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Abstract

Two fundamental difficulties are encountered in the numerical eval-

uation of time-dependent layer potentials. One is the quadratic cost of

history dependence, which has been successfully addressed by splitting

the potentials into two parts - a local part that contains the most recent

contributions and a history part that contains the contributions from all

earlier times. The history part is smooth, easily discretized using high-

order quadratures, and straightforward to compute using a variety of fast

algorithms. The local part, however, involves complicated singularities in

the underlying Green’s function. Existing methods, based on exchanging

the order of integration in space and time, are able to achieve high or-

der accuracy, but are limited to the case of stationary boundaries. Here,

we present a new quadrature method that leaves the order of integra-

tion unchanged, making use of a change of variables that converts the

singular integrals with respect to time into smooth ones. We have also

derived asymptotic formulas for the local part that lead to fast and accu-

rate hybrid schemes, extending earlier work for scalar heat potentials and

applicable to moving boundaries. The performance of the overall scheme

is demonstrated via numerical examples.
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1 Introduction

In this paper, we consider an integral equation approach to the linearized, in-
compressible Navier-Stokes equations (also called unsteady Stokes flow) in a non-

stationary domain DT =
∏T

τ=0D(τ) with smooth boundary ΓT =
∏T

τ=0 Γ(τ):

∂u

∂t
= ∆u−∇p+ g, (x, t) ∈ DT ,(1.1)

∇ · u = 0, (x, t) ∈ DT ,(1.2)

u(x, 0) = u0(x), x ∈ D(0),(1.3)

subject to either Dirichlet (“velocity”) boundary conditions

(1.4) u(x, t) = f(x, t), (x, t) ∈ ΓT

or Neumann (“traction”) boundary conditions

(1.5)

(

∂ui(x, t)

∂xk
+

∂uk(x, t)

∂xi
− p(x, t)δik

)

nk(x) = f(x, t), (x, t) ∈ ΓT .

While unsteady Stokes flow is of interest in its own right in modeling slow
viscous flow, with applications in microfluidics [16, 17], it also arises in solving
the fully nonlinear incompressible Navier-Stokes equations, where g = −u ·∇u.
In fact, most widely used marching schemes for the nonlinear problem treat the
advective term explicitly so that g(x, t) can be considered a known function
when marching in time [2, 4, 5, 14, 22, 26].

We are interested here in methods for the unsteady Stokes equations that
enforce the divergence-free condition exactly, without the need for a projection
step. Recently, we described a “mixed potential” method that accomplishes
this task through a Helmholtz decomposition of the forcing term g [8]. In the
present paper, we continue our investigation, begun in [15], of integral equation
methods that rely on the Green’s function for the unsteady Stokes equations
- the so-called unsteady Stokeslet. We will discuss the relative merits of the
mixed potential approach and the unsteady Stokeslet-based approach in the
concluding section. For the moment, we simply note that initial, volume, and
layer potentials based on the unsteady Stokeslet involve nothing more than
convolution with the Green’s function without any Helmholtz decomposition.
Moreover, standard velocity or traction boundary conditions can be imposed
using the double layer or single layer potential, respectively. These lead to
well-conditioned integral equations of Volterra type.

For stationary boundaries, high-order accurate quadrature schemes have also
developed [15], following the approach developed for layer heat potentials in
[9, 20, 21]. That is, the layer potentials are split into two parts - a local part
and a history part, where the local part contains the temporal integration on
the interval [t − δ, t] and the history part contains the temporal integration
on [0, t − δ]. The local part involves essential singularities in time, treated by
exchanging the order of integration in space and time, and carrying out product
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integration in time analytically. The history part requires fast algorithms, but
is more or less straightforward to discretize since the integrals encountered are
smooth in time.

When the boundary is nonstationary, the aforementioned scheme can still
be used to evaluate heat layer potentials accurately. As observed in [20], the
heat kernel admits the following factorization:
(1.6)

GH(x, t;y(τ), τ) =
1

4π(t− τ)
e−

‖x−y(τ)‖2

4(t−τ)

=
1

4π(t− τ)
e−

‖x(t)−y(t)‖2

4(t−τ) · e−
‖y(t)−y(τ)‖2

4(t−τ) · e−
(x(t)−y(t))·(y(t)−y(τ))

2(t−τ) .

Note that the first term on the right side of (1.6) can be dealt with via product
integration, as in the stationary case, while the second and third terms are both

smooth so long as the boundary motion is smooth, since the factor y(t)−y(τ)
(t−τ) is

then well behaved as a function of τ . Unfortunately, this simple modification
fails for unsteady Stokes layer potentials. The unsteady Stokeslet G(x, t;y, τ)
[11, 15] is given by the formula
(1.7)

G(x, t;y, τ) =
e−‖r‖2/4(t−τ)

4π(t− τ)

(

I− r⊗ r

‖r‖2
)

− 1− e−‖r‖2/4(t−τ)

2π‖r‖2
(

I− 2
r⊗ r

‖r‖2
)

,

where r = x− y. As a result, when the boundary is moving, r = x− y(τ) and
the first term can be handled as above but the second term on the right-hand
side of (1.7) cannot be factorized as a Stokeslet on a fixed domain modulated by
a smooth function, due to the presence of the factor ‖r‖2 in the denominator.

Here, we present an accurate numerical scheme for the evaluation of the
local part of the unsteady Stokes layer potentials for both static and moving
geometries. For this, we split the local part further into two parts: [t − δ, t] =
[t− δ, t− ǫ]∪ [t− ǫ, t] - the second part is treated asymptotically and the interval
[t− δ, t− ǫ] is treated by a change of variables in the nearly singular integrals,
as in [28]. We carry out the asymptotic analysis only to lowest order for both
the single and double layer potentials. The double layer derivation is somewhat
technical as compared with the double layer heat potential [10, 28] because the
kernel is not Riemann-integrable and defined only in the principal value sense.
Furthermore, although the first asymptotic term, of the order

√
ǫ, is local in

space-time, the next term of order O(ǫ) involves an integral on the entire spatial
boundary. By contrast, asymptotic expansions for heat layer potentials involves
terms which remain local (although they involve higher and higher order spatial
derivatives for higher and higher powers of ǫ.)

An important difference between the current approach and the earlier method
of [15] is that the spatial integrals are now singular rather than weakly singular
and have to be interpreted in the principal value sense. Fortunately, there are
many high-order rules available, such as the Gauss-trapezoidal rule of [1]. Af-
ter combining all these tools, the overall scheme is high-order accurate even for
nonstationary boundaries and the linear systems which arise from implicit time-
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marching schemes are well-conditioned and amenable to solution using iterative
schemes such as GMRES [24].

The paper is organized as follows. In section 2, we state some needed inte-
gral identities and summarize the relevant properties of single and double layer
potentials for unsteady Stokes flow. In section 3, we derive the leading order
asymptotic expansions for layer potentials and in section 4, we discuss the nu-
merical treatment of the nearly-singular parts. In section 5, a fully discrete
numerical scheme is described for the Dirichlet problem. Numerical examples
are presented in section 6 with some concluding remarks in section 7.

2 Mathematical preliminaries

We turn now to a brief summary of potential theory for unsteady Stokes flow.
We refer the reader to [6, 7, 25] for a detailed analysis of the properties of these
parabolically singular layer potentials.

Definition 1. Let φ be a vector-valued function defined on ΓT . Then the single
layer potential operator S is defined by the formula

(2.1) S[φ](x, t) =
∫ t

0

∫

Γ(τ)

G(x, t;y, τ)φ(y, τ)ds(y)dτ,

where G(x, t;y, τ) is defined in (1.7). The double layer potential operator D is
defined by the formula
(2.2)

D[φ](x, t) =

∫ t

0

∫

Γ(τ)

D(x, t;y, τ)φ(y, τ)ds(y)dτ +

∫

Γ(t)

r⊗ n(y)

2π‖r‖2 φ(y, t)ds(y),

where
(2.3)

D(x, t;y, τ) =
n(y) ⊗ r+ (n(y) · r)(I − 2 r⊗r

‖r‖2 )

8π

e−λ

(t− τ)2

−
n(y) ⊗ r+ r⊗ n(y) + (n(y) · r)(I− 4 r⊗r

‖r‖2 )

8π

1− e−λ − λe−λ

λ2(t− τ)2
,

with λ = ‖r‖2

4(t−τ) . The kernel in the second term of (2.2) is the contribution of

the instantaneous pressurelet p(x, t;y, τ), denoted by

(2.4) p(x, t;y, τ) =
r

2π‖r‖2 δ(t− τ),

where the Dirac δ function is understood to satisfy the condition
∫ t

0 δ(t− τ)dτ =
1.

We decompose the single layer potential S[φ] defined in (2.1) into two parts
- a local part and a history part:

(2.5) S[φ] = SL[φ] + SH [φ],
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where the local part is

(2.6) SL[φ](x, t) =

∫ t

t−δ

∫

Γ(τ)

G(x, t;y, τ)φ(y, τ)ds(y)dτ,

and the history part is

(2.7) SH [φ](x, t) =

∫ t−δ

0

∫

Γ(τ)

G(x, t;y, τ)φ(y, τ)ds(y)dτ.

It is convenient to split the double layer potential D[φ] into three parts: a local
part DL[φ], a history part DH [φ], and a pressure part DP [φ]:

(2.8) D[φ] = DL[φ] +DH [φ] +DP [φ]

with

DL[φ] :=

∫ t

t−δ

∫

Γ(τ)

D(x, t;y, τ)φ(y, τ)ds(y)dτ,

DH [φ] :=

∫ t−δ

0

∫

Γ(τ)

D(x, t;y, τ)φ(y, τ)ds(y)dτ,

DP [φ] :=

∫

Γ(t)

r⊗ n(y)

2π‖r‖2 φ(y, t)ds(y),

where the first and third terms on the right side of (2.8) are understood in
the principal value sense. For both layer potentials, the parameter δ will be
chosen to be a constant multiple of whatever time step ∆t is being used in
a time-marching scheme. The density φ, will be represented by a piecewise
polynomial approximation with respect to the time variable. The degree of that
approximation determines the time order of accuracy of the numerical scheme
[15].

We will make use of the following integral identities:

∫ ∞

−∞
e−z2

dz =
√
π,

∫ ∞

−∞
z2e−z2

dz =

√
π

2
,(2.9)

∫ ∞

−∞

1− e−z2

z2
dz = 2

√
π,(2.10)

∫ ∞

−∞

1− e−z2 − z2e−z2

z4
dz =

2
√
π

3
.(2.11)

The formulas (2.9) are well-known. To prove (2.10), let f(x) be defined by
the formula

(2.12) f(x) =

∫ ∞

−∞

1− e−xz2

z2
dz.

It is easy to show that f(x) is well defined for x ∈ (0,+∞) since the integrand
is bounded as z → 0 and integrable as z → ±∞. Moreover, calculation shows
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that limx→0+ f(x) = 0 and f ′(x) =
∫∞
−∞ e−xz2

dz =
√
π√
x
for x > 0. Integrating

f ′(x) from 0 to 1, we obtain (2.10). Similarly, let g(x) be defined by

(2.13) g(x) =

∫ ∞

−∞

1− e−xz2 − xz2e−xz2

z4
dz.

Then limx→0+ g(x) = 0 and g′(x) =
∫∞
−∞ xe−xz2

dz =
√
πx for x > 0. Integrat-

ing g′(x) from 0 to 1, we obtain (2.11).

Remark 1. To solve the equations (1.1) with velocity boundary conditions, we
seek a representation of the solution of the form

u(x, t) = D[φ](x, t) + V [g](x, t),

where

V [g](x, t) =
∫ t

0

∫

Ω(τ)

G(x, t;y, τ)g(y, τ)dy dτ.

This satisfies the partial differential equation and divergence condition bu con-
struction [15]. Imposition of the boundary condition (1.4) leads to the boundary
integral equation

(2.14) − 1

2
φ(x, t) +D∗[φ](x, t) = f(x, t)− V [g](x, t)

where D∗[φ](x, t) denotes the double layer potential defined in the principal value
sense. We are primarily interested here in the solution of this equation and the
design of suitable quadrature methods and will assume that the the volume source
term and corresponding potential V [g](x, t) are absent for the sake of simplicity.

3 Asymptotic analysis of the local layer poten-

tials

While it is possible to treat the local parts of the single and double layer po-
tentials by quadrature techniques alone, it will turn out to be more efficient to
split them further in the form:

(3.1) SL[φ] = Sǫ[φ] + SN [φ]

and

(3.2) DL[φ] = Dǫ[φ] +DN [φ]
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where

Sǫ[φ] :=

∫ t

t−ǫ

∫

Γ(τ)

G(x, t;y, τ)φ(y, τ)ds(y)dτ,

SN [φ] :=

∫ t−ǫ

t−δ

∫

Γ(τ)

G(x, t;y, τ)φ(y, τ)ds(y)dτ,

Dǫ[φ] :=

∫ t

t−ǫ

∫

Γ(τ)

D(x, t;y, τ)φ(y, τ)ds(y)dτ

DN [φ] :=

∫ t−ǫ

t−δ

∫

Γ(τ)

D(x, t;y, τ)φ(y, τ)ds(y)dτ.

The terms Sǫ[φ] and Dǫ[φ] will be treated by asymptotic methods, with ǫ chosen
to be sufficiently small to satisfy a given error tolerance.

To carry out the analysis, let the reference “target” point be denoted by
x ∈ Γ(t). The unit tangent vector, unit normal vector and signed curvature at
x are denoted by T, n, and κ, respectively. The velocity at (x, t) is denoted
by v. Assuming the curve is parametrized in arclength s, starting from x, the
“source” point y(s, τ) ∈ Γ(τ) has the following Taylor expansion in s and t− τ :

(3.3) y(s, τ) = x+Ts− 1

2
nκs2 − (v · n)n(t− τ) + · · · .

Lemma 1. The leading order asymptotic expansion of the single layer potential
is given by

(3.4) Sǫ[φ](x, t) =

√

ǫ

π
T⊗Tφ(x, t) +O(ǫ).

Proof. We first split the spatial integral in Sǫ[φ] into two parts:

(3.5)

∫

Γ(τ)

=

∫

Γ(τ)∩Bc
a(x)

+

∫

Γ(τ)∩Ba(x)

,

where Ba(x) is a ball of radius a centered at x and Bc
a(x) is its complement

in R
2. Here, a is a fixed small positive number. Clearly, ‖r‖ is bounded away

from zero on Γ(τ) ∩ Bc
a(x). Thus, the term e−‖r‖2/4(t−τ)

4π(t−τ) → 0 exponentially

fast as ǫ → 0 for τ ∈ (t− ǫ, t), and the term 1−e−‖r‖2/4(t−τ)

2π‖r‖2 approaches 1
2π‖r‖2 .

Combining these two facts, we conclude that

(3.6)

∫ t

t−ǫ

∫

Γ(τ)∩Bc
a(x)

∼ O(ǫ),

and hence,

(3.7) Sǫ[φ](x, t) =

∫ t

t−ǫ

∫

Γ(τ)∩Ba(x)

G(x, t;y, τ)φ(y, τ)ds(y)dτ +O(ǫ).
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In the following asymptotic estimates, we assume s2 = O(t − τ).
(3.8)

r = x− y = −Ts+
1

2
nκs2 + (v · n)n(t− τ) + · · · ,

‖r‖2 = s2 +O(s3),
r⊗ r

‖r‖2 = T⊗T+ O(s), ds(y) = (1 +O(s2))ds.

Substituting (3.8) into (3.7), we obtain
(3.9)

Sǫ[φ](x, t) =

∫ t

t−ǫ

∫ a

−a

(

e−s2/4(t−τ)+O(s)

4π(t− τ)
(I−T⊗T+O(s))

−1− e−s2/4(t−τ)+O(s)

2πs2
(I− 2T⊗T+O(s))

)

φ(y, τ)(1 +O(s2))dsdτ +O(ǫ).

The change of variables z = s√
4(t−τ)

and u =
√

4(t− τ) gives s = zu, τ =

t− u2/4, dsdτ = −2(t− τ)dzdu. Thus,

(3.10)

Sǫ[φ](x, t) = 2

∫ 2
√
ǫ

0

∫ ∞

−∞

(

e−z2

4π
(I−T⊗T)

−1− e−z2

8πz2
(I− 2T⊗T)

)

φ(y(zu, t− u2/4), t− u2/4)dzdu+O(ǫ).

Note that x = y(0, t). Substituting (2.9) and (2.10) into the above expression,
we obtain
(3.11)

Sǫ[φ](x, t) = 4
√
ǫ

(√
π

4π
(I−T⊗T)−

√
π

4π
(I− 2T⊗T)

)

φ(x, t) +O(ǫ),

from which the result follows.

Lemma 2. The leading order asymptotic expansion of the double layer potential
is given by

(3.12)

Dǫ[φ](x, t) =

∫ t

t−ǫ

∫

Γ(τ)

D(x, t;y, τ)φ(y, τ)ds(y)dτ

=

√

ǫ

π

{(

1

6
v · n+

1

2
κ

)

I+
1

3
(v · n)T⊗T

−
(

v · n
6

+
3κ

2

)

n⊗ n

}

φ(x, t)

+

√

ǫ

π
{n⊗T+ 2T⊗ n}φs(x, t) +O(ǫ).

Proof. Analysis of the double layer is more involved because of the fact that
it is defined only in the principal value sense. We proceed by first expanding
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various needed quantities in terms of the arclength parameter s:

r = x− y = −Ts+
1

2
nκs2 + (v · n)n(t− τ) +O(s3),

n(y) = n+Tκs+O(s2),

n(y) · r = −1

2
κs2 + (v · n)(t− τ) +O(s3),(3.13)

n(y)⊗ r = −n⊗Ts+

(

1

2
n⊗ n−T⊗T

)

κs2 + (v · n)n⊗ n(t− τ) +O(s3),

r⊗ n(y) = −T⊗ ns+

(

1

2
n⊗ n−T⊗T

)

κs2 + (v · n)n⊗ n(t− τ) +O(s3),

φ(y, τ) = φ(x, t) + φs(x, t)s +O(s2).

In the last expression, φs is the derivative of φ with respect to arclength. Using
the same change of variables as for the single layer, namely z = s√

4(t−τ)
and

u =
√

4(t− τ), we have

∫ t

t−ǫ

∫ ∞

−∞
s2

e−s2/4(t−τ)

(t− τ)2
dsdτ = 8

∫ 2
√
ǫ

0

∫ ∞

−∞
z2e−z2

dzdu = 8
√
πǫ,

(3.14)

∫ t

t−ǫ

∫ ∞

−∞
(t− τ)

e−s2/4(t−τ)

(t− τ)2
dsdτ = 2

∫ 2
√
ǫ

0

∫ ∞

−∞
e−z2

dzdu = 4
√
πǫ,

(3.15)

∫ t

t−ǫ

∫ ∞

−∞
s2

1− e−s2/4(t−τ) − s2/(4(t− τ))e−s2/4(t−τ)

(s2/(4(t− τ)))2(t− τ)2
dsdτ = 16

√
πǫ,

(3.16)

∫ t

t−ǫ

∫ ∞

−∞
(t− τ)

1 − e−s2/4(t−τ) − s2/(4(t− τ))e−s2/4(t−τ)

(s2/(4(t− τ)))2(t− τ)2
dsdτ =

8

3

√
πǫ.

(3.17)

The desired result follows from combining (2.3), (3.2), (3.8), and (3.13)–
(3.17) after simplifying the resulting expression.

4 Quadrature methods for the nearly singular

parts

We now consider the evaluation of the nearly singular contributions to the single
and double layer potentials, SN [φ] and DN [φ]. Inspection of the kernels shows
that we need to consider the following terms which involve singularities in either
space or time:

(4.1)
r⊗ r

‖r‖2 ,
e−λ

t− τ
,

e−λ

(t− τ)2
,

1− e−λ

λ(t− τ)
,

1− e−λ − λe−λ

λ2(t− τ)2
,

9



where λ = ‖r‖2

4(t−τ) .

Each entry in the tensor product r⊗r

‖r‖2 is bounded by 1 but does not have

a definite limiting value as ‖r‖ → 0. In [15], it was shown that by carrying
out product integration in time first, the resulting spatial convolution kernels
have logarithmic singularities for which there are effective quadrature rules.
The full double layer kernel (including the pressurelet) involves non-integrable
singularities, so it is critical to use quadrature rules that integrate functions
in the principal value sense as well. Alpert’s Gauss-trapezoidal rule for loga-
rithmic singularities [1] accomplishes both tasks with very high order accuracy
for discretizations based on equispaced points with respect to an underlying
parametrization of the curve Γ(t). For adaptive methods, based on representing
the boundary as the concatenation of boundary segments, a variety of other
high-order rules are available [3, 18, 23, 29, 12, 13, 19]. In all cases, the spatial
quadrature rules avoid kernel evaluation at the singular point r = 0 itself. Thus,
we will assume that r 6= 0 in the subsequent discussion.

The remaining four terms in (4.1) involve singularities in time. We need to
integrate these terms when multiplied by a smooth function of τ on the interval
[t− δ, t− ǫ]. Assuming for simplicity that the smooth function is constant, we
follow the approach introduced for heat potentials in [28] and apply the change
of variables t− τ = ez. Assuming the smooth function is constant as a function
of τ , we have
(4.2)

∫ t−ǫ

t−δ

e−λ

t− τ
dτ =

∫ ln δ

ln ǫ

e−
‖r‖2

4 e−z

dz,

∫ t−ǫ

t−δ

e−λ

(t− τ)2
dτ =

∫ ln δ

ln ǫ

e−
‖r‖2

4 e−z

e−zdz,

∫ t−ǫ

t−δ

1− e−λ

λ(t− τ)
dτ =

∫ ln δ

ln ǫ

4

‖r‖2
(

1− e−
‖r‖2

4 e−z

)

ezdz,

∫ t−ǫ

t−δ

1− e−λ − λe−λ

λ2(t− τ)2
dτ =

∫ ln δ

ln ǫ

16

‖r‖4
(

1− e−
‖r‖2

4 e−z − ‖r‖2
4

e−ze−
‖r‖2

4 e−z

)

ezdz.

Note that all of the integrals in (4.2) are smooth in the new variable z (even
for r = 0). Following [28], in which only the first two integrals above arise,
we use Gauss-Legendre quadrature on the interval [ln ǫ, ln δ] to compute these
integrals and the corresponding temporal integration in both SN [φ] and DN [φ].
A detailed analysis of the discretization error is nontrivial even for the case
of the scalar heat kernel. It is shown in [28], however, that the error in n-
point Gauss-Legendre quadrature for the single layer potential is of the order
O(∆tk)+O

(

log
(

∆t
ǫ

)

f(n)
)

, where f(n) is an exponentially decreasing function
of n. The first term accounts for the use of a kth order accurate approximation
of the density in time. The second term is more subtle. The order of accuracy is
low with respect to the time step but compensated for by permitting controllable
precision by increasing n. Our numerical experiments are consistent with the
estimate above, but in practice, local error estimation based on the desired
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precision will more efficiently determine the number of nodes required than a
priori analysis. Numerical experiments show that the number of quadrature
points needed is about 10 log10(1/ǫ) to achieve a precision of ǫ for ‖r‖ ∈ [0, 1],
assuming that ‖r‖ is a smoothly varying function of τ . It is likely that we could
reduce the number of nodes needed by a more specialized generalized Gaussian
rule [3, 23, 29].

5 Numerical Implementation

We illustrate the use of our hybrid scheme in solving the problem of unsteady
Stokes flow with velocity boundary conditions. The procedure follows that in
[15], and we refer the reader to that paper for a detailed discussion. In short,
for the history part DH [φ], we make use of a Fourier spectral approximation
of the unsteady Stokeslet. This permits the use of the nonuniform FFT and
recurrence relations, which reduces the cost of evaluation to O(NM logM),
where N is the number of time steps and M is the number of points in the
discretization of the boundary. Because the kernel separates in both space and
time in the Fourier basis, moving boundaries pose no difficulty. The local part
DL[φ] is handled by the techniques outlined above in sections 3 and 4. Because
of the error in the asymptotic piece, it is convenient to set the cutoff parameter
ǫ to the user-specified tolerance ε. The near singular error is then controlled by
the number of nodes in the near-singular part, which is if the order O(log(1/ε).
It is also possible to forego the use of asymptotics entirely and use the near
singular quadrature on [t − δ, t = ε2] with an error of the order O(ε) from the
truncation in time. This increases the number of Gauss-Legendre nodes needed,
but could have advantages in terms of robustness and is useful for numerical
validation of the asymptotic estimate and for step-size control. Finally, it was
shown in [15] that any implicit multistep semi-discretization scheme results in
a system of second kind integral equations at each time step, even though the
time-dependent Volterra integral equations themselves are not of the second
kind [6, 25]. Thus, iterative solution using GMRES requires only a modest
number of iterations to solve the resulting linear system.

6 Numerical Results

We illustrate the performance of our method in twomoving geometries (Figure 6.1):

(a) an ellipse moving with constant speed

(6.1)

{

y1(θ, t) = 0.8 cos(θ) + 0.4t,

y2(θ, t) = 0.2 sin(θ),
θ ∈ [0, 2π]

(b) a circle deforming to an ellipse

(6.2)

{

y1(θ, t) = (0.5 + 0.2t) cos(θ),

y2(θ, t) = (0.5− 0.2t) sin(θ),
θ ∈ [0, 2π], 0 ≤ t ≤ 1.

11
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Figure 6.1: Two moving boundaries. Left: An ellipse moving with constant
speed. Right: a circle morphing into an ellipse. Red dashed line: initial position;
blue solid line: final position.

Example 1. Validation of the asymptotic expansion (3.4) of the unsteady Stokes

single layer potential.

To confirm the validity (and correctness) of the asymptotics for the single
layer potential, we calculate the single layer potential on two moving boundaries
for t ∈ [0, T ] with T = 0.075 and density function

(6.3) φ(y, t) =
(

cos(20y2(θ, T ), 3y
3
1(θ, T )

)

.

A 12-digit accurate reference solution is computed using our near-singular
quadrature rules on the interval [0, T − ǫM ] with 16th order accurate spatial
integration rules on a mesh with 200 points. We then use the hybrid asymp-
totic/numerical method and compute the near-singular part on [0, T − ǫ] to
12-digit accuracy for various values of ǫ. After adding the asymptotic contribu-
tion, this should match the reference solution with an error dominated by the
asymptotics. Figure 6.2 shows the relative l2 error as a function of ǫ for the two
moving boundaries in Figure 6.1, which is clearly consistent with our analysis
showing that it should be proportional to ǫ.

Example 2. Validation of the asymptotic expansion (3.12) of the unsteady Stokes
double layer potential.

In our second experiment, we carry out the same analysis for the double
layer potential, with the same strategy for validation. The results are shown in
Figure 6.3, clearly showing the linear decrease of the error with ǫ.

Example 3. Unsteady Stokes flow for a bounded, moving domain with velocity

boundary conditions.

In our last example, we demonstrate the overall convergence of the full
scheme for unsteady Stokes flow in a moving geometry, solving the integral
equation (2.14) (in the absence of a forcing term). We use a scheme that is

12
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Figure 6.2: Asymptotic errors in the single layer potential (3.4). Red circles
indicate numerical results and the dashed blue line is the function y = 10x.
Results for the moving boundary (6.1) are plotted on the left and results for the
moving boundary (6.2) are plotted on the right.
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Figure 6.3: Asymptotic errors in the double layer potential (3.12). Red circles
indicate numerical results and the dashed blue line is the function y = 10x.
Results for the moving boundary (6.1) are plotted on the left and results for the
moving boundary (6.2) are plotted on the right.

fourth order accurate in time and 16th order in space, with an exact solution of
the form

(6.4)
u(x, t) =

5
∑

j=1

1

t2
e−|x−yj|2/(4t) (x2 − yj2,−(x1 − yj1))

+ e−1/t sin(20t)ex1 (cos(x2),− sin(x2)) ,

where x = (x1, x2) and the {yj} are chosen to be equispaced on the circle
of radius 2 centered at the origin, which encloses both domains of interest.
The number of spatial discretization points is 200 and the spatial discretization
error is negligible. We place 100 test points inside the computational domain.
Table 6.1 lists the numerical results for both moving boundaries. Here N is the
total number of time steps, ∆t is the step size, E is the relative l2 error at the
final time T = 1, and r is the ratio of relative l2 errors for successive time step
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refinements. That is, r(j) = E(j− 1)/E(j), which gives a rough estimate of the
convergence order. Note that r ≈ 24, consistent with fourth order convergence
once ∆t is sufficiently small.

Table 6.1: Numerical results for solving the problem of unsteady

Stokes flow with velocity boundary conditions in the moving geome-

tries shown in Figure 6.1.

N 20 40 80 160 320 640
∆t 1/20 1/40 1/80 1/160 1/320 1/640

Moving boundary (6.1)
E 5.6 · 10−5 5.3 · 10−7 1.7 · 10−7 9.9 · 10−9 5.8 · 10−10 3.8 · 10−11

r 107 3.0 17.5 17.2 15.4

Moving boundary (6.2)
E 4.7 · 10−5 3.6 · 10−7 1.6 · 10−7 9.8 · 10−9 6.0 · 10−10 3.8 · 10−11

r 130 2.3 16 16 15.8

7 Conclusions

We have developed a new method for the accurate evaluation of unsteady Stokes
layer potentials in moving geometries. The scheme is based on splitting the
local parts of the layer potentials into asymptotic and nearly-singular compo-
nents. The leading order asymptotic contributions are derived analytically and
the nearly-singular parts are handled accurately via a single Gauss-Legendre
quadrature panel using an exponential change of variables in time. Numerical
experiments demonstrate that the scheme converges at the expected rate for
flows in bounded domains with velocity boundary conditions. One limitation
of the current scheme is that the history part is handled using a spectral ap-
proximation of the Green’s function [9, 10, 21]. We are currently working on a
marching scheme that represents the history part on an adaptive spatial mesh
using the “bootstrapping” method of [27].

It is worth noting that the recently developed mixed potential method for
unsteady Stokes flow [8] also permits high order accurate marching schemes
in moving geometries. An advantage of that method is that it requires only
harmonic and layer potentials, simplifying the fast algorithm and quadrature
issues. A disadvantage is that it requires computation of the Helmholtz decom-
position of the volume forcing term. Unsteady Stokes potentials lead to better-
conditioned integral equations when using fully implicit marching schemes (at
least for large time steps) and require only integration of the volume forcing term
against the Green’s function. We intend to explore the relative performance of
these two approaches in future work.
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