W 1
p ([0,1]

d) ,

compare (13). Choosing m := ⌈n1/d⌉, we obtain the right order by applying
Hoeffding’s inequality similarly to the one-dimensional case.

Remark 3.11. The one-dimensional problem contains cases of small integrabil-
ity 1 < p < 2 for which we do not obtain the optimal δ-dependence. It is not
known to us whether this is a deficiency of the method or of the proof. In that
case, we may use separation of the main part, which is equally simple as f may
be approximated on Gi by just one function value.

In the case of discontinuous functions, p < d, it remains challenging to find
methods which detect and discourage outliers within stratified sampling. One
idea might be to take several function values out of each subcube. This could
improve also on the above mentioned case d = 1 and 1 < p < 2. Any result in that
direction might offer reasonable alternatives to control variates, where the case of
small smoothness is also open.

4 Challenges in mixed smoothness spaces

In the recent years spaces of dominating mixed smoothness gained a lot of interest
in the study of high-dimensional problems. For a survey on this topic we refer to
the paper of Dũng, Temlyakov, and Ullrich [7].
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For integer smoothness r ∈ N and integrability 1 ≤ p ≤ ∞, on domains
G ⊂ R

d, Sobolev spaces of dominating mixed smoothness can be defined by

Wmix,r
p (G) :=

{
f ∈ Lp(G)

∣∣∣∣ ‖f‖Wmix, r
p (G) :=

( ∑

α∈Nd
0

|α|∞≤r

‖Dαf‖pLp(G)

)1/p

≤ ∞
}
.

Lower bounds of the integration problem can be shown by scaling bump func-
tions ϕ : [0, 1]d → R in one coordinate, that is, for m ∈ N we define functions
ψi(x) := ϕ(mx1 − i, x2, . . . , xd), where i ∈ {0, . . . , m − 1} = [m]. By using those,
similarly to Theorem 2.3 one can obtain

eMC
prob(n, δ,W

mix,r
p ([0, 1]d)) � min

{
n−r, n−(r+1−1/q) (log δ−1)1−1/q

}
. (24)

When talking about upper bounds it is useful to note that the integration prob-
lem is as difficult for the non-periodic spaces Wmix,r

p (G) as for the zero-boundary

space W̊mix,r
p (G) := {f ∈ Wmix,r

p (Rd) | supp f ⊆ G}. Namely, the integral of any
function f ∈ Wmix,r

p ([0, 1]d), via a change of variables, can be traced back to the

integral of a function h := | detΦ′| · (f ◦ Φ) ∈ W̊mix,r
p ([0, 1]d) with zero boundary

condition, where Φ: [0, 1]d → [0, 1]d is a smooth bijection. That way we only loose
a constant, see Nguyen, Ullrich, and Ullrich [18]. Let us mention that our lower
bounds are based on bump functions with zero boundary, so the lower bounds hold
with the same constants.

The optimal order of convergence in terms of the root mean squared error is
determined by Ullrich [28], namely

eMC
2-mean(n,W

mix,r
p ([0, 1]d)) ≍ n−(r+1−1/q) , for r ≥ max{1/p− 1/2, 0},

where q = min{p, 2}. The result is based on a randomly shifted and dilated Frolov
rule, developed by Krieg and Novak [15], given by

QB,v(f) :=
1

| detB|
∑

m∈Zd

f(B−⊤(m+ v)) ,

where f ∈ W̊mix,r
p ([0, 1]d), which is of course only evaluated inside [0, 1]d. Here,

B = diag(u)Bn with dilation random variable u and independent shift random
variable v distributed according to the uniform distribution in [1/2, 3/2]d and
[0, 1]d, respectively, as well as a suitable generator matrix Bn = n1/dB1. ‘Suitable’
means detBn = n and

∏d
j=1 |(B1m)j | ≥ c > 0 for all m ∈ Z

d \ {0}. In particular,
the expected number of function evaluations is n. (As mentioned before, the
lower bounds from Section 2 can be extended to methods with varying cardinality
which will only affect constants.) Via Theorem 3.2 one can build a method by
independent repetition which provides

eMC
prob(n, δ,W

mix,r
p ([0, 1]d)) �

(
log δ−1

n

)r+1−1/q

for n � log δ−1, (25)
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with q := min{p, 2}. Unfortunately, we do not achieve the optimal dependence
on δ. The original algorithm alone does not possess desirable confidence guaran-
tees, as the following one-dimensional counter example shows. This is not surpris-
ing as the number of random parameters is fixed by the dimension and thus we do
not expect to observe concentration phenomena, which is in contrast to stratified
sampling.

Example 4.1. We consider the integration problem in a one dimensional setting
on W̊

mix,r
2 ([0, 1]). The random Frolov rule that uses n function values on average

is determined by

Qn(f) :=
1

un

∑

m∈Z
f

(
m+ v

un

)
,

with independent random variables u and v uniformly distributed in [1/2, 3/2]
and [0, 1], respectively. Let ϕ ∈ W̊

mix,r
2 ([0, 1]) be a bump function with integral

γ0 :=
∫ 1

0
ϕ dx and norm ‖ϕ‖

W
mix,r
2

≤ 1. For

fn(x) := (2n)−r
n−1∑

k=0

ϕ(2nx− 2k)

observe that ‖fn‖Wmix,r
2

≤ 1 and
∫ 1

0
fn dx = γ0/2

r+1 · n−r. Furthermore, the

algorithm returns 0 if all the function values are computed inside
⋃n−1

k=0

[
2k+1
2n

, k+1
n

]
,

which is where fn vanishes. This happens if v
un

∈ [ 1
2n
, 1
n
] and n−1+v

un
∈ [2n−1

2n
, 1],

in particular for shifts v ∈ [1
2
, 3
4
] and dilations u ∈ [1− 1

4n
, 1]. This means, with

probability exceeding δn := 1
16n

the error is γ0/2
r+1 · n−r, hence,

eMC
prob(Qn, δn,W̊

mix,r
2 ([0, 1])) � n−r ≻ n−(r+1/2)

√
log δ−1

n ≍ n−(r+1/2)
√

logn .

This reveals a significant gap to the general lower bound (24).

Separation of the main part does not provide the optimal rate in n, but the
dependence on δ can be reduced. Since we may restrict to the integration problem
for functions with zero boundary condition, W̊mix,r

p ([0, 1]), we may apply results

for the approximation of periodic functions, denoted by W̃mix,r
p ([0, 1]d). Namely,

edet(n,W̃mix,r
p ([0, 1]d) →֒ Lp) � n−r (log n)(r+1/2)(d−1) , for 1 < p <∞,

which can be found in [7, (5.11)]. Applying Theorem 3.5, for n � log δ−1 we
conclude that

eMC
prob(n, δ,W

mix,r
p ([0, 1]d)) � n−(r+1−1/q) (logn)(r+1/2)(d−1) (log δ−1)1−1/q , (26)

where q := min{p, 2}. Here the δ-dependence is optimal, but the rate in n is
affected by logarithmic terms.

Finally, deterministic quadrature is known to achieve

edet(n,Wmix,r
p ([0, 1]d)) ≍ n−r(logn)(d−1)/2 , for 1 < p <∞, (27)
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see [7, Theorem 8.14]. This catches the case n ≺ log δ−1.
It remains a challenging open problem to find randomized integration methods

which have the right dependence on the uncertainty while fully exploiting the
smoothness.

A Technical Proofs

In Section 2 we need the following two inequalities about binomial sums. The first
lemma is a minor extension of [17, Proposition 7.3.2], holding also for odd k, and
with slightly improved constants.

Lemma A.1. For k ∈ N and t ∈ N0 we have

2−k

⌊k/2⌋−t∑

j=0

(
k

j

)
= 2−k

k∑

j=⌈k/2⌉+t

(
k

j

)

≥ 1

2 + 4/
√
π





exp

(
−16 (log 2) t2

k

)
for odd k and t ∈ [0, k+3

8
],

exp

(
−16 (log 2) (t− 1/2)2

k

)
for even k and t ∈ [0, k+6

8
].

Proof. First, recall that
(

k
⌊k/2⌋

)
< 2k/

√
π ⌈k/2⌉, which for even k follows from Stir-

ling’s formula and for odd k can be derived from k + 1 via Pascal’s rule. Hence,

2−k

⌊k/2⌋−t∑

j=0

(
k

j

)
≥ 1

2
− 2−k t

(
k

⌊k/2⌋

)
>

1

2
− t√

π ⌈k/2⌉
.

For 0 ≤ t ≤
√

⌈k/2⌉/(1 + 2/
√
π), this gives the absolute lower bound 1

2+4/
√
π
.

For larger t we follow the approach of [17, Proposition 7.3.2]. Basic estimates
yield

2−k

⌊k/2⌋−t∑

j=0

(
k

j

)
≥ 2−k

⌊k/2⌋−t∑

j=⌊k/2⌋−2t+1

(
k

j

)

≥ 2−k t

(
k

⌊k/2⌋ − 2t+ 1

)

= 2−k t

(
k

⌊k/2⌋

) 2t−1∏

i=1

⌊k/2⌋ − 2t+ 1 + i

⌈k/2⌉ + i

≥ 2−k t

(
k

⌊k/2⌋

)(⌊k/2⌋ − 2t+ 2

⌈k/2⌉ + 1

)2t−1

.

Next, we use 1− x ≥ exp(−2 (log 2) x) for 0 ≤ x ≤ 1/2. For odd k we set x =
2t/(⌈k/2⌉ + 1) and for even k we set x = (2t− 1)/(k/2 + 1). This is where t ≤
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(k+6)/8 for even k, and t ≤ (k+ 3)/8 for odd k, comes into play. Finally, we use(
k

⌈k/2⌉
)
≥ 2k/(2

√
⌈k/2⌉), and obtain

2−k

⌊k/2⌋−t∑

j=0

(
k

j

)
≥ t

2
√
⌈k/2⌉





exp
[
−8 (log 2) t (t− 1/2)

⌈k/2⌉ + 1

]
for odd k,

exp
[
−8 (log 2) (t− 1/2)2

k/2 + 1

]
for even k.

For t ≥
√

⌈k/2⌉/(1 + 2/
√
π), the prefactor simplifies as stated in the claimed in-

equality.

Lemma A.2. For k, k′ ∈ N0 we have for all k ≥ k′ that

2−k

[⌊ k−k′

2

⌋

∑

j=0

(
k

j

)
+

k∑

j=⌈k+k′+1

2 ⌉

(
k

j

)]
≥ 2−k′ .

Proof. The proof follows by induction over k ≥ k′. A speciality here is that in
the induction step we assume the statement for k and prove it for k + 2, which is
sufficient when the base case is verified for k = k′ and k = k′ + 1.

For k = k′ and k = k′ + 1 we have 2−k′
(
k
0

)
and 2−(k′+1)[

(
k′

0

)
+
(
k′+1
k′+1

)
] which

proves the inequality. (We even have equality.)
For the induction step from k to k + 2 where k ≥ k′, via Pascal’s rule, as well

as using
(

k

⌊k+2−k′

2 ⌋
)
≥
(

k

⌊k−k′

2 ⌋
)
, we obtain

⌊

k+2−k′

2

⌋

∑

j=0

(
k + 2

j

)
= 4

⌊

k−k′

2

⌋

−1∑

j=0

(
k

j

)
+ 3

(
k⌊

k−k′

2

⌋
)
+

(
k⌊

k+2−k′

2

⌋
)

≥ 4

⌊

k−k′

2

⌋

∑

j=0

(
k

j

)
.

Similarly, with
(

k

⌊ k+k′+1

2 ⌋
)
≥
(

k

⌊k+k′+3

2 ⌋
)
, one can show

k+2∑

j=⌈k+k′+3

2 ⌉

(
k + 2

j

)
≥ 4

k∑

j=⌈k+k′+1

2 ⌉

(
k

j

)
.

Now, by the induction hypothesis the assertion is proven.
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