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Abstract
Hankel-norm approximation is a model reduction method for linear time-invariant
systems, which provides the best approximation in the Hankel semi-norm. In this
paper, the computation of the optimal Hankel-norm approximation is generalized to
the case of linear time-invariant continuous-time descriptor systems. A new algebraic
characterization of all-pass descriptor systems is developed and used to construct
an efficient algorithm by refining the generalized balanced truncation square root
method. For a wide practical usage, adaptations of the introduced algorithm towards
stable computations and sparse systems are suggested, as well as an approach for
a projection-free algorithm. To show the approximation behavior of the introduced
method, numerical examples are presented.
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1 Introduction

Many different real-world applications, like chemical processes, electrical circuits
and networks, or computational fluid dynamics, naturally lead to models, described
by systems of differential-algebraic equations. Since experiments can be very costly,
time-consuming, and expensive, these models are used for simulations and the design
of controllers. The modeling process often results in linear time-invariant continuous-
time descriptor systems of the form

Eẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),
(1)

with E, A∈R
n×n, B ∈R

n×m, C ∈R
p×n, D ∈R

p×m. Here, u(t)∈R
m are the inputs

of the system, which influence the generalized states x(t) ∈ R
n to get the desired

outputs y(t) ∈ R
p. Throughout this paper, it is assumed that the matrix pencil λE−A

is regular, i.e., there exists at least one λ ∈ C such that det(λE −A) �= 0. In this case,
and with the initial condition Ex(0) = 0, the input-output behavior of the system (1)
in the frequency domain can be described via the system’s transfer function

G(s) = C(sE − A)−1B + D. (2)

The quintuple (E, A, B, C, D), consisting of the matrices from (1), defines a real-
ization of the system (1) and its transfer function (2). Usually, the numbers of inputs
and outputs are very small in contrast to the number of differential-algebraic equa-
tions and generalized states n, which quickly enlarges due to different reasons, e.g.,
the model shall provide a required accuracy. Because of that, the usage of complete
models often reaches the limits of computational resources like memory and compu-
tation time. Since the acquired data for the model usually contain a huge amount of
redundancies, it is possible to approximate the original model by a new system with
a much smaller order. The task of model reduction is to construct a reduced-order
descriptor system

Ê ˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t) + D̂u(t),
(3)

of order r � n, such that the input-output behavior of the original system (1) is
approximated.

Many model reduction techniques were originally developed for the standard
system case, where the descriptor term E is the identity matrix In (or at least nonsin-
gular). But in recent years, quite a few of those methods have been extended to the
case of descriptor systems with singular E matrices. There are different approaches
for the construction of (3), e.g., matrix equations can be used to determine a measure
for truncatable states [6], or the transfer function can be approximated by rational
interpolation [14]. A special technique of model reduction is the computation of the
optimal Hankel-norm approximation (HNA). This technique actually provides a best
approximation in the Hankel semi-norm. Based on the work of Adamjan, Arov, and
Krein about the approximation of Hankel matrices [1], an algorithm for the compu-
tation of the HNA for standard systems was introduced by Glover in [12]. Beside
minimizing the Hankel semi-norm, by construction, the HNA is very close to the
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solution of the best approximation problem in the H∞-norm, which usually also gives
a smaller H∞ error of the reduced-order models than balanced truncation.

A generalization of the HNA to the descriptor system case was already described
by Cao, Saltik, and Weiland in [10]. The authors are using the Weierstrass canonical
form for an explicit construction of reduced decoupled subsystems. The main prob-
lem of this method is the computation of the Weierstrass canonical form, which is
numerically costly and unstable. Also, additional conditions, like C-controllability
and C-observability of the system, have to be assumed.

In this paper, a new efficient algorithm for the computation of the generalized
Hankel-norm approximation (GHNA) will be proposed. Our main contributions are
twofold:

1. We generalize the concept of all-pass transfer functions to descriptor systems
(Theorem 1).

2. We derive new and reliable numerical implementations of the GHNA that also
allow the application of the Hankel-norm approximation method to large-scale
problems with sparse coefficient matrices as they arise, e.g., from systems with
dynamics described by semi-discretized unsteady partial differential equations.

In Section 2, the mathematical background of linear descriptor systems is recalled.
Then, the HNA method for the standard system case is introduced in the first part of
Section 3. Afterwards, the generalized balanced truncation is reviewed and used for
the construction of the new GHNA method. The numerical difficulties and adjust-
ments are discussed in Section 4 for usable implementations of the method. Two
different implementations of the method are then tested on numerical examples in
Section 5. In Section 6, the conclusions of this paper can be found.

2 Mathematical basics

For regular matrix pencils λE − A, the Weierstrass canonical form always exists:
there are invertible matrices W, T ∈ C

n×n such that

W(λE − A)T = λ

[
Inf

0
0 N

]
−

[
J 0
0 In∞

]
, (4)

where J and N are both in Jordan canonical form, J is regular, and N is nilpotent
with index ν; see [20]. The numbers nf and n∞ are the dimensions of the deflating
subspaces corresponding to the finite and infinite eigenvalues of λE−A, respectively.
Then, the spectral projectors onto the left and right deflating subspaces corresponding
to the finite eigenvalues of the matrix pencil λE − A are given by

P� = W−1
[

Inf
0

0 0

]
W and Pr = T

[
Inf

0
0 0

]
T −1, (5)

with W and T from the Weierstrass canonical form (4); see, e.g., [21].
Throughout the paper, we assume the c-stability of the matrix pencil λE − A, i.e.,

the matrix pencil λE−A is regular and all finite eigenvalues of λE−A lie in the open
left half-plane. In this case, the proper controllability and observability Gramians are
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defined as the unique, positive semidefinite solutions of the projected generalized
continuous-time Lyapunov equations

EGpcA
T + AGpcE

T + P�BBTPT
� = 0, Gpc = PrGpcP

T
r , (6)

ETGpoA + ATGpoE + PT
r CTCPr = 0, Gpo = PT

� GpoP�, (7)

with P� and Pr the spectral projectors corresponding to the finite eigenvalues (5);
see [21]. Furthermore, the improper controllability and observability Gramians are
given as the unique, positive semidefinite solutions of the projected generalized
discrete-time Lyapunov equations (Stein equations)

AGicA
T − EGicE

T − Q�BBTQT
� = 0, Gic = QrGicQ

T
r , (8)

ATGioA − ETGioE − QT
rC

TCQr = 0, Gio = QT
�GioQ�, (9)

with Q� = In − P� and Qr = In − Pr , the spectral projectors onto the left and right
deflating subspaces corresponding to the infinite eigenvalues of the matrix pencil
λE − A; see [21].

Using the system Gramians, the set of Hankel singular values is defined in the
following; see [16].

Definition 1 The square roots of the nf largest eigenvalues of GpcE
TGpoE denoted

by ς1 ≥ ς2 ≥ · · · ≥ ςnf
are the proper Hankel singular values of (1). The square

roots of the n∞ largest eigenvalues of GicA
TGioA denoted by θ1 ≥ θ2 ≥ · · · ≥ θn∞

are the improper Hankel singular values of (1).

In case of a non-singular descriptor term E, the proper Hankel singular values are
the classical Hankel singular values of the system. Therefore, an equivalent energy
interpretation of the proper Hankel singular values exists, which proposes the trun-
cation of states corresponding to small proper Hankel singular values, which are
difficult to control and observe. Unfortunately, this does not hold for the improper
Hankel singular values. Those correspond to the algebraic constraints of the system
and quantify which constraints are necessary to characterize the system’s behavior
and which are not, i.e., states corresponding to the non-zero improper Hankel singular
values describe necessary constraints and should not be truncated.

There exist diverse concepts of controllability and observability for descriptor
systems. For this paper, we restrict ourselves to the following ones; see, e.g., [21].

Definition 2 System (1) is called:

1. R-controllable if rank
[
λE − A, B

] = n for all λ ∈ C.
2. C-controllable if the system is R-controllable and rank

[
E, B

] = n.
3. R-observable if rank

[
λET − AT, CT

] = n for all λ ∈ C.
4. C-observable if the system is R-observable and rank

[
ET, CT

] = n.

The relation between these controllability, observability notions and the system
Gramians is given in [22, Theorem 2.3]. Especially, all proper Hankel singular values
are non-zero if and only if the system is R-controllable and R-observable.
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The mapping from past inputs u− : (−∞, 0] → R
m to future outputs y+ :

(0, +∞] → R
p is described by the Hankel operator y+ = Hu−. A generalization of

this operator to the case of descriptor systems can be found in [10]. The measure of
the influence of past inputs on future outputs in the L2-norm leads to the definition
of the Hankel semi-norm for descriptor systems.

Definition 3 The Hankel semi-norm of a system G is given by

‖G‖H = sup
u−∈Wν−1

2 (−∞,0]

‖y+‖L2‖u−‖L2
, (10)

where Wν−1
2 (−∞, 0] denotes the Sobolev space of ν −1 times weakly differentiable

functions w.r.t. the L2 inner product on the interval (−∞, 0] and ‖.‖L2 is the L2-
norm.

It should be noted that the Hankel semi-norm is independent of the feed-through
term D, i.e., even for D �= 0 the semi-norm can be 0. In case of an invertible
descriptor term E, the Hankel semi-norm (10) simplifies to

‖G‖H = ςmax(G),

where ςmax(G) is the largest Hankel singular value of the system G.

3 Generalized Hankel-norm approximation

3.1 Algorithm for standard systems

First, the algorithm for the standard system case, introduced by Glover in [12], is
reviewed. Therefore, a balanced minimal realization of the given standard system
(Inmin , A, B, C, D) is assumed, where nmin is the McMillan degree of the system, i.e.,
the order of its minimal realization. The computation is usually done by the balanced
truncation square root method. Since the resulting system is balanced and minimal,
the system Gramians are equal and diagonal

Gpc = Gpo = diag(ς1, ς2, . . . , ςnmin),

with ς1, . . . , ςnmin all non-zero Hankel singular values of the system. Next, the
system is partitioned by the order r such that

ς1 ≥ . . . ≥ ςr > ςr+1 = . . . = ςr+k > ςr+k+1 ≥ . . . ≥ ςnmin ,

with k ≥ 1 being the multiplicity of the (r + 1)-st Hankel singular value. The Grami-
ans are reordered to separate the block with the (r + 1)-st Hankel singular value
as

Ǧpc = Ǧpo =
[

�̌

ςr+1Ik

]
, (11)
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with �̌ = diag(ς1, . . . , ςr , ςr+k+1, . . . , ςnmin). Accordingly to (11), the remaining
system matrices have to be permuted and partitioned

Ǎ =
[

A11 A12
A21 A22

]
, B̌ =

[
B1
B2

]
, Č = [

C1, C2
]

.

Then, the partitioned system is transformed by the following formulas

Ã = �−1(ς2
r+1A

T
11 + �̌A11�̌ + ςr+1C

T
1UBT

1),

B̃ = �−1(�̌B1 − ςr+1C
T
1U),

C̃ = C1�̌ − ςr+1UBT
1,

D̃ = D + ςr+1U,

(12)

with � = �̌2−ς2
r+1Inmin−k and U = (CT

2)†B2. Here, M† denotes the Moore-Penrose
pseudo-inverse of a matrix M . This system is constructed such that the error transfer
function E=G−G̃ is scaled all-pass with G̃ the transfer function of (12), i.e., it holds

E(s)ET(−s) = ς2
r+1Ip, (13)

for all s ∈ C that are no poles of E(s) or ET(−s). In this case, the approximation
error satisfies

‖E‖H = ‖E‖L∞ = ςr+1. (14)

The transfer function G̃ of (12) has exactly nmin−k−r unstable poles. As last step,
an additive decomposition of G̃ is computed such that G̃ = Gh + G+, where G+ is
the anti-stable part of order nmin − k − r and Gh is the stable part of order r . Since
the Hankel semi-norm only depends on the stable part of the system, the error (14) in
the Hankel semi-norm does not change if the unstable part is removed, such that

‖G − Gh‖H = ςr+1. (15)

3.2 Computing a balanced realization for descriptor systems

As for the standard system case, for descriptor systems, a balanced conditionally
minimal realization is needed. The term “conditionally” minimal means that the
order of the system is minimal except of the reduction of the index-1 parts in E;
see [19]. The computation is done using the generalized balanced truncation square
root method (GBT(SR)). The basic idea of this method is the computation of a
balanced realization and the truncation of unnecessary states.

Definition 4 A realization of a descriptor system (1) is called balanced if

Gpc = Gpo =
[

� 0
0 0

]
and Gic = Gio =

[
0 0
0 	

]

hold, with the proper Hankel singular values � = diag(ς1, . . . , ςnf
) and the

improper Hankel singular values 	 = diag(θ1, . . . , θn∞).

The system states are truncated with respect to the computed Hankel singular
values. The proper Hankel singular values have the same meaning as the classical
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Hankel singular values in the standard case, i.e., states corresponding to small proper
Hankel singular values are difficult to control and observe at the same time and can
be omitted. In case of the improper Hankel singular values, only zeros can be trun-
cated as mentioned in the previous section; see also [16]. The number of non-zero
improper Hankel singular values is equal to the rank of the matrix GicA

TGioA, which
can in fact be bounded by

rank(GicA
TGioA) ≤ min(νm, νp, n∞), (16)

with ν, the index of the system, m, the number of inputs, p, the number of outputs,
and n∞, the dimension of the deflating subspace corresponding to the infinite eigen-
values of λE − A. So for large n∞ and usually small ν, the descriptor system (1)
can be reduced significantly by the truncation of zero improper Hankel singular
values.

One method to compute the balanced truncation of a descriptor system is the
square root method. Therefore, consider the skinny singular value decompositions

LT
pERp = [

U1, U2
] [

�1 0
0 �2

] [
VT

1
VT

2

]
, (17)

LT
i ARi = U3	3V

T
3 , (18)

with Gpc = RpRT
p, Gpo = LpLT

p, Gic = RiR
T
i , and Gio = LiL

T
i . The matrices[

U1, U2
]
,
[
V1, V2

]
, U3 and V3 have orthonormal columns and the diagonal matri-

ces �1, �2, and 	3 contain the non-zero proper and improper Hankel singular values,
respectively. The partition of the proper Hankel singular values is chosen such that �1
contains all the desired Hankel singular values and �2 the undesired ones. By using
the singular value decompositions (17) and (18), the following projection matrices
can be defined

W� =
[

LpU1�
− 1

2
1 , LiU3	

− 1
2

3

]
∈ R

n×�,

T� =
[

RpV1�
− 1

2
1 , RiV3	

− 1
2

3

]
∈ R

n×�,
(19)

where � = �f +�∞ is the sum of the number of desired proper Hankel singular values
�f and the non-zero improper Hankel singular values �∞. The projected realization

(Ê, Â, B̂, Ĉ, D̂) = (WT
� ET�, W

T
� AT�, W

T
� B, CT�, D) (20)

is of order � and balanced with the set of Hankel singular values contained in �1 and
	3. The resulting matrix pencil λÊ−Â resembles the Weierstrass canonical form (4),
in that

Ê =
[

I�f
0

0 E∞

]
and Â =

[
Af 0
0 I�∞

]
(21)

hold, where Af ∈ R
�f ×�f is non-singular and E∞ ∈ R

�∞×�∞ is nilpotent with
index ν.

Due to the reason that only the zero improper Hankel singular values are truncated,
the polynomial part of the system G has not changed. So it can be shown that the
same error bound as for the classical balanced truncation method holds. Let Ĝ be the
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reduced descriptor system (20), then it holds

‖G − Ĝ‖H∞ ≤ 2

nf∑
k=�f +1

ςk(G),

with ςk(G) the k-th proper Hankel singular value of G.

3.3 Hankel-norm approximation of descriptor systems

As for the standard case, the GHNA method for descriptor systems is based on the
construction of an error system with all-pass transfer function (13). The following
theorem provides an algebraic characterization of descriptor systems with all-pass
transfer functions.

Theorem 1 Let (E, A, B, C, D) be a realization of a descriptor system (1) with a
regular matrix pencil λE − A, the same number of inputs and outputs, m = p, the
system’s transfer function G(s) and ς > 0 a real constant. Also, it is assumed that
the descriptor system is R-controllable and R-observable. Then G(s) is all-pass, i.e.,
G(s)GT(−s) = ς2Im holds, if and only if the following conditions are satisfied:

1. There are symmetric matrices Gpc and Gpo with

Gpc = PrGpcP
T
r , (22)

Gpo = PT
� GpoP�. (23)

2. The matrices Gpc and Gpo are the solutions of the projected generalized contin-
uous-time Lyapunov equations

EGpcA
T + AGpcE

T + P�BBTPT
� = 0, (24)

ETGpoA + ATGpoE + PT
r CTCPr = 0. (25)

3. The proper Hankel singular values satisfy

GpcE
TGpoE = ς2Pr, (26)

GpoEGpcE
T = ς2PT

� . (27)

4. Let G = Gsp + P be the decomposition of G into the strictly proper part Gsp

and the polynomial part P . Then it holds P(s) =
∞∑

k=0
Mks

k with

M0M
T
0 = ς2Im, (28)

Mk = 0 for k ≥ 1. (29)

5. Also, the following constraints hold

MT
0CPr + BTGpoE = 0, (30)

M0B
TPT

� + CGpcE
T = 0. (31)

Proof The proof can be found in the Appendix.
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Theorem 1 gives us various implications for the computation of the Hankel-norm
approximation for descriptor systems. In [8], this algebraic characterization has been
used to derive a set of more general transformation formulas for all-pass systems
than (12) to handle invertible E matrices. Also it describes the main idea for an
algorithm to compute the Hankel-norm approximation. Like in [12], we aim for the
construction of an error system that is all-pass by using Theorem 1. While Theorem 1
only considers square transfer functions, the extension to the case m �= p is based
on the all-pass embedding of rational matrix functions and allowing for bounded-
real transfer functions instead of all-pass, i.e., G(s)GT(−s) ≤ ς2Im. Nevertheless,
we refer the reader to [12, Corollary 7.3], which states the extension to non-square
transfer functions using the algebraic characterization of all-pass transfer functions
and shows that the construction of the Hankel-norm approximation for non-square
transfer functions is also based on the formulas developed in Theorem 1. Therefore,
we will still denote the transformation based on Theorem 1 as all-pass even for non-
square transfer functions.

Now we will discuss the results of Theorem 1. First we observe that (29) enforces
the non-constant polynomial part of the error system to be zero, i.e., the system we
want to construct as well as the resulting reduced-order model must have the same
polynomial part as the original system. Also (24) and (25) necessarily need to be
solved for the construction. Therefore, we make use of the generalized balanced trun-
cation method from the previous section, which is additionally used to satisfy the
necessary condition of Theorem 1 to get an R-controllable and R-observable realiza-
tion of the system by the truncation of the zero proper Hankel singular values. Beside
that, we can exploit the structure of the balanced reduced-order model (21). So, let
the matrices B̂ and Ĉ be partitioned accordingly to (21) as

B̂ =
[

Bf

B∞

]
and Ĉ = [

Cf , C∞
]

.

Using this block partition, the system (Ê, Â, B̂, Ĉ, D) automatically decouples into
its slow subsystem

ẋf (t) = Af xf (t) + Bf u(t),

yf (t) = Cf xf (t)
(32)

and its fast subsystem

E∞ẋ∞(t) = x∞(t) + B∞u(t),

y∞(t) = C∞x∞(t) + Du(t).
(33)

First, the fast subsystem (33) is considered. Since the GBT(SR) was used to com-
pute the system (33), there are no zero improper Hankel singular values anymore. As
mentioned in the previous section and concerning (29) from Theorem 1, there is no
meaningful further reduction concerning the improper Hankel singular values, so the
fast subsystem stays unchanged.

Now, let us consider the slow subsystem (32). It is easy to see that (32) is in stan-
dard form. Also beneficial properties, resulting from the applied balanced truncation
method, still hold for this subsystem, which means it is stable and balanced.

Let the original system be decomposed as G = Gsp + P into its strictly proper
part Gsp and its polynomial subsystem P . By the truncation of only zero proper
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Hankel singular values, the system (32) is a minimal realization of the original slow
subsystem Gsp. Now, the standard HNA method, mentioned in the previous section,
can be applied to (32). As result, an r-th order HNA is computed

Ehẋh(t) = Ahxh(t) + Bhu(t),

yh(t) = Chxh(t) + Dhu(t),
(34)

where Eh results from the additive decomposition of the all-pass transformed system,
if we rewrite the formulas (12) as

Ẽ = �,

Ã = ς2
r+1A

T
11 + �̌A11�̌ + ςr+1C

T
1UBT

1,

B̃ = �̌B1 − ςr+1C
T
1U,

(35)

to avoid the disadvantageous scaling by the matrix �−1 as in the standard system
case. This is further discussed in Section 4.1. More general transformation formu-
las for invertible E matrices have been developed in [8]. To get an optimal HNA
of the descriptor system (1), the computed HNA (34) and the reduced-order fast
subsystem (33) are coupled[

Eh 0
0 E∞

]
˙̂x(t) =

[
Ah 0
0 I�∞

]
x̂(t) +

[
Bh

B∞

]
u(t),

ŷ(t) = [
Ch, C∞

]
x̂(t) + (Dh + D)u(t).

(36)

In the following theorem, the properties of the resulting GHNA are summarized.

Theorem 2 Let G be a c-stable descriptor system (1) with a regular matrix pen-
cil. The �-th order generalized Hankel-norm approximation (36), with its transfer
function Ĝ and � = r + �∞, has the following properties:

1. The realization of Ĝ is conditionally minimal and c-stable.
2. The absolute error in the Hankel semi-norm is given by

‖G − Ĝ‖H = ςr+1(G),

where ςr+1(G) is the (r + 1)-st proper Hankel singular value of G.
3. The absolute error in the H∞-norm can be bounded by

‖G − Ĝ‖H∞ ≤ 2
nf∑

k=r+1
ςk(G),

where ςk(G) is the k-th proper Hankel singular values of G.

Proof Let G = Gsp+P be the original system and G̃ = Gb+Pb the balanced, condi-
tionally minimal realization obtained by the GBT(SR) method. Here, Gsp, Gb denote
the strictly proper parts and P , Pb the polynomial ones. The GHNA is constructed by

Ĝ = Gh + Pb, (37)

where Gh is the r-th order HNA (34) of the standard system Gb.
First, we consider part 1. The balanced realization G̃ is conditionally minimal

and c-stable. So by construction (37), both of these properties are transferred to the
GHNA.
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Now we consider the error formulas in 2 and 3 and let E = G − Ĝ be the error
system of the GHNA. Then it holds

E = G − Ĝ = Gsp + P − Gh − Pb = Gb − Gh,

since the balanced realization G̃ is conditionally minimal and therefore, Gb = Gsp

and Pb = P . Using the error bound of the standard method (15), one obtains

‖G − Ĝ‖H = ‖Gb − Gh‖H = ςr+1(Gb) = ςr+1(G).

Using the same approach, the error in the H∞-norm is given by

‖G − Ĝ‖H∞ = ‖Gb − Gh‖H∞ ≤ 2

nf∑
k=r+1

ςk(G),

if the H∞-norm error bound for the standard r-th order HNA from [2] is used.

In Algorithm 1, the complete GHNA method is summarized. Here, we also point
out the differences to the method described in [10]. The two main assumptions,
that are necessary for the construction in [10], are the C-controllability and C-
observability of the system as well as the system (1) to be given in the Weierstrass
canonical form (4). Both assumptions are numerically unfeasible. The computation
of the Weierstrass canonical form is numerically highly unstable and should never be
done explicitly; see, e.g., [13] for comments on the computation of Jordan blocks nec-
essary for the Weierstrass canonical form. Also, the assumption of C-controllability
and C-observability is in general not fulfilled, e.g., all examples presented in this
paper satisfy none of those two properties. In contrast to this, the method in Algo-
rithm 1 can avoid those two assumptions. By using the results of Theorem 1 and the
generalized balanced truncation, we need neither any assumption on the system struc-
ture nor on properties of the system like the C-controllability and C-observability. It
should be noted that even with the assumption of the Weierstrass canonical form, for
an efficient reduction via the Hankel-norm approximation of the strictly proper part
in [10], also a balancing algorithm is needed. Therefore, in terms of computational
effort and numerical accuracy our approach is in general less demanding, more stable,
and faster than (4). Additionally, the next section shows some numerical extensions
and remarks for an even more efficient implementation of Algorithm 1.

4 Numerical methods for GHNA

4.1 Approximate GHNA

The GHNA method can quickly become numerically unstable. This problem arises
from the transformation formulas (12) for the construction of a scaled all-pass error
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Algorithm 1 Generalized Hankel-Norm Approximation (GHNA) Method.

Input: Realization (E, A, B, C, D) of (1) such that λE − A is c-stable.
Output: Reduced-order system (Ê, Â, B̂, Ĉ, D̂).

1: Solve the continuous-time Lyapunov equations (6) and (7) for the Cholesky
factorizations Gpc = RpRT

p and Gpo = LpLT
p.

2: Solve the discrete-time Lyapunov equations (8) and (9) for the Cholesky
factorizations Gic = RiR

T
i and Gio = LiL

T
i .

3: Compute the two skinny singular value decompositions

LT
pERp = U1�VT

1 and LT
i ARi = U2	VT

2 .

4: Compute the transformation matrices

Wp = LpU1�
− 1

2 , Tp = RpV1�
− 1

2 ,

Wi = LiU2	
− 1

2 , Ti = RiV2	
− 1

2 .

5: Compute the minimal balanced realization of the slow subsystem

(I�f
, Af , Bf , Cf , 0) = (WT

pETp, WT
pATp, WT

pB, CTp, 0).

6: Choose the proper Hankel singular value ςr+1.
7: Permute and partition the Gramians of the slow subsystem

Ǧpc = Ǧpo = diag(�̌, ςr+1Ik),

and the corresponding system matrices

Ǎ =
[

A11 A12
A21 A22

]
, B̌ =

[
B1
B2

]
, Č = [

C1, C2
]

.

8: Compute the all-pass transformation

Ẽ = �̌2 − ς2
r+1I�f −k,

Ã = ς2
r+1A

T
11 + �̌A11�̌ + ςr+1C

T
1UBT

1,

B̃ = �̌B1 − ςr+1C
T
1U,

C̃ = C1�̌ − ςr+1UBT
1,

D̃ = ςr+1U,

with U = (CT
2)†B2.

9: Compute the additive decomposition

G̃(s) = C̃(sẼ − Ã)B̃ + D̃ = Gh(s) + F(s),

where F is anti-stable and Gh stable with the realization (Eh, Ah, Bh, Ch, Dh).
10: Compute the balanced realization of the fast subsystem

(E∞, I�∞ , B∞, C∞, D) = (WT
i ETi, W

T
i ATi, W

T
i B, CTi, D).

11: Couple the resulting subsystems

(Ê, Â, B̂, Ĉ, D̂) =
([

Eh 0
0 E∞

]
,

[
Ah 0
0 I�∞

]
,

[
Bh

B∞

]
,
[
Ch, C∞

]
, Dh + D

)
.
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transfer function. It is easy to see that the inversion of the diagonal matrix � =
�̌2 −ς2

r+1Inmin−k can lead to large numerical errors for small proper Hankel singular
values in further computations. This happens if either the chosen value ςr+1, the
remaining proper Hankel singular values in �̌ or the gap between the chosen value
ςr+1 and the surrounding ones ςr and ςr+k+1 is small. One preventive measure was
the usage of the descriptor system structure (34) to avoid unnecessary scaling by �

leading to the new transformation formulas (35). While the first problematic case,
choosing too small ςr+1, is mainly up to the user of the method, we try to avoid
the case of too small gaps between the chosen proper Hankel singular value and
its surroundings by considering in the algorithm the region |ςr+1 − ςj | < ε, for
ε small and j = 1, 2, ..., nmin, to be equal to ςr+1. This increases the number of
cut-off Hankel singular values during the all-pass transformation and avoids also too
small scaling terms. In the following considerations, we address the case of too small
remaining Hankel singular values.

Small proper Hankel singular values can arise from numerical errors during the
computation of the minimal realization. Therefore, one approach to solve this prob-
lem is to compute a smaller balanced truncation approximation of the slow subsystem
than the minimal realization such that too small proper Hankel singular values are
cut off. In this case, an additional error is made since the balanced realization is only
an approximation of the original system. To get a measure for the additional error,
let Gb be the computed balanced truncation of order nb of the slow subsystem Gsp.
Then it has been shown in [12] that in the Hankel semi-norm it holds

‖Gsp − Gb‖H ≤ 2
nf∑

k=nb+1
ςk(Gsp), (38)

with nf the order of the slow subsystem Gsp. For the overall error, let G = Gsp + P

be the original descriptor system and G̃ = Gb + Pb the balanced realization with Gb

of order nb. The generalized Hankel-norm approximation is denoted by Ĝ = Gh +
Pb, where the r-th order standard Hankel-norm approximation Gh was computed
from the balanced realization Gb. Using (38) one obtains

‖G − Ĝ‖H = ‖Gsp − Gh‖H

= ‖Gsp − Gb + Gb − Gh‖H

≤ ‖Gb − Gh‖H + ‖Gsp − Gb‖H

≤ ςr+1(Gb) + 2
nf∑

k=nb+1
ςk(Gsp).

(39)

Since balancing the system does not change the Hankel singular values, the Hankel
singular values of Gb and Gsp are also the proper Hankel singular values of G. The
resulting error can be bounded by

‖G − Ĝ‖H ≤ ςr+1(G) + 2
nf∑

k=nb+1
ςk(G).
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Concerning the H∞-norm, the approach (39) can be used to get

‖G − Ĝ‖H∞ ≤ 2
nf∑

k=r+1
ςk(G),

which is the same error bound as for the exact method.
This approximate version of the GHNA takes advantage of the use of the GBT(SR)

method in form of the adaptive choice of the order nb. It is possible to choose the
order nb with respect to the chosen singular value ςr+1 such that

2

nf∑
k=nb+1

ςk(G) � ςr+1(G).

In this case, the resulting additional error becomes negligibly small concerning the
original Hankel semi-norm error and the corresponding matrix � leads to a bet-
ter conditioned problem. The algorithmic adjustments in the implementation of the
GHNA method are small, since only the truncation of non-zero proper Hankel sin-
gular values has to be allowed in the generalized balanced truncation method. In this
case, the �2 term in (17) with the undesired proper Hankel singular values is not
empty and only the matrices U1, �1, and V1 are used for further computations.

Another advantage of the approximate algorithm can be found in the computation
of the balanced truncation. The GBT(SR) method needs to scale the transformation
matrices (19) using the inverse remaining Hankel singular values, which is more
accurate if the small proper Hankel singular values are truncated. Also with regard
to computational costs, this approximate method has advantages. The further steps
of the algorithm, i.e., the all-pass transformation and additive decomposition, are
extremely costly for large-scale matrices in terms of computational time and memory
usage. Therefore, it is advantageous to already have a small balanced realization for
the further computations.

4.2 Application to sparse systems

A frequently appearing case in practice is the model reduction of large-scale sparse
descriptor systems. In this case, the system matrices E and A from the descriptor
system (1) are in a large-scale sparse form, i.e., the dimension n is large, the matri-
ces can be stored using O(n) memory and the matrix-vector multiplication can be
computed in O(n) effort. Often such matrices result from the discretization of partial
differential equations.

The transformation into a balanced realization does not preserve the sparsity of
the system matrices. Therefore, the GHNA method can only be adapted to sparse
systems in the first two steps. This concerns the computation of the solutions of
the generalized projected Lyapunov equations (6)–(9). It has been observed that the
eigenvalues of the symmetric positive semidefinite solutions of Lyapunov equations
with low-rank right-hand sides generally decay rapidly. The same result holds for
the generalized projected Lyapunov equations [24]. Therefore, the system Gramians
can be approximated by low-rank Cholesky factorizations, e.g., Gpc ≈ ZpcZ

T
pc with

Zpc ∈ R
n×k and k � n.
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For the proper system Gramians, the computation is done by adapting existing
low-rank methods, e.g., Krylov subspace methods or low-rank ADI methods. In this
case, the right-hand side has to be replaced by the projected form from the Lyapunov
equations (6) and (7). Additionally, it is recommended to project the solution back
into the corresponding subspace after some steps of the methods due to a drift-off
effect.

In contrast to the proper case, full-rank factorizations of the improper Gramians
can be constructed explicitly such that Gic = ZicZ

T
ic and Gio = ZioZ

T
io, with

Zic = [
QrA

−1B, A−1EQrA
−1B, . . . , (A−1E)ν−1QrA

−1B
]
,

Zio = [
QT

�A
−TCT, A−TETQT

�A
−TCT, . . . , (A−TET)ν−1QT

�A
−TCT

] ;
see [24] for more details. Thereby, the size of the full-rank factors is bounded by the
number of inputs m or outputs p times the system’s index ν. This corresponds to the
overall bound of the non-zero improper Hankel singular values (16).

Still for using these methods, the spectral projections P�, Pr , Q� and Qr have to
be computed. But for many problems, these spectral projections can be applied by
exploiting the special structure of the problem; see [24] for some examples.

4.3 The projection-free approach

In case of unstructured problems, there are no explicit construction formulas for
the spectral projectors P�, Pr , Q� and Qr , so they have to be explicitly computed
for the use in the generalized projected Lyapunov equations (6)–(9). But as for the
GBT(SR) method, an alternative approach to the use of spectral projectors can be
given; see [22].

As already used in the GHNA algorithm, the GBT(SR) method can be interpreted
as a decoupling of the original system into the slow and fast subsystems and the
individual reduction of both. Therefore, consider the following generalized block
triangular form. There are orthogonal matrices U, V ∈ R

n×n such that

E = V

[
Ef Eu

0 E∞

]
UT and A = V

[
Af Au

0 A∞

]
UT,

where the matrix pencil λEf − Af contains all the finite eigenvalues of λE − A and
the matrix pencil λE∞ − A∞ has only infinite eigenvalues. For the computation of a
block diagonalization of the system, the coupled Sylvester equations

Ef Y − ZE∞ = −Eu,

Af Y − ZA∞ = −Au,

have to be solved for Y and Z; see [5]. Using all of these matrices for the restricted
system equivalence transformation

Wdec = V

[
Inf

0
−ZT In∞

]
, Tdec = U

[
Inf

Y

0 In∞

]
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of the original descriptor system (1), one obtains[
Ef 0
0 E∞

]
˙̃x(t) =

[
Af 0
0 A∞

]
x̃(t) +

[
Bf

B∞

]
u(t),

y(t) = [
Cf C∞

]
x̃(t) + Du(t),

(40)

where the remaining matrices are constructed as

VTB =
[

Bu

B∞

]
, Bf = Bu − ZB∞,

CU =
[

Cf

Cu

]
, C∞ = Cf Y + Cu.

(41)

Obviously, the realization in (40) decouples into the fast and slow subsystems
of (1). Since the spectral projectors of the subsystems are identity matrices, the
corresponding Lyapunov equations (6)–(9) simplify to

Ef XpcA
T
f + Af XpcE

T
f + Bf BT

f = 0,

ET
f XpoAf + AT

f XpoEf + CT
f Cf = 0,

for the slow subsystem and

A∞XicA
T∞ − E∞XicE

T∞ − B∞BT∞ = 0,

AT∞XioA∞ − ET∞XioE∞ − CT∞C∞ = 0,

for the fast subsystem. These Lyapunov equations can be computed without the spec-
tral projections. The matrices Xpc and Xpo correspond to the parts of the proper
controllability and observability Gramians, which contain the potentially non-zero
proper Hankel singular values. The same holds for Xic, Xio and the improper system
Gramians. For the rest of the algorithm, only the transformations have to be restricted
to the subsystems.

The projection-free approach is implemented in the version 3.0 of the MORLAB
toolbox [7]. In this special implementation, the block diagonalization of the system is
done by using a block transformation approach based on the following generalization
of Theorem 4.1 from [15].

Theorem 3 Let � ⊂ C be a region in the complex plane, which contains n1 eigen-
values of the matrix pencil λE − A. Let Q, Z ∈ R

n×n be orthogonal matrices that
transform the matrix pencil λE − A into the upper block triangular form

QT(λE − A)Z =
[

QT
1

QT
2

]
(λE − A)

[
Z1, Z2

] =
[

λE
(1)
11 − A

(1)
11 λE

(1)
12 − A

(1)
12

0 λE
(1)
22 − A

(1)
22

]
,

with �(A
(1)
11 , E

(1)
11 ) ⊆ � and �(A

(1)
11 , E

(1)
11 ) ∩ �(A

(1)
22 , E

(1)
22 ) = ∅. Similarly, let

U, V ∈ R
n×n be orthogonal matrices that transform the matrix pencil λE − A into

the upper block triangular form

UT(λE − A)V =
[

UT
1

UT
2

]
(λE − A)

[
V1, V2

] =
[

λE
(2)
11 − A

(2)
11 λE

(2)
12 − A

(2)
12

0 λE
(2)
22 − A

(2)
22

]
,
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with �(A
(2)
22 , E

(2)
22 ) ⊆ � and �(A

(2)
11 , E

(2)
11 ) ∩ �(A

(2)
22 , E

(2)
22 ) = ∅. Then

X = [
U2, Q2

]
and Y = [

Z1, V1
]

are transformation matrices, such that XT(λE − A)Y has a block diagonal structure
where the upper block contains the n1 eigenvalues lying inside � and the lower block
has the remaining n − n1 eigenvalues of λE − A outside of �.

Proof The proof can be found in [25, Section 5.2].

In contrast to the approach above, it is not necessary to compute the solution of the
coupled Sylvester equations and, due to the block orthogonal structure of the trans-
formation matrices, the right-hand sides are usually better conditioned than (41). In
MORLAB, the right matrix pencil disk function method is used to generate the block
transformation matrices; see [25] for more details on the implementation. Addition-
ally, Theorem 3 can be used to compute the additive decomposition in Step 9 of
Algorithm 1 by separating the eigenvalues with negative and positive real-parts.

5 Numerical examples

Three typical benchmarks from the descriptor systems model reduction literature
have been chosen to demonstrate the introduced GHNA method. All the computa-
tions were done on a machine with one Intel(R) Core(TM) i7-6700 CPU processor
running at 3.40GHz and equipped with 8 GB total main memory. The computer is
running on Ubuntu 16.04.4 LTS and uses MATLAB 9.1.0.441655 (R2016b).

5.1 Semi-discretized Stokes equation

First, the method is tested on a large-scale sparse example. The Stokes equation
describes the flow of fluids at very low velocities without convection and coincides
with the linearization of the Navier-Stokes equation around the zero-state. The spatial
discretization of the Stokes equation by the finite volume method leads to a descriptor
system of the form

v̇h(t) = A11vh(t) + A12ph(t) + B1u(t),

0 = AT
12vh(t) + B2u(t), (42)

y(t) = C1vh(t) + C2ph(t),

where vh and ph are the semi-discretized vectors of velocity and pressure, respec-
tively, and the matrices B1, B2, C1, C2 are all vectors, i.e., the system has m = p = 1
inputs and outputs. For matrix pencils like in (42), the spectral projectors P� and Pr

are given by explicit construction formulas

P� =
[


 −
A11A12(A
T
12A12)

−1

0 0

]
,

Pr =
[


 0
−(AT

12A12)
−1AT

12A11
 0

]
,
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where 
 = Inv − A12(A
T
12A12)

−1AT
12 is the orthogonal projector onto the kernel of

AT
12 along the image of A12; see [23]. The generation of data is based on the test

example 3.3 in [18]. The Stokes equation was discretized on a uniform staggered grid
of 80×80 points, which leads to a descriptor system of the size n = 19 039, where the
matrix pencil λE − A has nf = 6 241 finite and n∞ = 12 798 infinite eigenvalues.
The data was generated to get a full-rank A12 such that the system (42) is of index 2.

For the computation, the implementation of the GHNA method was adjusted to the
sparse system case, as described in Section 4.2, and for the solution of the projected
continuous-time Lyapunov equations (6) and (7), the solvers from version 1.0.1 of
the M-M.E.S.S. toolbox have been used [17]. See the demo file bt mor DAE2.m
in [17] for the applied parameter settings. An approximation of the non-zero proper
Hankel singular values has been computed and plotted in Fig. 1 using the low-rank
factorizations of the proper system Gramians.

As mentioned before, it is numerically more stable to use a balanced truncation of
the slow subsystem than the minimal realization. For this reason, a tolerance for the
allowed proper Hankel singular values was computed as 2 · log(n) · ε and multiplied
with the largest proper Hankel singular value, with n the order of the system and ε

the machine epsilon. The resulting bound is also shown in Fig. 1 and the computed
balanced realization is of order 20.

To compute a fourth-order Hankel-norm approximation of the slow subsystem,
the fifth proper Hankel singular value ς5 = 1.8370 · 10−6 was chosen. The addi-
tive decomposition of the transformed realization (12) was achieved by using the
ml adtf dss routine from version 3.0 of the MORLAB toolbox [7]. The solu-
tions of the projected generalized discrete-time Lyapunov equations (8) and (9) were
constructed as shown in Section 4.2. In contrast to the continuous-time case, every
iteration step was reprojected since the iteration converges after 2 steps at maximum.
As result only one non-zero improper Hankel singular value θ1 = 5.3046 · 10−18

was computed. This implies that the reduced-order system would be of index 1. In
this case, the fast subsystem (33) is equivalent to a feed-through term of the form
−C∞B∞ = −1.875 · 10−17. Since this value is negligible small compared with the

Fig. 1 Computed proper Hankel singular values and the tolerance for the balanced realization for the
Stokes example
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resulting feed-through term D̂ = ς5 from the GHNA method, the state corresponding
to this improper Hankel singular value was truncated, too.

To sum up, the original semi-discretized Stokes equation is approximated by a
GHNA of order 4 (r = 4, �∞ = 0). In Fig. 2a, the transfer functions of the full-
order model, the GHNA reduced-order model and, for comparison, a reduced-order
model of the same order generated by GBT(SR) are plotted. The corresponding
errors in the spectral norm are shown in Fig. 2b with the H∞ error bound. The
shown error behavior of the GHNA is very typical. Since the reduced-order model
is based on an all-pass error transfer function, the error becomes nearly all-pass if
the influence of the anti-stable part is negligible small. Also, the error of the GHNA
approaches the chosen proper Hankel singular value ς5, which is exactly the error of
the approximation in the Hankel semi-norm.

Additional examples and tests of the sparse implementation of the GHNA method
can also be found in [25].

5.2 Brazilian interconnected power systemmodel

As second example, we consider the model of a power system network. In general,
those power systems have a specific index-1 structure[

E11 0
0 0

]
ẋ(t) =

[
A11 A12
A21 A22

]
x(t) +

[
B1
B2

]
u(t),

y(t) = [
C1 C2

]
x(t) + Du(t),

(43)

where E11 and A22 are both invertible. By solving the second block line in (43) for
the states x2, the constraints can be eliminated, leading to a state-space realization of
the system. This formulation and the corresponding spectral projectors can be found
in [6].

For our setup, we use the example data bips07 3078 from [11], which describes
the Brazilian interconnected power system for the year 2007. This system has over-
all n = 21 128 (nf = 3 078, n∞ = 18 050) states and m = p = 4 inputs and

Fig. 2 Transfer functions of the full and reduced-order models of order 4 generated by GHNA and
GBT(SR) (a), and the absolute approximation error in the spectral norm (b) for the Stokes example
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Fig. 3 Computed proper Hankel singular values and the tolerance for the balanced realization for the
Brazilian interconnected power system example

outputs. As before we use the M-M.E.S.S. toolbox, with a small code modification
to continue the solver iterations for increasing residues, as well as MORLAB for the
computation of the generalized Hankel-norm approximation. As suggested by the
authors of [11], we will use a numerical trick to stabilize the system for the matrix
equation solvers and model reduction methods. The α-shift approach uses a small
shift of the A matrix, i.e., Ă = A − αE, to push the eigenvalues further away from
the imaginary axis. Instead of the suggested shift of 0.08 in [11], we use α = 10−4,
which is small enough to have no visible difference between the shifted and original
transfer function. Therefore, we will not shift the system back after the reduction but
use the shifted system as our example.

Figure 3 shows the decay of the proper Hankel singular values with the trunca-
tion tolerance for the minimal realization. There were only zero improper Hankel
singular values computed, which was expected for a strictly proper system. For the

Fig. 4 Transfer functions of the full and reduced-order models of order 40 generated by GHNA
and GBT(SR) (a), and the absolute approximation error in the spectral norm (b) for the Brazilian
interconnected power system example
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reduced-order model, r = 40 (�∞ = 0) with ς41 = 1.0175 · 10−1 has been chosen.
Figure 4a shows the transfer functions, while the absolute approximation error with
the H∞ error bound is plotted in Fig. 4b. As in the previous example, the spectral
norm error of the GHNA lies around the chosen proper Hankel singular value and is
smaller for low frequencies than the GBT(SR) error. Since by construction the GHNA
has a proper transfer function, it will not match the behavior of a strictly proper trans-
fer function for high frequencies. It can be said, that the behavior will diverge, if the
frequency response is smaller than the chosen proper Hankel singular value. Even so,
up to 103 rad/sec the GHNA is matching the original transfer function’s behavior just
like the GBT(SR).

5.3 A dampedmass-spring system

The last example is a damped mass-spring system with a holonomic constraint.
The detailed construction of the system can be found in [16]. The vibrations of the
resulting system are described by a system of second-order equations

Mp̈(t) = Kp(t) + Dṗ(t) − GTλ(t) + Buu(t),

0 = Gp(t),

y(t) = Cpp(t),

(44)

where p(t) is the vector of positions, λ(t) ∈ R is the Lagrange multiplier, K, D ∈
R

g×g are the tridiagonal stiffness and damping matrices, M = diag(m1, . . . , mg)

is the mass matrix, and G = [
1, 0, . . . , 0, −1

]
is the constraint matrix. The

input is given by Bu = e1 and three positions of masses are measured by Cp =[
e1, e2, eg−1

]T, where ei is the i-th column of Ig .
For the application of the GHNA method, the system (44) has to be rewritten in

first-order form. Therefore, the velocity vector v(t) = ṗ(t) is introduced and all

Fig. 5 Computed proper Hankel singular values and the tolerance for the balanced realization for the
damped mass-spring example
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Fig. 6 Transfer functions of the full and reduced-order models of order 7 generated by GHNA and GBT(SR)
(a), and the absolute approximation error in the spectral norm (b) for the damped mass-spring example.

states are collected in x(t) = [
p(t)T, v(t)T, λ(t)

]T
, such that the system (44) can be

rewritten in the form⎡
⎣ Ig 0 0

0 M 0
0 0 0

⎤
⎦ ẋ(t) =

⎡
⎣ 0 Ig 0

K D −GT

G 0 0

⎤
⎦ x(t) +

⎡
⎣ 0

Bu

0

⎤
⎦ u(t),

y(t) = [
Cp 0 0

]
x(t).

(45)

This linearization is an index-3 descriptor system. The number of masses was cho-
sen as g = 1 500, which leads to n = 3 001 (nf = 2 998, n∞ = 3) states in the
linearized system (45). For the computation of the GHNA, the ml hna dss routine
from version 3.0 of the MORLAB toolbox has been used [7]. In this function, the
projection-free approach from Section 4.3 is implemented as mentioned there. For
the computation of the additive decompositions, the right matrix pencil disk func-
tion is used and the generalized Lyapunov equations are solved via the matrix sign
function method; see, for example, [3] and [4]. More details on handling descriptor
systems with the MORLAB toolbox can be found in [9]. The computed proper Han-
kel singular values and the used bound for the minimal realization of the system can
be seen in Fig. 5.

The computed reduced-order model is of order 7 (r = 7, �∞ = 0) with a Hankel-
norm error of ς8 = 9.1301 · 10−5, which gives us again a reduced-order model with
only ordinary differential equations, i.e., a regular matrix Ê. Figure 6 a shows the
transfer functions and the corresponding errors with their H∞ error bound can be
found in Fig. 6b.

6 Conclusion

An algebraic characterization of descriptor systems with all-pass transfer function
was proven and based on this, an efficient algorithm for the computation of the gen-
eralized Hankel-norm approximation was developed by exploiting the generalized
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balanced truncation square root method. To get a numerically more stable algorithm,
an approximate version of the Hankel-norm approximation was introduced. For an
efficient practical usage, the introduced method was considered for sparse large-scale
systems as well as for unstructured dense systems. The approximation behavior of
the method was illustrated for large- and medium-scale examples.

Compared with the approach suggested in [10], the method introduced in this
paper has several numerical advantages. It has a more stable and efficient computa-
tional behavior, due to the fact that the Weierstrass canonical form does not have to
be computed. Also, the introduced method can be applied to more general descriptor
systems since C-controllability and C-observability are not required.
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Appendix

For the proof of Theorem 1, the following lemma is used.

Lemma 1 Every all-pass transfer function G(s) ∈ C
m×m is proper.

Proof From the definition of all-pass transfer functions follows that the product
G(s)GT(−s) = Im has to be proper.

Improper Case: First, we assume that G is an improper transfer function. The entries
of G(s) are rational functions with real coefficients. Since G is improper, at least
one entry of G must have a higher polynomial degree in the numerator than in the
denominator. Also, one can observe that for GT(−s) the entries of the matrix are only
transposed and coefficients of odd polynomial order change their signs. In the single-
input single-output (SISO) case G(s) is given by G(s) = n(s)

d(s)
, with deg(n) > deg(d).

Let the numerator and denominator of the para-Hermitian function be denoted by
ñ(s) and d̃(s). In this case, it is obvious that for the product it holds 2 · deg(n) =
deg(nñ) > deg(dd̃) = 2 · deg(d). So the product is always improper.

In the multi-input multi-output (MIMO) case, for simplicity, it is assumed that
m = 2 and that the denominator is equal for all entries and is factored out such that

G(s) = 1
d(s)

[
n11(s) n12(s)

n21(s) n22(s)

]
and GT(−s) = 1

d̃(s)

[
ñ11(s) ñ21(s)

ñ12(s) ñ22(s)

]
.
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The resulting product is then

G(s)GT(−s) = 1
d(s)d̃(s)

[
n11(s)ñ11(s) + n12ñ12 n11(s)ñ21(s) + n12ñ22
n21(s)ñ11(s) + n22ñ12 n21(s)ñ21(s) + n22ñ22

]
.

If only one of the entries of G(s) would have a higher polynomial degree than the
denominator, the argumentation from the SISO case would follow. Therefore, we can
assume w.l.o.g. that

deg(n11) = deg(n12) = deg(d) + 1 = g + 1.

For simplicity, we concentrate on the (1, 1) entry of the matrix product. For the
resulting polynomial degrees it holds deg(n11ñ11) = 2g + 2, deg(n12ñ12) = 2g + 2,
deg(n11ñ11 + n12ñ12) ≤ 2g + 2, deg(dd̃) = 2g. To get a proper transfer function in
the product, we need that the coefficients in n11ñ11 + n12ñ12, corresponding to the
two highest exponents, cancel out. If we now develop the polynomials as

n11(s) =
g+1∑
k=0

n11,ks
k, n12(s) =

g+1∑
k=0

n12,ks
k,

ñ11(s) =
g+1∑
k=0

ñ11,ks
k, ñ12(s) =

g+1∑
k=0

ñ12,ks
k,

we get for the first coefficients n11,g+1ñ11,g+1 = −n12,g+1ñ12,g+1, with |n11,g+1| =
|ñ11,g+1| and |n12,g+1| = |ñ12,g+1|. Now, if g + 1 is even then

n11,g+1 = ñ11,g+1, n12,g+1 = ñ12,g+1 ⇒ n2
11,g+1 = −ñ2

12,g+1,

and if g + 1 is odd

n11,g+1 = −ñ11,g+1, n12,g+1 = −ñ12,g+1, ⇒ −n2
11,g+1 = ñ2

12,g+1.

Both cases are a contradiction to the condition that the coefficients are real and non-
zero. Therefore, an all-pass transfer function cannot be improper.

Strictly Proper Case: Now, let us assume that G is a strictly proper transfer function.
Using the same argumentation as in the improper case, we get that the product of a
strictly proper transfer function with its para-Hermitian is also strictly proper.

Now, we proof the results of Theorem 1.

Proof At first, we can assume w.l.o.g. that ς = 1, since the system can be scaled to

that case by B̃ = ς− 1
2 B, C̃ = ς− 1

2 C and D̃ = ς−1D.

“⇒”: Assume the transfer function G(s) is all-pass. From Lemma 1 it follows that
G(s) has to be proper. If we consider now the decomposition of the transfer function
into its strictly proper and polynomial part G(s) = Gsp(s) + P(s), the polynomial
part must satisfy

P(s) =
∞∑

k=1
Mks

k,

with Mk = 0 for all k ≥ 1. In this case, it holds lim
s→∞ G(s) = M0, and with the defi-

nition of all-pass transfer functions we get M0M
T
0 = G(s)GT(−s) = Im. Therefore,
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the expressions (28) and (29) hold. Since the matrix pencil λE − A is assumed to
be regular, there are non-singular matrices Q, Z ∈ R

n×n, which resemble the Weier-
strass canonical form (4), similar to (21). Using P and Q for a restricted system
equivalence transformation leads to the block partitioned realization

(QEZ, QAZ, QB, CZ, D) =
([

Ef 0
0 E∞

]
,

[
Af 0
0 A∞

]
,

[
Bf

B∞

]
,

[
Cf C∞

]
, D

)
,

(46)

where λEf − Af contains all the finite eigenvalues of λE − A and λE∞ − A∞
contains only infinite eigenvalues. This block diagonal system decouples into its
slow and fast subsystems (32), (33), with the realizations (Ef , Af , Bf , Cf , 0) and
(E∞, A∞, B∞, C∞, D). While the slow subsystem corresponds to the strictly proper
part of the transfer function, the fast subsystem belongs to the polynomial part. The
constant part of the transfer function is then given by M0 = D −C∞A−1∞ B∞ and the
transfer function can also be realized as G(s) = Cf (sEf − Af )−1Bf + M0, with
invertible matrix Ef .

By the definition of an all-pass transfer function, i.e., G(s)GT(−s) = Im, we get
the equality G−1(s) = GT(−s), which can be written as

G−1(s) = M−1
0 − M−1

0 Cf (sEf − Af + Bf M−1
0 Cf )−1Bf M−1

0

= MT
0 + BT

f (−sET
f − AT

f )−1CT
f

= GT(−s).

The equality M−1
0 = MT

0 was already proven above. From the R-controllability and
R-observability assumption together with the regularity of Ef , it follows that there
exist invertible matrices T , W ∈ R

n×n, which transform one realization into the
other, i.e.,

ET
f = WEf T, (47)

−AT
f = W(Af − Bf MT

0Cf )T , (48)

CT
f = WBf MT

0 , (49)

BT
f = MT

0Cf T . (50)

By reformulating (49) we obtain

CT
f = WBf MT

0 ⇐⇒ BT
f = MT

0Cf W−T,

and from (50) we get

BT
f = MT

0Cf T ⇐⇒ CT
f = T −TBf MT

0 .

Adv Comput Math (2020) 46: 40 Page 25 of 31 40



The equation (48) can be rewritten as

−AT
f = W(Af − Bf MT

0Cf )T

⇐⇒ −W−1AT
f T −1 = Af − Bf MT

0Cf

⇐⇒ Af = −W−1AT
f T −1 + Bf MT

0Cf

⇐⇒ −AT
f = T −TAf W−T − CT

f M0B
T
f = T −T(Af − Bf MT

0Cf )W−T,

and for (47) we analogously get

ET
f = WEf T ⇐⇒ ET

f = T −TEf W−T.

Therefore, T and W−T, as well as T −1 and WT, satisfy the same set of equations,
which means that W = T −T. Using this, the expressions (47)–(50) are equivalent to

ET
f = T −TEf T , (51)

−AT
f = T −T(Af − Bf MT

0Cf )T , (52)

CT
f = T −TBf MT

0 , (53)

BT
f = MT

0Cf T . (54)

Then, the matrix T is given as the solution of the system of matrix equations
following from (51), (52) and (54)

Af T + T TAT
f − Bf BT

f = 0, Ef T = T TET
f .

Using the fact that Ef is invertible, we can define the symmetric matrix G̃pc =
−T E−T

f = −E−1
f T T and replace the system of matrix equations by the following

generalized Lyapunov equation

Af G̃pcE
T
f + Ef G̃pcA

T
f + Bf BT

f = 0. (55)

For the matrix G̃pc, it then holds that

G̃pcE
T
f G̃poEf = (−T E−T

f )ET
f (−T −1E−1

f )Ef = T T −1 = Inf
. (56)

Additionally, from (53) the following constraint is obtained

T TCT
f = Bf MT

0

⇐⇒ M0B
T
f − Cf T = 0

⇐⇒ M0B
T
f + Cf GpcE

T
f = 0. (57)

While observing that the dual conditions can be obtained analogously by
using (51), (52) and (53), the all-pass characterization is proven for the realization of
G with the invertible matrix Ef .

In the next step, the original realization of the system has to be rebuild by using
the block diagonal structure (46). Therefore, we need to apply appropriate spectral
projectors of the deflating subspaces corresponding to the finite eigenvalues of the
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matrix pencil λE − A. In case of (46), those left and right spectral projectors are
given by

P̃� =
[

Inf
0

0 0

]
and P̃r =

[
Inf

0
0 0

]
.

Since the matrices G̃pc and G̃po are only determined by the system parts correspond-
ing to the finite eigenvalues, they have to be expanded accordingly to the spectral
projectors by

G̃pc →
[

G̃pc 0
0 0

]
and G̃po →

[
G̃po 0
0 0

]
.

Using this, the equation (55) is equivalent to[
Af 0
0 A∞

] [
G̃pc 0
0 0

] [
Ef 0
0 E∞

]T
+

[
Ef 0
0 E∞

] [
G̃pc 0
0 0

] [
Af 0
0 A∞

]T

+ P̃�

[
Bf

B∞

] [
Bf

B∞

]T
P̃T

� = 0.

(58)

Also, the matrix product in (56) becomes[
G̃pc 0
0 0

] [
Ef 0
0 E∞

]T [
G̃po 0
0 0

] [
Ef 0
0 E∞

]
=

[
Inf

0
0 0

]
,

and the constraint (57) becomes

M0

[
Bf

B∞

]T
P̃T

� + [
Cf C∞

] [
G̃pc 0
0 0

] [
Ef 0
0 E∞

]T
= 0.

Now, this realization has to be back-transformed into the original one. By
multiplying (55) from the left with Q−1 and from the right with Q−T we get

Q−1
[

Af 0
0 A∞

] [
G̃pc 0
0 0

] [
Ef 0
0 E∞

]T
Q−T

+Q−1
[

Ef 0
0 E∞

] [
G̃pc 0
0 0

] [
Af 0
0 A∞

]T
Q−T

+Q−1P̃�

[
Bf

B∞

] [
Bf

B∞

]T
P̃T

� Q−T

= Q−1
[

Af 0
0 A∞

]
Z−1Z

[
G̃pc 0
0 0

]
ZTZ−T

[
Ef 0
0 E∞

]T
Q−T

+Q−1
[

Ef 0
0 E∞

]
Z−1Z

[
G̃pc 0
0 0

]
ZTZ−T

[
Af 0
0 A∞

]T
Q−T

+Q−1P̃�QQ−1
[

Bf

B∞

] [
Bf

B∞

]T
Q−TQ−TP̃T

� Q−T

= AGpcE
T + EGpcA

T + P�BBTPT
�

= 0,

Adv Comput Math (2020) 46: 40 Page 27 of 31 40



with the spectral projection

P� = Q−1P̃�Q = Q−1
[

Inf
0

0 0

]
Q,

and the symmetric matrix

Gpc = Z

[
G̃pc 0
0 0

]
ZT.

Therefore, the conditions (22) and (24) are satisfied. For the condition (22), it holds

PrGpcP
T
r = Z

[
Inf

0
0 0

]
Z−1Z

[
G̃pc 0
0 0

]
ZTZ−T

[
Inf

0
0 0

]
ZT

= Z

[
G̃pc 0
0 0

]
ZT = Gpc.

The condition (26) for the proper Hankel singular values is then

GpcE
TGpoE = Z

[
G̃pc 0
0 0

]
ZTZ−T

[
Ef 0
0 E∞

]T
Q−TQT

[
G̃po 0
0 0

]

×QQ−1
[

Ef 0
0 E∞

]
Z−1

= Z

[
G̃pc 0
0 0

] [
Ef 0
0 E∞

]T [
G̃po 0
0 0

] [
Ef 0
0 E∞

]
Z−1

= Z

[
Inf

0
0 0

]
Z−1

= Pr .

For the constraint (30), it holds

MT
0CPr + BTGpoE = MT

0

[
Cf C∞

]
Z−1Z

[
Inf

0
0 0

]
Z−1

+
[

Bf

B∞

]T
Q−TQT

[
G̃po 0
0 0

]
QQ−1

[
Ef 0
0 E∞

]
Z−1

=
(

MT
0

[
Cf C∞

] [
Inf

0
0 0

]
+

[
Bf

B∞

]T [
G̃po 0
0 0

]

×
[

Ef 0
0 E∞

])
Z−1 = 0,

Note, that the conditions (23), (25), (23), (27) and (27) follow analogously by using
the dual equations and concepts. Hence, all conditions of the characterization are
fulfilled.

“⇐”: Now, it is assumed that the conditions (22)–(31) hold. It has to be shown that
the resulting transfer function of the linear descriptor system is all-pass. Therefore, a
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reformulation of (24) is considered

P�BBTPT
� = −AGpcE

T − EGpcA
T

= −AGpcE
T − EGpcA

T + sEGpcE
T − sEGpcE

T

= (sE − A)GpcE
T + EGpc(−sET − AT).

The right-hand side of this expression shall be transformed into the form of a transfer
function and its para-Hermitian. It holds

(sE − A)−1P�BBTPT
� (−sET − AT)−1

= GpcE
T(−sET − AT)−1 + (sE − A)−1EGpc

⇒ CPr(sE − A)−1P�BBTPT
� (−sET − AT)−1PT

r CT

= CPrGpcE
T(−sET − AT)−1PT

r CT + CPr(sE − A)−1EGpcP
T
r CT.

In the parts with the symmetric matrix Gpc, there is also the additional spectral
projector Pr . Following (22), we get that PrGpc = Gpc and it holds

CPr(sE − A)−1P�BBTPT
� (−sET − AT)−1PT

r CT

= CGpcE
T(−sET − AT)−1PT

r CT + CPr(sE − A)−1EGpcC
T.

Now, the additional constraint (31) leads to

CPr(sE − A)−1P�BBTPT
� (−sET − AT)−1PT

r CT

= −M0B
TPT

� (−sET − AT)−1PT
r CT − CPr(sE − A)−1P�BMT

0 ,

and, inserting the definition of the spectral projectors, we get on the left-hand side

CPr(sE − A)−1P�BBTPT
� (−sET − AT)−1PT

r CT

= CZ

[
Inf

0
0 0

]
Z−1(sE − A)−1Q−1

[
Inf

0
0 0

]
QB

×BTQT

[
Inf

0
0 0

]
Q−T(−sET − AT)−1Z−T

[
Inf

0
0 0

]
ZTCT

= CZ

[
Inf

0
0 0

]
(sQEZ − QAZ)−1

[
Inf

0
0 0

]
QB

×BTQT

[
Inf

0
0 0

]
(−sZTETQT − ZTATQT)−1

[
Inf

0
0 0

]
ZTCT

= [
Cf C∞

] [
Inf

0
0 0

](
s

[
Ef 0
0 E∞

]
−

[
Af 0
0 A∞

])−1 [
Inf

0
0 0

] [
Bf

B∞

]

×
[

BT
f BT∞

] [
Inf

0
0 0

] (
−s

[
ET

f 0
0 ET∞

] [
AT

f 0
0 AT∞

])−1 [
Inf

0
0 0

] [
CT

f

CT∞

]

=
(
Cf (sEf − Af )−1Bf + 0 · (sE∞ − A∞)−1 · 0

)

×
(
BT

f (−sET
f − AT

f )−1CT
f + 0 · (−sET∞ − AT∞)−1 · 0

)

= Cf (sEf − Af )−1Bf BT
f (−sET

f − AT
f )−1CT

f .
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For the right-hand side we get

−M0B
TPT

� (−sET − AT)−1PT
r CT − CPr(sE − A)−1P�BMT

0

= −M0B
T
f (−sET

f − AT
f )−1CT

f − Cf (sEf − Af )−1Bf MT
0 .

Using the above expressions, the all-pass condition is satisfied

G(s)GT(−s) = (C(sE − A)−1B + D)(BT(sET − AT)−1CT + DT)

= (Cf (sEf − Af )−1Bf + M0)(B
T
f (sET

f − AT
f )−1CT

f + MT
0)

= Cf (sEf − Af )−1Bf BT
f (sET

f − AT
f )−1CT

f

+M0B
T
f (sET

f − AT
f )−1CT

f + Cf (sEf − Af )−1Bf MT
0 + M0M

T
0

= M0M
T
0

= Im.
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