Skip to main content
Log in

A conservative sine pseudo-spectral-difference method for multi-dimensional coupled Gross–Pitaevskii equations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, a sine pseudo-spectral-difference scheme that preserves the discrete mass and energy is presented and analyzed for the coupled Gross–Pitaevskii equations with Dirichlet boundary conditions in several spatial dimensions. The Crank–Nicolson finite difference method is employed for approximating the time derivative, and the second-order sine spectral differentiation matrix is deduced and applied in spatial discretization. Without any restrictions on the grid ratios, optimal error estimates are established by utilizing the discrete energy method and the equivalence of (semi-)norms. An accelerated algorithm is developed to speed up the numerical implementation with the help of fast sine transform. Numerical examples are tested to confirm the effectiveness and high accuracy of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abo-Shaeer, J.R., Raman, C., Vogels, J.M., Ketterle, W.: Observation of vortex lattices in Bose-Einstein condensates. Science 292, 476–479 (2001)

    Article  Google Scholar 

  2. Wall, D.S., Matthews, M.R., Ensher, J.R., Wieman, C.E., Cornell, E.A.: Dynamics of component separation in a binary mixture of Bose-Einstein condensates. Phys. Rev. Lett. 81, 1539–1542 (1998)

    Article  Google Scholar 

  3. Matthews, M.R., Anderson, B.P., Haljan, P.C., Hall, D.S., Wieman, C.E., Cornell, E.A.: Vortices in a Bose-Einstein condensate. Phys. Rev. Lett. 83, 201–202 (1999)

    Google Scholar 

  4. Fetter, A.L., Svidzinsky, A.A.: Vortices in a trapped dilute Bose-Einstein condensate. J. Phys. Condens. Matter 13, R135–R194 (2001)

    Article  Google Scholar 

  5. Madison, K.W., Chevy, F., Wohlleben, W., Dalibard, J.: Vortex formation in a stirred Bose-Einstein condensate. Phys. Rev. Lett. 47, 2715–2723 (2000)

    Google Scholar 

  6. Pitaevskii, L.P., Stringary, S.: Bose-Einstein condensation. Clarendon Press, New York (2003)

    MATH  Google Scholar 

  7. Bao, W.Z., Cai, Y.Y.: Ground states of two-component Bose-Einstein condensates with an internal atomic Josephson junction. East Asian J. Appl. Math. 1, 49–81 (2011)

    Article  MathSciNet  Google Scholar 

  8. Ismail, M.S.: Numerical solution of coupled nonlinear Schrödinger equation by Galerkin method. Math. Comput. Simul. 78, 532–547 (2008)

    Article  Google Scholar 

  9. Sonnier, W.J., Christov, C.I.: Strong coupling of Schrödinger equations: Conservative scheme approach. Math. Comput. Simul. 69, 514–525 (2005)

    Article  Google Scholar 

  10. Sun, Z.Z., Zhao, D.D.: On the \(L_{\infty }\) convergence of a difference scheme for coupled nonlinear Schrödinger equations. Comput. Math. Appl. 59, 3286–3300 (2010)

    Article  MathSciNet  Google Scholar 

  11. Wang, T.C.: Optimal point-wise error estimate of a compact difference scheme for the coupled Gross-Pitaevskii equations in one dimension. J. Sci. Comput. 59, 158–186 (2014)

    Article  MathSciNet  Google Scholar 

  12. Wang, T.C.: A linearized, decoupled and energy-preserving compact finite difference scheme for the coupled nonlinear Schrödinger equations. Numer. Methods Part. Diff. Equ. 33, 840–867 (2017)

    Article  Google Scholar 

  13. Bao, W.Z., Shen, J.: A fourth-order time-splitting Laguerre-Hermite pseudospectral method for Bose-Einstein condensates. SIAM J. Sci. Comput. 26, 2010–2028 (2005)

    Article  MathSciNet  Google Scholar 

  14. Wang, H.Q.: A time-splitting spectral method for coupled Gross-Pitaevskii equations with applications to rotating Bose-Einstein-condensates. J. Comput. Appl. Math. 205, 88–104 (2007)

    Article  MathSciNet  Google Scholar 

  15. Zhang, Y.Z., Bao, W.Z., Li, H.L.: Dynamics of rotating two-component Bose-Einstein condensates and its efficient computation. Phys. D 234, 49–69 (2007)

    Article  MathSciNet  Google Scholar 

  16. Ming, J., Tang, Q.L., Zhang, Y.Z.: An efficient spectral method for computing dynamics of rotating two-component Bose-Einstein condensates via coordinate transformation. J. Comput. Phys. 258, 538–554 (2014)

    Article  MathSciNet  Google Scholar 

  17. Bao, W.Z., Cai, Y.Y.: Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation. Math. Comput. 82, 99–128 (2013)

    Article  MathSciNet  Google Scholar 

  18. Bao, W.Z., Cai, Y.Y.: Mathematical theory and numerical methods for Bose-Einstein condensation. Kinet. Relat Mod. 6, 1–135 (2013)

    Article  MathSciNet  Google Scholar 

  19. Wang, T.C., Zhao, X.F.: Optimal \(l^{\infty }\) error estimates of finite difference methods for the coupled Gross-Pitaevskii equations in high dimensions. Sci. China Math. 57, 2189–2214 (2014)

    Article  MathSciNet  Google Scholar 

  20. Wang, T.C., Jiang, J.P., Xiang, X.: Unconditional and optimal H1 error estimate of a Crank-Nicolson finite difference scheme for the Gross-Pitaevskii equation with an angular momentum rotation term. J. Math. Anal. Appl. 459, 945–958 (2018)

    Article  MathSciNet  Google Scholar 

  21. Bao, W.Z., Dong, X.C., Zhao, X.F.: An exponential wave integrator pseudospectral method for the Klein-Gordon-Zakharov sysytem. SIAM J. Sci. Comput. 35, A2903–A2927 (2013)

    Article  Google Scholar 

  22. Zhao, X.F.: On error estimates of an exponential wave integrator sine pseudospectral method for the Klein-Gordon-Zakharov sysytem. Numer. Methods Part. Diff. Equ. 32, 266–291 (2016)

    Article  Google Scholar 

  23. Dong, X.C.: Stability and convergence of trigonometric integrator pseduospectral discretization for N-coupled nonlinear Klein-Gordon equations. Appl. Math. Comput. 232, 752–765 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Li, X., Zhang, L.M.: Error estimates of a trigonometric integrator sine pseudo-spectral method for the extended Fisher-Kolmogorov equation. Appl. Numer. Math. 131, 39–53 (2018)

    Article  MathSciNet  Google Scholar 

  25. Gong, Y.Z., Cai, J.X., Wang, Y.S.: Multi-symplectic Fourier pseudospectral method for the Kawahara equation. Commun. Comput. Phys. 16, 35–55 (2014)

    Article  MathSciNet  Google Scholar 

  26. Gong, Y.Z., Wang, Q., Wang, Y.S., Cai, J.X.: A conservative Fourier pseudo-spectral method for the nonlinear Schrödinger equation. J. Comput. Phys. 328, 354–370 (2017)

    Article  MathSciNet  Google Scholar 

  27. Wang, T.C., Guo, B.L., Xu, Q.B.: Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions. J. Comput. Phys. 243, 382–399 (2013)

    Article  MathSciNet  Google Scholar 

  28. Browder, F.E.: Existence and uniqueness theorems for solutions of nonlinear boundary value problems. Application of nonlinear partial differential equations. In: Finn, R. (ed.) Proc. Symp. Appl. Math., vol. 17, pp 24–49. AMS, Providence (1965)

  29. Zhang, Y.N., Sun, Z.Z., Wang, T.C.: Convergence analysis of a linearized Crank-Nicolson scheme for the two-dimensional complex Ginzburg-Landau equation. Numer. Methods Part. Diff. Equ. 29, 1487–1503 (2013)

    Article  MathSciNet  Google Scholar 

  30. Wang, T.C., Zhao, X.F., Jiang, J.P.: Unconditional and optimal H2-error estimates of two linear and conservative finite difference schemes for the Klein-Gordon-Schrödinger equation in high dimensions. Adv. Comput. Math. 5, 1–27 (2017)

    Google Scholar 

  31. Canuto, C., Quarteroni, A.: Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comput. 38, 67–86 (1982)

    Article  MathSciNet  Google Scholar 

  32. Zhou, Y.L.: Application of Discrete Functional Analysis to the Finite Difference Methods. International Academic Publishers, Beijing (1990)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous referees for their careful reading and many constructive comments and suggestions of the manuscript.

Funding

X Li is supported by a grant no. KJ2018A0523 from the University Natural Science Research Key Project of Anhui Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luming Zhang.

Additional information

Communicated by: Jan Hesthaven

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Lemma 2.1

To obtain the second-order SSDM, the following lemma needs to be verified at first.

Lemma A.1 1

Denote 𝜃x := μx(xxj), 𝜃y := μy(yyk), \(\theta _{x}^{\prime }:=\mu _{x}(x+x_{j}-2a)\), \(\theta _{y}^{\prime }:=\mu _{y}(y+y_{k}-2c)\). The interpolation basis functions can be reformulated as:

$$ \begin{array}{@{}rcl@{}} \mathrm{X}_{j}(x)=\mathfrak{S}(N_{x},\mu_{x},\theta_{x})-\mathfrak{S}(N_{x},\mu_{x},\theta_{x}^{\prime}),\ \ \mathrm{Y}_{k}(y)=\mathfrak{S}(N_{y},\mu_{y},\theta_{y})-\mathfrak{S}(N_{y},\mu_{y},\theta_{y}^{\prime}), \end{array} $$

with \(\mathfrak {S}(N,\mu ,\theta ):=\frac {1}{2N}\big [\sin \limits (N\theta )\cot \frac {\theta }{2}-\cos \limits (N\theta )\big ]\).

Proof

We just prove the assertion of Xj(x). The other one can be deduced correspondingly. Applying the prosthaphaeresis formula and the definitions of 𝜃x and \(\theta _{x}^{\prime }\), (??) implies that

$$ \begin{array}{@{}rcl@{}} \mathrm{X}_{j}(x)&=&\frac{1}{2N_{x}}\sum\limits_{l=1}^{N_{x}-1}\bigg[1+2\cos(\theta_{x}l)-\big(1+2\cos(\theta_{x}^{\prime}l)\big)\bigg]\\ &=&\frac{1}{2N_{x}}\bigg[\sin\big((N_{x}-\frac{1}{2})\theta_{x}\big)\csc\frac{\theta_{x}}{2} -\sin\big((N_{x}-\frac{1}{2})\theta_{x}^{\prime}\big)\csc\frac{\theta_{x}^{\prime}}{2}\bigg]. \end{array} $$

Invoking to the identity

$$ \sin\big((N-\frac{1}{2})\theta\big)\csc\frac{\theta}{2}=\frac{\sin(N\theta)\cos\frac{\theta}{2} -\cos(N\theta)\sin\frac{\theta}{2}}{\sin\frac{\theta}{2}} =\sin(N\theta)\cot\frac{\theta}{2}-\cos(N\theta), $$

we obtain the desired results and complete the proof of Lemma A.1. □

Proof Proof of Lemma 2.1

For simplicity, we also verify the assertion in the x-direction and the assertion of y-direction is equally acceptable. By means of the above lemma, the second-order derivative of Xj(x) can be given by:

$$ \begin{array}{@{}rcl@{}} \mathrm{X}_{j}^{\prime\prime}(x)= \mathfrak{\ddot{S}}(N_{x},\mu_{x},\theta_{x})-\mathfrak{\ddot{S}}(N_{x},\mu_{x},\theta_{x}^{\prime}), \end{array} $$

where the second-order derivative \(\mathfrak {\ddot {S}}(N,\mu ,\theta )\) is obtained directly by:

$$ \begin{array}{@{}rcl@{}} &\mathfrak{\ddot{S}}(N,\mu,\theta)=-\frac{N\mu^{2}}{2}\sin(N\theta)\cot\frac{\theta}{2}-\frac{\mu^{2}}{2}\cos(N\theta)\csc^{2}\frac{\theta}{2}+ \frac{\mu^{2}}{4N}\sin(N\theta)\frac{\cos\frac{\theta}{2}}{\sin^{3}\frac{\theta}{2}}+\frac{N\mu^{2}}{2}\cos(N\theta). \end{array} $$

To obtain the second-order SSDM, we divide the proof into two cases:

  1. (i)

    If x = xpxj, the definitions of 𝜃x and \(\theta _{x}^{\prime }\) lead to:

    $$ \begin{array}{@{}rcl@{}} \sin(N_{x}\theta_{x})=\sin(N_{x}\theta_{x}^{\prime})=0,\ \ \cos(N_{x}\theta_{x})=\cos(N_{x}\theta_{x}^{\prime})=(-1)^{j+p}. \end{array} $$

    Substituting the results into \(\mathrm {X}_{j}^{\prime \prime }(x)\) and using the definition of μx, for jp, one has:

    $$ \begin{array}{@{}rcl@{}} \mathrm{X}_{j}^{\prime\prime}(x_{p})&=&(-1)^{j+p+1}\frac{{\mu_{x}^{2}}}{2}(\csc^{2}\frac{\theta_{x}}{2}-\csc^{2}\frac{\theta_{x}^{\prime}}{2})\\ &=&(-1)^{j+p+1}\frac{{\mu_{x}^{2}}}{2}\bigg[\csc^{2}\big(\frac{\mu_{x}}{2}(j-p)h_{x}\big)- \csc^{2}\big(\frac{\mu_{x}}{2}(j+p)h_{x}\big)\bigg]. \end{array} $$

    This completes the proof of the first case of (??).

  2. (ii)

    If x = xp = xj, the first term of \(\mathrm {X}_{j}^{\prime \prime }(x)\), i.e. \(\mathfrak {\ddot {S}}(N_{x},\mu _{x},\theta _{x})\) equals to the following:

    $$ \begin{array}{@{}rcl@{}} &\frac{\frac{{\mu_{x}^{2}}}{4N_{x}}\sin(N_{x}\theta_{x})\cos\frac{\theta_{x}}{2}-\frac{N_{x}{\mu_{x}^{2}}}{2}\sin(N_{x}\theta_{x})\cos\frac{\theta_{x}}{2}\sin^{2} \frac{\theta_{x}}{2}-\frac{{\mu_{x}^{2}}}{2}\cos(N_{x}\theta_{x})\sin\frac{\theta_{x}}{2} }{\sin^{3}\frac{\theta_{x}}{2}}+\frac{N_{x}{\mu_{x}^{2}}}{2}\cos(N_{x}\theta_{x}). \end{array} $$

    We apply Taylor’s expansion for each term of the numerator and find:

    $$ \begin{array}{@{}rcl@{}} &\sin(N_{x}\theta_{x})\cos\frac{\theta_{x}}{2}=\Big(N_{x}\theta_{x} -\frac{(N_{x}\theta_{x})^{3}}{3!}+\cdots\Big)\Big(1-\frac{(\frac{\theta_{x}}{2})^{2}}{2!}+\cdots\Big)\\ &\ \ \ \ \ \ \ \ \ \ \ \quad \ \ \ \ \ \ \ \ =N_{x}\theta_{x}-N_{x}\big(\frac{\theta_{x}}{2}\big)^{3}-\frac{4{N_{x}^{3}}}{3}\big(\frac{\theta_{x}}{2}\big)^{3}+O\big({\theta_{x}^{5}}\big),\\ &\sin(N_{x}\theta_{x})\cos\frac{\theta_{x}}{2}\sin^{2}\frac{\theta_{x}}{2}=\Big(N_{x}\theta_{x} -\frac{(N_{x}\theta_{x})^{3}}{3!}+\cdots\Big)\Big(1-\frac{(\frac{\theta_{x}}{2})^{2}}{2!}+\cdots\Big)\Big(\frac{\theta_{x}}{2}-\frac{(\frac{\theta_{x}}{2})^{3}}{3!}+\cdots\Big)^{2}\\ &\ \ \ \ \ \ \ \ \ \ \ \quad \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =2N_{x}\big(\frac{\theta_{x}}{2}\big)^{3}+O\big({\theta_{x}^{5}}\big),\\ &\cos(N_{x}\theta_{x})\sin\frac{\theta_{x}}{2}=\Big(1-\frac{(N_{x}\theta_{x})^{2}}{2!}+\cdots\Big)\Big(\frac{\theta_{x}}{2}-\frac{(\frac{\theta_{x}}{2})^{3}}{3!}+\cdots\Big)\\ &\ \ \ \ \ \ \ \ \ \ \ \quad \ \ \ \ \ \ \ \ =\frac{\theta_{x}}{2}-\frac{1}{6}\big(\frac{\theta_{x}}{2}\big)^{3}-2{N_{x}^{2}}\big(\frac{\theta_{x}}{2}\big)^{3}+O\big({\theta_{x}^{5}}\big). \end{array} $$

    Since \(\theta _{x} \rightarrow 0\) as \(x_{p} \rightarrow x_{j}\). We combine these four equalities and obtain:

    $$ \begin{array}{@{}rcl@{}} \mathfrak{\ddot{S}}(N_{x},\mu_{x},\theta_{x}) \rightarrow -\frac{{\mu_{x}^{2}}}{6}+\frac{N_{x}{\mu_{x}^{2}}}{2}-\frac{{N_{x}^{2}}{\mu_{x}^{2}}}{3},\quad\text{as} x_{p} \rightarrow x_{j}. \end{array} $$

    For the second term of \(\mathrm {X}_{j}^{\prime \prime }(x)\), i.e., \(\mathfrak {\ddot {S}}(N_{x},\mu _{x},\theta _{x}^{\prime })\), since \(\sin \limits \frac {\theta _{x}^{\prime }}{2}\neq 0\), it is not difficult to check:

    $$ \begin{array}{@{}rcl@{}} \mathfrak{\ddot{S}}(N_{x},\mu_{x},\theta_{x}^{\prime})=-\frac{{\mu_{x}^{2}}}{2}(-1)^{j+p}\csc^{2}\frac{\theta_{x}^{\prime}}{2}+\frac{N_{x}{\mu_{x}^{2}}}{2}(-1)^{j+p} =\frac{N_{x}{\mu_{x}^{2}}}{2}-\frac{{\mu_{x}^{2}}}{2}\csc^{2}(j\mu h_{x}). \end{array} $$

    Substituting \(\mathfrak {\ddot {S}}(N_{x},\mu _{x},\theta _{x})\) and \(\mathfrak {\ddot {S}}(N_{x},\mu _{x},\theta _{x}^{\prime })\) into \(\mathrm {X}_{j}^{\prime \prime }(x)\), for j = p, one has:

    $$ \begin{array}{@{}rcl@{}} \mathrm{X}_{j}^{\prime\prime}(x_{p})=-\frac{{\mu_{x}^{2}}}{6}-\frac{{N_{x}^{2}}{\mu_{x}^{2}}}{3}+\frac{{\mu_{x}^{2}}}{2}\csc^{2}(j\mu h_{x}). \end{array} $$

    This completes the proof of (??) and obtains the claimed results in Lemma 2.1.

Appendix B: Proof of Lemma 3.1

Always, we prove the assertion in the x-direction and get the other one identically. Differentiating (??) two times and taking x = xp yield:

$$ \begin{array}{@{}rcl@{}} ({S_{2}^{x}})_{j,p}=\frac{2}{N_{x}}\sum\limits_{l=1}^{N_{x}-1}\bigg[-(\mu_{x}l)^{2} \sin\big(\mu_{x}l(x_{j}-a)\big)\sin\big(\mu_{x}l(x_{p}-a)\big)\bigg]. \end{array} $$

Denote el := μxl, the spatial discretization gives:

$$ \begin{array}{@{}rcl@{}} ({S_{2}^{x}})_{j,p}=\frac{2}{N_{x}}\sum\limits_{l=1}^{N_{x}-1}\bigg[-(\mu_{x}l)^{2} \sin(\mu_{x}l\cdot \text{jh}_{x}) \sin(\mu_{x}l\cdot \text{ph}_{x})\bigg]=\frac{2}{N_{x}}\sum\limits_{l=1}^{N_{x}-1}\big(-{e_{l}^{2}} \sin \frac{\pi \text{jl}}{N_{x}} \sin \frac{\pi \text{lp}}{N_{x}}\big). \end{array} $$

Let

$$ (S_{N_{x}})_{j,p}=(S_{N_{x}}^{T})_{p,j}=\sqrt{\frac{2}{N_{x}}}\sin \frac{\pi \text{jp}}{N_{x}},\quad {\Lambda}_{x}=\text{diag}(-{e_{1}^{2}},-{e_{2}^{2}},\cdots,-e_{N_{x}-1}^{2}), $$

it is easy to find:

$$ \begin{array}{@{}rcl@{}} ({\Lambda}_{x}S_{N_{x}})_{j,p}&=\sum\limits_{l=1}^{N_{x}-1}({\Lambda}_{x})_{j,l}(S_{N_{x}})_{l,p}=({\Lambda}_{x})_{j,j}(S_{N_{x}})_{j,p}=-{e_{j}^{2}}\sqrt{\frac{2}{N_{x}}}\sin \frac{\pi jp}{N_{x}}. \end{array} $$

and

$$ \begin{array}{@{}rcl@{}} (S_{N_{x}}^{T}{\Lambda}_{x}S_{N_{x}})_{j,p}=\sum\limits_{l=1}^{N_{x}-1}(S_{N_{x}}^{T})_{j,l}({\Lambda}_{x}S_{N_{x}})_{l,p} =\sum\limits_{l=1}^{N_{x}-1}\sqrt{\frac{2}{N_{x}}}\sin \frac{\pi jl}{N_{x}}(-{e_{l}^{2}})\sqrt{\frac{2}{N_{x}}}\sin \frac{\pi \text{lp}}{N_{x}}=({S_{2}^{x}})_{j,p}. \end{array} $$

This completes the proof of \({S_{2}^{x}}\). For A1, multiplying \(-{h_{x}^{2}}\) on both sides of the decomposition formula in Lemma 3.1 and following the same procedure, one has:

$$ \begin{array}{@{}rcl@{}} (S_{N_{x}}^{T}{\Lambda}_{1}S_{N_{x}})_{j,p}=\sum\limits_{l=1}^{N_{x}-1}(S_{N_{x}}^{T})_{j,l}({\Lambda}_{1}S_{N_{x}})_{l,p} =\frac{2}{N_{x}}\sum\limits_{l=1}^{N_{x}-1}\bigg[\sin \frac{\pi jl}{N_{x}}\sin \frac{\pi \text{lp}}{N_{x}}(2-2\cos\frac{l\pi}{N_{x}})\bigg]. \end{array} $$

Applying the prosthaphaeresis formula on the right-hand side of the equality, it follows that

$$ \begin{array}{@{}rcl@{}} (S_{N_{x}}^{T}{\Lambda}_{1}S_{N_{x}})_{j,p}=\vartheta_{2}-\vartheta_{1}, \end{array} $$

where

$$ \begin{array}{@{}rcl@{}} \vartheta_{1}:=\frac{2}{N_{x}}\sum\limits_{l=1}^{N_{x}-1}\bigg[\cos \frac{\pi (j+p)l}{N_{x}}-\cos \frac{\pi (j-p)l}{N_{x}}\bigg],\quad \vartheta_{2}:=\vartheta_{1}\cos\frac{l\pi}{N_{x}}. \end{array} $$

Substituting 𝜗1 into 𝜗2 and utilizing the prosthaphaeresis formula again, the equality mentioned above can be reformulated as follows:

$$ \begin{array}{@{}rcl@{}} (S_{N_{x}}^{T}{\Lambda}_{1}S_{N_{x}})_{j,p}=\vartheta_{21}-\vartheta_{22}-\vartheta_{1}, \end{array} $$

where

$$ \begin{array}{@{}rcl@{}} &\vartheta_{21}:=\frac{1}{N_{x}}\sum\limits_{l=1}^{N_{x}-1}\bigg[\cos \frac{\pi \big(j+(p+1)\big)l}{N_{x}}-\cos \frac{\pi \big(j-(p+1)\big)l}{N_{x}}\bigg],\\ &\vartheta_{22}:=\frac{1}{N_{x}}\sum\limits_{l=1}^{N_{x}-1}\bigg[\cos \frac{\pi \big(j+(p-1)\big)l}{N_{x}}-\cos \frac{\pi \big(j-(p-1)\big)l}{N_{x}}\bigg]. \end{array} $$

All these three items on the right-hand side have the same structures. Resorting to the identity:

$$ \sum\limits_{l=1}^{N_{x}-1}\cos \frac{\pi ml}{N_{x}}=\left\{ \begin{array}{lll} N_{x}&-1, \ \ \ \ \ \ m=0\\ -&1,\ \ \ \ \ \ \ \ \ \ m \in (0, 2N_{x}-1)\ \textrm{and is even}\\ &0,\ \ \ \ \ \ \ \ \ \ m \in (0, 2N_{x}-1)\ \textrm{and is odd} \end{array} \right., $$

the following observations can be easily obtained:

$$ \vartheta_{1}=\left\{ \begin{array}{llll} -2, \quad &j=p\\ 0,\quad &j\neq p \end{array} \right.,\quad \vartheta_{21}=\left\{ \begin{array}{llll} -1, \ \ j=p+1\\ 0,\ \ \ j \neq p+1 \end{array} \right.,\quad \vartheta_{22}=\left\{ \begin{array}{lll} -1, \ \ j=p-1\\ 0,\ \ \ j \neq p-1 \end{array} \right.. $$

Substituting these results into the equality, we obtain the assertion of A1 directly. This completes the proof of Lemma 3.1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhang, L. A conservative sine pseudo-spectral-difference method for multi-dimensional coupled Gross–Pitaevskii equations. Adv Comput Math 46, 26 (2020). https://doi.org/10.1007/s10444-020-09769-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-020-09769-z

Keywords

Mathematics Subject Classification (2010)

Navigation