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Abstract
A high-order cut finite element method is formulated for solving the elastic wave
equation. Both a single domain problem and an interface problem are treated. The
boundary or interface is allowed to cut through the background mesh. To avoid prob-
lems with small cuts, stabilizing terms are added to the bilinear forms corresponding
to the mass and stiffness matrix. The stabilizing terms penalize jumps in normal
derivatives over the faces of the elements cut by the boundary/interface. This ensures
a stable discretization independently of how the boundary/interface cuts the mesh.
Nitsche’s method is used to enforce boundary and interface conditions, resulting in
symmetric bilinear forms. As a result of the symmetry, an energy estimate can be
made and optimal order a priori error estimates are derived for the single domain
problem. Finally, numerical experiments in two dimensions are presented that verify
the order of accuracy and stability with respect to small cuts.
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1 Introduction

The time-dependent elastic wave equation is important in several applications. For
example, materials in the Earth’s crust can be modeled as linearly elastic, and
earthquakes give rise to seismic waves that propagate over large distances. Other
applications include non-destructive testing and propagation of waves in beams and
other solid structures. There are several types of elastic waves, some propagate
through the bulk (s-waves and p-waves), some along surfaces (Rayleigh waves), and
others along material interfaces and layers (Stonley and Love waves). In all these
examples, material surfaces and interfaces are of profound importance. The dynamics
of surface and interface waves are directly influenced by for example the curva-
ture, while bulk waves are influenced by the reflection, transmission, and conversion
to other types of waves, that occur at surfaces and material interfaces. For more
information on elastic waves, see [2].

High-order accurate methods with explicit time-stepping are especially attractive
when solving the time-dependent elastic wave equation. The reason is that high-order
methods, in general, have lower work per dispersion error [15], and that information
propagates with finite speed, which opens for explicit time-stepping with Courant
numbers ck/h = O(1). Here, c is the wave speed, k is the time step, and h is some
measure of the grid size. Seismic waves typically propagate over large distances,
which means that simulations of them are severely affected by dispersion errors. Sev-
eral efficient high-order methods exist. Examples of such methods are discontinuous
Galerkin (dG) methods [10, 24] and finite difference methods with the summation by
parts (SBP) property [4, 11]. Both of these methods use a computational mesh that
conforms to the geometry of the domain. Elastic waves often propagate in media with
complicated surface and material interface geometry. High accuracy at surfaces and
interfaces is essential for surface and interface waves, but also to accurately capture
reflection, transmission, and conversion of bulk waves. However, creating a high-
quality mesh that conforms to this geometry can be challenging and computationally
expensive.

An alternative is to use a so-called immersed method. Here, boundaries and inter-
faces do not need to be aligned with the mesh. Thus, immersed methods can avoid
complicated mesh generation, and it follows that this approach could potentially be
computationally cheaper. This argument is strengthened when the geometry of a
boundary or interface changes. This could, for example, be the case if the geometry is
unknown and is hard or impossible to measure. One way to find the unknown geom-
etry is to send waves toward it. The incoming waves get reflected, and by measuring
the outgoing waves, it is possible to solve an inverse problem to compute the geom-
etry. To solve the inverse problem, one would need to iterate over several different
geometries. Since the geometry changes between iterations, a boundary conforming
mesh could become very deformed, which would lead to a need for a potentially
time-consuming re-meshing procedure. This type of inversion problem has been of
interest for some time, see for example [29–31].

When developing an immersed method a few difficulties emerge. One difficulty
is how to accurately take the geometry of the domain into account and apply bound-
ary and interface conditions. Another difficulty is that arbitrarily small cuts between
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the elements in the mesh and the domain may occur. Without careful treatment,
small cuts can introduce ill-conditioning of the discrete problem, spurious growth, or
severely reduce the time step limit in a time-dependent setting.

Some previous works on immersed methods for the elastic wave equation have
been done. A classical way of treating immersed boundary conditions was used in
[32]. Here, finite differences are used on a staggered grid and the immersed interface
is handled by simply using the local material parameter value in each grid point. In
[34], this method is used for treating boundaries connected to vacuum. This is done
by modeling the vacuum as having material parameters that are zero, except for the
density which is set to a small but non-zero constant. This means that the position
of the boundary is approximated with only first-order accuracy, and thus the overall
accuracy of the method will be low. Another type of method was presented in [19]
for handling interfaces between the acoustic and the elastic wave equations, and in
[20] a similar method was used to handle boundary conditions for the elastic wave
equation. Here, boundary/interface conditions are treated by extending the bound-
ary/interface values outside of the domain using Taylor expansion. Both second- and
fourth-order techniques are used. However, no theoretical stability or accuracy results
are presented.

Several high-order immersed methods for other types of problems have been pre-
sented in the literature. Examples of such methods are the inverse Lax-Wendroff
method [28], the difference potential method [3], and methods based on finite differ-
ences [1, 5]. However, as far as we know, none of these methods have been applied
to the time-dependent elastic wave equation.

We will use another approach to achieve high accuracy, which is to develop a high-
order method of Cut-FEM type. The Cut-FEM technique was originally developed
for elliptic problems, see for example the review paper [8] and references therein. In
Cut-FEM, Nitsche’s method [23] is used to accurately apply boundary and interface
conditions at locations that generally do not coincide with element faces. Discretiza-
tion matrices are constructed by element-wise integration on the background mesh
but only considering the regions overlapping with the physical domain. An impor-
tant ingredient in the method is the handling of the ill-conditioning in the discrete
problem, which is related to small cuts. Ghost stabilization, see [7, 9, 21], is a com-
mon way to handle this problem, also for higher order settings. It can be understood
as enforcing additional continuity by penalizing jumps in derivatives. A significant
difficulty in achieving high accuracy is generating sufficiently high-order quadrature
rules for the cut elements. In fact, there are few examples in the literature of high-
order Cut-FEM. Two of them are [13] and [18], where Stokes equation is considered
using high-order piecewise polynomials, but only in the latter work is the method
fully accurate for general geometries. There, the quadrature problem is handled by
isoparametric mappings, while in the former cuts are assumed to be planar.

The contribution of this paper is an up to fourth-order accurate immersed method
of Cut-FEM type for solving the time-dependent elastic wave equation. The spatial
discretization builds on the work in [12], where the time-independent elastic equa-
tions were solved using the Cut-FEM technique, assuming a parametric piecewise
linear description of boundaries and interfaces. In our method, we define the physi-
cal domain and interfaces implicitly by level-set functions, and the needed high-order
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quadrature rules for cut elements are constructed through an algorithm by Saye [25].
This algorithm is applicable to hyperrectangular elements and guarantees positive
weights. Our approach is an extension to systems of the work in [26] and [27], where
Cut-FEM for the time-dependent scalar wave equation is introduced, and extended
to high-order, respectively. For time-dependent problems, the abovementioned ill-
conditioning appears in both mass and stiffness matrices, and leads to severe time
step limitations for explicit time-stepping, or even spurious temporal growth. To cir-
cumvent this, we use the ghost stabilization for both mass and stiffness matrices.
Following [12], the stabilization ensures that the eigenvalues of the matrices are
bounded from above and below, independently of how the boundary/interface cuts the
mesh. In our case, this leads to a much-desired cut-independent CFL condition. This
makes it possible to use explicit time-stepping with a time step scaling linearly with
the un-cut element size. Furthermore, the method is provably stable and convergent
in the semi-discrete setting. To the best of our knowledge, there is in the literature no
other fourth-order accurate, immersed method for the time-dependent elastic wave
equation with these properties. However, we note that with the ghost stabilization, the
condition number of the mass matrix grows when the element order increases, which
limits how far beyond fourth-order accuracy this approach can be extended without
further modifications.

The present paper is organized as follows. In Section 2, the mathematical prob-
lems are stated. These are the elastic wave equation posed on a single domain and as
an interface problem. This is followed by a description of the method in Section 3.
In Section 4, we present a proof of convergence for the single domain problem and
discuss how the proof can be modified to prove a corresponding result for the inter-
face problem. In Section 5, we present numerical results on the order of accuracy and
robustness with respect to small cuts. An example with more complicated geomet-
ric features illustrates the robustness and applicability of the approach in a dynamic
setting. Finally, we end with a discussion in Section 6.

2 Model of the problem

We are interested in the elastic wave equation posed both on a single domain Ω ⊂ R
d

(Fig. 1a), and as an interface problem on a composite domain Ω = Ω1 ∪ Ω2 ⊂ R
d

Fig. 1 Considered domains. a Single domain. b Composite domain for the interface problem
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(Fig. 1b). The interface problem is appropriate when we have two materials in contact
with each other, which occurs frequently in applications due to, for example, the
layered structure of the Earth’s crust. On the other hand, the single domain problem
is relevant if we have an inclusion of empty space inside another material.

2.1 Single domain problem

Let n denote the outward unit normal to ∂Ω , and assume that ∂Ω is partitioned such
that ∂Ω = Γ N ∪Γ D , with Γ N ∩Γ D = ∅. Let T ∈ (0, ∞) denote the end time. The
single domain problem reads as follows:

ρü = ∇ · σ(u) + f, x ∈ Ω, t ∈ (0, T ), (1a)

σ(u) · n = gN, x ∈ Γ N, t ∈ (0, T ), (1b)

u = gD, x ∈ Γ D, t ∈ (0, T ), (1c)

u = u0, x ∈ Ω, t = 0, (1d)

u̇ = w0, x ∈ Ω, t = 0, (1e)

where u is the displacement vector, ρ is the density, and σ is the stress tensor. We shall
assume that Γ D and Γ N are sufficiently smooth. The boundary condition on Γ N

puts a constraint on the normal stress. If gN = 0, the boundary condition corresponds
to the standard boundary condition used at free surfaces. Furthermore, we assume
that we are working with a linear, homogeneous, and isotropic material. When this is
the case, the stress in the material is given by the following:

σij (u) = 2μεij (u) + λ(∇ · u)δij , (2)

where δij is the Kronecker delta function and ε is the strain tensor defined as follows:

εij (u) = 1

2

(
∂ui

∂xj

+ ∂uj

∂xi

)
. (3)

In (2), λ and μ are the Lamé parameters, which are material-dependent scalar
constants.

2.2 Interface problem

Consider now an interface problem on the domain, Ω , illustrated in Fig. 1b. Let
i ∈ {1, 2} index each subdomain, Ωi . We have two elastic materials, with material
parameters ρi , λi , μi . In this case, the problem is given by the following:

ρiüi = ∇ · σ(ui) + fi, x ∈ Ωi, t ∈ (0, T ), (4a)

σ(ui) · ni = gN
i , x ∈ Γ N

i , t ∈ (0, T ), (4b)

ui = gD
i , x ∈ Γ D

i , t ∈ (0, T ), (4c)

�u� = 0, x ∈ ΓI , t ∈ (0, T ), (4d)

�σ(u) · n� = 0, x ∈ ΓI , t ∈ (0, T ), (4e)

ui = u0
i , x ∈ Ωi, t = 0, (4f)

u̇i = w0
i , x ∈ Ωi, t = 0, (4g)
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where ui is the displacement vector in material i and the stress and strain tensors are
defined analogously to (2) and (3). We assume that Γ D

i , Γ N
i , and Γ I are sufficiently

smooth. Here, ni is the outward normal to Ωi and n is the normal pointing from Ω2
to Ω1 (n = n2). �·� defines the jump over the interface:

�u� = u2(x) − u1(x), x ∈ ΓI . (5)

Since we have several normals defined (n1, n2, and n), (4e) can be interpreted in
two different ways. To avoid any confusion, we use the convention that the normal is
fixed as follows:

�σ(u) · n� = σ(u2) · n − σ(u1) · n, x ∈ ΓI . (6)

Remark 1 If boundary and/or interface conditions are compatible with a smooth
solution it is, in principle, not necessary for the boundary or interface to be smooth.
However, some parts of the methodology need to be modified to allow for such
geometric non-smoothness. This is further discussed in Remark 5.

3 Numerical method

Let Ω be covered by a background mesh, TB , as in Fig. 2a. We shall only consider
the case when the mesh consists of quadrilaterals that are squares and of the same
size. Let h denote their side length. Let the boundary or interface be partitioned as
illustrated in Fig. 2a. That is, for the single domain, we assume that ∂Ω = Γ A ∪ Γ C

(with Γ A ∩ Γ C = ∅), where Γ A is aligned with the boundary of the mesh while Γ C

cuts through it. Correspondingly for the interface problem, we assume that ∂Ω∪ΓI =
Γ A ∪ Γ C . Let T C denote the elements that are intersected by Γ C :

T C = {T ∈ TB : T ∩ Γ C 	= ∅}, (7)

as illustrated in Fig. 2b.

Fig. 2 a Parts of the boundary or interface that are aligned with, Γ A, or immersed in the mesh, Γ C . b Set
of elements, T C , intersected by Γ C
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Fig. 3 Smallest set of elements covering a Ω , Ω1 and b Ω2

Let Ti , denote the smallest set of elements in the background mesh covering Ωi ,
as illustrated in Fig. 3. In the following, we shall for various entities omit the index,
i, when we consider the single domain problem. In particular, for the single domain
problem, T is the smallest set of elements covering Ω . To be precise let

Ti = {T ∈ TB : T ∩ Ωi 	= ∅}. (8)

Let Ω

i denote the domain that Ti covers. That is, let

Ω

i =

⋃
T ∈Ti

T . (9)

Now introduce the spaces

V i
h = {v ∈ [C0(Ω


i )]d : v|T ∈ [Qp(T )]d , T ∈ Ti}. (10)

Here, Qp(T ) denotes the pth order Lagrange element, p ≥ 1, with Gauss-Lobatto
nodes over T . For high element orders, Gauss-Lobatto nodes result in a mass matrix
with better properties than if equidistant nodes are used [14].

For the single domain problem, we solve for the solution uh ∈ Vh, while for the
interface problem, we solve for the pair {u1, u2} ∈ V 1

h × V 2
h . For the interface prob-

lem, this means that the degrees of freedom are doubled over the elements in the set
T C . This doubling guarantees that the analytical solution can be approximated suffi-
ciently well in our finite element space, so that we obtain the order of accuracy that
we want. We would like to emphasize that the relevant solution, uR , to the problem
(4) is as follows:

uR(x, t) =
{

u1(x, t), x ∈ Ω1,

u2(x, t), x ∈ Ω2,
(11)

and that

ui(x, t), x ∈ Ω

i \ Ωi, (12)

is just a smooth extension of the solution in Ωi to Ω

i .

Adv Comput Math (2020)  46: 45 Page 7 of 28 45



Since the weak formulations for the single domain and the interface problem are
very similar, we discuss their derivation more or less simultaneously. We shall use
the following standard inner products:

(u, v)Ω =
∫

Ω

uvdΩ, 〈u, v〉Γ =
∫

Γ

uvdΓ, (13)

where the subscripts indicate over which domain the integration takes part. If u or
v in (13) are tensors, then contraction to a scalar is implied. Note that the angular
brackets denote integration over a curve in 2D (or surface in 3D).

By multiplying (1a) or (4a) by a test function, integrating by parts and simplifying
(for details see for example [17]), we get the following:

(ρi üi , vi)Ωi
+2μi(ε(ui), ε(vi))Ωi

+ λi(∇ · ui, ∇ · vi)Ωi
− 〈σ(ui) · ni, vi〉∂Ωi\Γ N

i= (fi, vi)Ωi
+ 〈

gN
i , vi

〉
Γ N

i
, ∀vi ∈ V i

h .

(14)
Note that the Dirichlet boundary conditions are consistent with the following terms:

− 〈ui, σ (vi) · ni〉Γ D
i

= −
〈
gD

i , σ (vi) · ni

〉
Γ D

i

, (15)

2μi

γD

h
〈ui, vi〉Γ D

i
= 2μi

γD

h

〈
gD

i , vi

〉
Γ D

i

. (16)

λi

γD

h
〈ui · ni, vi · ni〉Γ D

i
= λi

γD

h

〈
gD

i · ni, vi · ni

〉
Γ D

i

, (17)

To enforce the boundary conditions by Nitsche’s method, we add (15)–(17) to (14).
Here, γD is a constant controlling how strongly the Dirichlet boundary condition is
enforced. We now have the following:

(ρi üi , vi)Ωi
+ai(ui, vi)−〈σ(ui) · ni, vi〉∂Ωi\(Γ D

i ∪Γ N
i ) = Li(vi), ∀vi ∈ V i

h, (18)

where
ai(ui, vi) = Bi(ui, vi) + Di(ui, vi), (19)

and
Li(vi) = (fi, vi)Ωi

+
〈
gN, vi

〉
Γ N

i

+ LD
i (vi). (20)

In (18), the term Bi corresponds to integration over the “bulk” as follows:

Bi(ui, vi) = 2μi(ε(ui), ε(vi))Ωi
+ λi(∇ · ui, ∇ · vi)Ωi

, (21)

and the terms Di and LD
i enforce the Dirichlet boundary condition over Γ D

i :

Di(ui, vi) = − 〈σ(ui) · ni, vi〉Γ D
i

− 〈ui, σ (vi) · ni〉Γ D
i

+ γD

h

(
2μi 〈ui, vi〉Γ D

i
+ λi 〈ui · ni, vi · ni〉Γ D

i

)
, (22)

LD
i (vi) = −

〈
gD

i , σ (vi) · ni

〉
Γ D

i

+ γD

h

(
2μi

〈
gD

i , vi

〉
Γ D

i

+ λi

〈
gD

i · ni, vi · ni

〉
Γ D

i

)
.(23)

Note that the terms (15)–(17) were added in a way so that ai in (19) is a symmetric
bilinear form. Now, (18) is the starting point for the weak formulations for both the
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single domain and the interface problem. Note also that for the single domain, we
have as follows:

∂Ω \ (Γ D ∪ Γ N) = ∅, (24)

while for the interface problem

∂Ωi \ (Γ D
i ∪ Γ N

i ) = ΓI . (25)

3.1 Stabilizing small cuts

A common problem for immersed methods is robustness with respect to small cuts.
In order to understand this problem, consider the single domain. Since Γ C intersects
the mesh in an arbitrary way, an element K may have an arbitrarily small intersection
with the domain so that the size of K ∩Ω � hd . For each element, we integrate over
K ∩Ω . For the mass matrix, this means that the smallest eigenvalue can be arbitrarily
small, and in turn that the condition number can be arbitrarily large. For the stiffness
matrix, the problem is even worse. The term (15) that we add to enforce the boundary
condition can make some eigenvalues of the stiffness matrix negative, which would
make the method unstable.

A suggested way to remedy this problem is to add a stabilizing term, ji , both to
the term that corresponds to the mass matrix and to the term that corresponds to the
stiffness matrix:

Mi(ui, vi) = (ρiui, vi)Ωi
+ γ i

Mji(ui, vi), (26)

Ai(ui, vi) = ai(ui, vi) + γ i
A

h2
ji(ui, vi). (27)

Here, γ i
M and γ i

A are scalar constants that control how much stabilization is added.
To explain the definition of ji , let Fi denote the faces illustrated in Fig. 4. That is,
the faces of T C excluding the boundary faces of Ti . To be precise, let

Fi = {F = Ta ∩ Tb : Ta ∈ T C or Tb ∈ T C, Ta, Tb ∈ Ti}. (28)

We now define the stabilization term as follows:

ji(u, v) =
∑

F∈Fi

p∑
k=1

h2k+1

(2k + 1)(k!)2

〈
[∂k

nui], [∂k
nvi]

〉
F

. (29)

Here, ∂k
nvi denotes the kth derivative in the direction of the face normal, n, and [·]

defines the jump over a face F :

[ui] = ui |F+ − ui |F− . (30)

In (29), all derivatives up to the polynomial order, p, are included. Note that [·] is
different from �·� in (5) since we have ui on both sides of F . The stabilization in (29)
was suggested first in [7] and used first for the Poisson equation in [9]. For a nice
explanation of why it works, see [21].

With stabilization one can prove, see [12], the following inequalities for the
bilinear form Mi :

CL‖v‖2
Ω


i
≤ Mi(v, v) ≤ CU‖v‖2

Ω

i
, ∀v ∈ V i

h . (31)
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Fig. 4 Set of faces where the stabilization is applied. a F , F1. b F2

In (31), CL and CU are positive constants that depend on the element order but not on
h. From (31), we immediately get that the eigenvalues of the stabilized mass matrix
are bounded independently of how the boundary/interface cuts the mesh. In turn, this
bounds the condition number independently of the location of the boundary/interface.
Unfortunately (as noted in both [27] and [12]), the constant in the bound increases
very fast with the order of the elements. With stabilization, one can also show, see
[12], that the bilinear form A is continuous and coercive independently of how the
boundary/interface cuts the mesh.

3.2 Weak form for the single domain problem

For the single domain problem, we have that ∂Ω = Γ D ∪ Γ N , so by starting from
(18) and adding the stabilizing terms, we get the following weak form for the single
domain problem: Find uh so that for each fixed t ∈ (0, T ], uh ∈ Vh such that

M(üh, v) + A(uh, v) = L(v), ∀v ∈ Vh, (32)

where L, M , A were defined in (20), (26), (27) but where we have dropped the
subscript i, since there is only a single domain, Ω .

3.3 Weak form for the interface problem

We now want to derive the weak formulation for the interface problem (4). First, let
κ1 > 0 and κ2 > 0 fulfill κ1 + κ2 = 1 and let {·} to denote the following convex
combination:

{v} = κ1v1 + κ2v2. (33)
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By using that ∂Ωi \ (Γ D
i ∪Γ N

i ) = ΓI , n = n2 = −n1 and the condition (4e), we get
that

2∑
i=1

− 〈σ(ui) · ni, vi〉∂Ωi\(Γ D
i ∪Γ N

i ) = 〈σ(u1) · n, v1〉ΓI
− 〈σ(u2) · n, v2〉ΓI

= 〈(κ1 + κ2)σ (u1) · n, v1〉ΓI
− 〈(κ1 + κ2)σ (u2) · n, v2〉ΓI

= 〈κ1σ(u1) · n, v1〉ΓI
− 〈κ1σ(u2) · n, v2〉ΓI︸ ︷︷ ︸

(4e)

+〈κ2σ(u1) · n, v1〉ΓI︸ ︷︷ ︸
(4e)

−〈κ2σ(u2) · n, v2〉ΓI

= 〈κ1σ(u1) · n, v1〉ΓI
−

︷ ︸︸ ︷
〈κ1σ(u1) · n, v2〉ΓI

+
︷ ︸︸ ︷
〈κ2σ(u2) · n, v1〉ΓI

−〈κ2σ(u1) · n, v2〉ΓI

= 〈κ1σ(u1) · n, v1 − v2〉ΓI
+ 〈κ2σ(u1) · n, v1 − v2〉ΓI

= − 〈{σ(u) · n}, �v�
〉
ΓI

. (34)

Note also that the interface condition (4d) is consistent with the following terms:

− 〈
�u�, {σ(v) · n}〉

ΓI
= 0, (35)

γI

h

〈
�u�, �v�

〉
ΓI

= 0. (36)

Here, γI is a positive constant which will control how strongly the interface condition
is enforced. Now, we add (18) for each domain, use (34) and add (35), (36) and
stabilization to obtain the finite element method: Find u = {u1, u2} so that for each
fixed t ∈ (0, T ], u ∈ V 1

h × V 2
h such that

2∑
i=1

(Mi(üi , vi) + Ai(ui, vi)) + I (u, v) =
2∑

i=1

Li(vi), ∀v = {v1, v2} ∈ V 1
h × V 2

h .

(37)
Here, Li , Mi , and Ai were defined in (20), (26) and (27). The bilinear form I that
enforces the interface conditions is given by the following:

I (u, v) = − 〈{σ(u) · n}, �v�
〉
ΓI

− 〈
�u�, {σ(v) · n}〉

ΓI
+ γI

h

〈
�u�, �v�

〉
ΓI

. (38)

The method contains several free parameters that need to be chosen. Clearly, the
penalty parameters related to the stabilization should scale with the parameters of the
materials. We choose to scale them as follows:

γ i
M = 1

4
ρi, γ i

A = 1

2
ηi, (39)

where
ηi = 2μi + λi . (40)

We choose the constants related to the interface terms in the following way:

γI = 20p2 η1η2

η1 + η2
, (41)

where
κ1 = η2

η1 + η2
, κ2 = η1

η1 + η2
. (42)
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The scaling with respect to ηi is analogous to the choice of parameters for the Poisson
interface problem in [8]. The Nitsche parameter related to the Dirichlet boundary
condition is chosen as follows:

γD = 5p2. (43)

Here, the scaling with p2 of γD and γI in (41) and (43) follows from an inverse
inequality. The numerical constants are chosen based on experience. We shall briefly
discuss this in Section 6.

Remark 2 Our assumption that the mesh consists of perfectly square elements is not
necessary. When the face normals are not aligned with the coordinate axes, we just
need to use a slightly more general definition of the face normal derivatives, ∂k

nv, see
for example [21].

Remark 3 Although we will not do so in this paper, one possibility is to under-
integrate the non-cut elements using a Gauss-Lobatto quadrature with p+1 points in
each coordinate direction. This choice results in local mass matrices which are diago-
nal, for non-cut elements that are so far away from the immersed boundary/interface
that they are not affected by the added stabilization. This, in turn, makes a large block
in the global mass matrix diagonal.

3.4 Imposition of initial conditions

To impose the initial conditions, we first define the stabilized L2 projection, Πhu. For
the single domain problem, Πhu is defined as the solution to the following problem:
Given u, find Πhu ∈ Vh such that

M(Πhu, v) = (u, v)Ω, ∀v ∈ Vh. (44)

For the interface problem, Πhu is defined analogously as the solution to the
following: Given u, find Πhu = {Πhu1, Πhu2} ∈ V 1

h × V 2
h such that

2∑
i=1

Mi(Πhui, vi) =
2∑

i=1

(ui, vi)Ω, ∀v = {v1, v2} ∈ V 1
h × V 2

h . (45)

The initial conditions are now imposed as follows:

uh|t=0 = Πhu|t=0, (46a)

u̇h|t=0 = Πhu̇|t=0. (46b)

Note that, by setting the discrete initial conditions in this way, the initial conditions of
the single domain problem, (1d)–(1e), only need to be defined on Ω and not on Ω
.

4 Theory

In this section, we will present some theoretical results, in particular, a proof of con-
vergence for the semi-discrete method for the single domain problem. The proof
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builds on the results presented in [12] where several time-independent problems were
studied. In the analysis, we will use the following norms:

‖v‖2
M = M(v, v), ‖v‖2

A = A(v, v), |v|2j = j (v, v), (47)

|||v|||2h = ‖v‖2
A + h‖σ(v)‖2

Γ D + 1

h
(2μ‖v‖2

Γ D + λ‖v · n‖2
Γ D), (48)

where we can note that | · |j is a semi-norm. Note that these norms only make sense
if the argument is defined on Ω∗. We will also use the � – relation, which we define
as follows:

a � b ⇔ a ≤ Cb, (49)

where C is some constant that is independent of h.
We also need a bounded extension operator, E : Hs(Ω) → Hs(Ω
). We shall

assume that the solution is sufficiently smooth (s is sufficiently high) and that ∂Ω is
sufficiently regular so that

j (Eü, v) = 0, ∀v ∈ Vh. (50)

4.1 Ritz projection

To prove convergence, we need a “Ritz-like” projection, which we define as the
solution to the following problem: Given u, find Rhu ∈ Vh such that

A(Rhu, v) = a(u, v), ∀v ∈ Vh. (51)

In this section, we will gather some results about the Ritz projection, which will be
essential in the analysis to come. For brevity, we will from here on omit the “like” in
the Ritz-like projection (51) and simply call it the Ritz projection. As shown in [12],
given that γD is sufficiently large, A is coercive and continuous with respect to |||·|||h.
That is, there exists constants Cr, Cc > 0 such that

Cr |||vh|||2h ≤ A(vh, vh), A(vh, wh) ≤ Cc|||vh|||h|||wh|||h, vh, wh ∈ Vh. (52)

For simplicity, we will assume that Γ D 	= ∅. When this holds, |||·|||h is indeed a norm
(i.e., not only a semi-norm) and (51) has a unique solution. However, this assumption
can likely be relaxed by looking for the solution in a constrained subspace of Vh.

One should note that this projection is nothing but the solution to the time-
independent elasticity problem. To see this, let û(x) = u(x, tf ), where tf is some
fixed time, and define f̂ so that û is the solution to the following:

∇ · σ(û) = −f̂ , x ∈ Ω, (53a)

û = gD(x, tf ), x ∈ Γ D, (53b)
∂û
∂n

= gN(x, tf ), x ∈ Γ N . (53c)

This means that û will satisfy the following:

a(û, v) = L̂(v), (54)
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where L̂ is defined as follows:

L̂(v) = (f̂ , v) +
〈
gN, v

〉
ΓN

−
〈
gD, σ(v) · n

〉
Γ D

+γD

h

(
2μ

〈
gD, v

〉
Γ D

+ λ
〈
gD · n, v · n

〉
Γ D

)
, (55)

i.e., the same as L in (20) but using the right-hand side data from (53). We can now
formulate the finite element method to solve (53) as: Find ûh ∈ Vh such that

A(ûh, vh) = L̂(vh), ∀vh ∈ Vh. (56)

Now, by subtracting (54) from (56), we can see that the solution û, to the problem in
(53), in fact corresponds to the Ritz projection Rhu in (51). So in principle, the Ritz
projection is obtained by solving a linear elasticity problem. This has been treated in
detail in [12], where the results presented in Lemma 1were derived.

Lemma 1 For the Ritz projection, Rhu, in (51), the following error estimates hold:

|||Rhu − Eu|||h � hk‖u‖Hk+1(Ω), (57)

‖Rhu − u‖Ω � hk+1‖u‖Hk+1(Ω). (58)

Proof See Theorem 4.2 in [12].

We will also need the following corollary.

Corollary 1 For the Ritz projection, Rhu, in (51), the following holds:

|Eu − Rhu|j � hk+1‖u‖Hk+1(Ω). (59)

Proof From (57) and the definition of |||·|||h in (48), we get the following:

h−2|Eu − Rhu|2j � |||Rhu − Eu|||2h � h2k‖u‖2
Hk+1(Ω)

, (60)

from which (59) follows.

4.2 A priori analysis

The analysis presented here is similar to the one presented in [26]. We wish to bound
the error uh − u, and in doing so, we split the error in two parts:

uh − Eu = eN + eR, (61)

where eN = uh − Rhu and eR = Rhu − Eu. By Lemma 1, we directly get a bound
for eR . To bound eN , we first aim to find a bound on the “energy” of eN , which we
define as follows:

EeN
= 1

2
(M(ėN , ėN ) + A(eN, eN)). (62)
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To facilitate the proof, we will in this section assume that the discrete initial
conditions are imposed using the Ritz projection:

uh|t=0 = Rhu|t=0, (63a)

u̇h|t=0 = Rhu̇|t=0. (63b)

Note that (63) is not the same initial conditions as in (46), which are used in the
numerical experiments. The reason is that computing the Ritz projection is more
involved since it requires that we first compute f̂ in (53a) by differentiating u. On the
other hand, computing the L2 projection is simple. Note that both projections approx-
imate the analytical solution with the same order of accuracy. The L2 projection
fulfills the same type of bound as (58):

‖Πhu − u‖Ω � hk+1‖u‖Hk+1(Ω), (64)

so in L2-norm, the error that the two different projections make only differ by a
constant. Thus, which projection is used in practice will most likely make little dif-
ference. However, the choice (63) makes the analysis simpler since it is equivalent to
the following:

eN |t=0 = 0, (65)

ėN |t=0 = 0, (66)

which by the definition of the energy in (62) gives us

EeN
|t=0 = 0. (67)

We are now ready to bound the energy.

Lemma 2 The following bound holds

EeN
(t) � h2(k+1). (68)

Proof First, we have that

M(ëN , vh) + A(eN, vh) = M(üh, vh) + A(uh, vh) − M(Rhü, vh) − A(Rhu, vh)

= (ρü, vh)Ω + a(u, vh) − M(Rhü, vh) − A(Rhu, vh)

= (ρü, vh)Ω − M(Rhü, vh)

= (ρü, vh)Ω − M(Rhü, vh) + γMj (Eü, vh)

= M(−ëR, vh), (69)

where we in the first line used the definition of eN . When going to the second line,
we used the definition of the finite element method in (32) and that the analytical
solution satisfies the following:

(ρü, vh)Ω + a(u, vh) = L(vh), ∀vh ∈ Vh. (70)

When going to the third line, we used the definition of the Ritz projection in (51).
Finally, we used (50) and the definition of eR . Now, choosing vh = ėN in (69), we
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can use the definition of the energy and that M is an inner product (so that Cauchy-
Schwarz applies) to get the following:

dEeN

dt
≤ ‖ëR‖M‖ėN‖M ≤ ‖ëR‖M

√
2EeN

. (71)

By using
dEeN

dt
= d

dt
(
√

EeN
)2 = 2

√
EeN

d

dt

√
EeN

, (72)

we can divide both sides of (71) by 2
√

EeN
and get the following:

d

dt

√
EeN

≤ 1√
2
‖ëR‖M

≤ 1√
2

√
‖ρëR‖2

Ω + γM |Eü − Rhü|2j
≤ Chk+1‖ü‖Hk+1(Ω), (73)

where we in the last line used Lemma 1 and Corollary 1. Integrating and squaring
(73) gives the following:

EeN
(t) ≤

(√
EeN

(0) + Chk+1
∫ t

0
‖ü‖Hk+1(Ω)dτ

)2

. (74)

Finally, using (67) gives us the bound in (68).

We are now ready to state our a priori error estimates.

Theorem 1 Let u be the solution to (1) and let uh be the solution to (32), then at any
given time, t , the following a priori error estimates hold

‖uh − u‖Ω � hk+1, (75)

‖∇uh − ∇u‖Ω � hk . (76)

Proof Using the definition of EeN
and Lemma 2, we get the following:

‖ėN‖Ω = ‖u̇h(t) − Rhu̇(t)‖Ω � hk+1, (77)

‖eN‖A = ‖uh(t) − Rhu(t)‖A � hk+1. (78)

To bound eN and not ėN , note that

2‖eN‖Ω

d

dt
‖eN‖Ω = d

dt
‖eN‖2

Ω = 2(eN , ėN )Ω ≤ 2‖eN‖Ω‖ėN‖Ω . (79)

Dividing (79) by 2‖eN‖Ω and integrating over time gives the following:

‖eN(t)‖Ω ≤
∫ t

0
‖ėN (τ )‖Ω dτ, (80)

by using (65). Combining (80) with (77) gives us the following:

‖uh(t) − Rhu(t)‖Ω � hk+1. (81)
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Finally, we use the triangle inequality on (61) and combine (78) and (81) with the
bounds on eR from Lemma 1 to get the estimates (75) and (76).

Remark 4 Theorem 1 builds on the error estimates of the Ritz-like projection from
Lemma 1. This is a direct consequence of the a priori error estimates of the cor-
responding stationary problem. These were given in [12], but only for the single
domain problem. If a priori error estimates were available also for the stationary inter-
face problem, the error estimates of the time-dependent interface problem (4) would
follow in the same way.

4.3 Time step restriction

Both of the weak forms, (32) and (37), will discretize to a system of the following
form:

Mξ̈ + Aξ = L(t), (82)

where M ∈ R
N×N is the mass matrix, A ∈ R

N×N is the stiffness matrix, and
L : R → R

N .
If we use explicit time-stepping the largest time step, τ , we can take due to stability

restrictions will be bounded by the CFL number in the following way:

τ ≤ αCCFLh, (83)

where α is a constant which depends on the chosen time-stepping scheme. The CFL
number can be computed from the matrices in the discrete system. Let lmax be the
largest eigenvalue of the generalized eigenvalue problem: find l ∈ R, x ∈ R

N such
that

Ax − lMx = 0. (84)

Then, the CFL number is given by the following:

CCFL = 1

h
√

lmax
. (85)

It is important that the CFL number does not decrease significantly when the smallest
cut in the mesh approaches zero. Ideally, the time step restriction should not be more
severe than for the standard non-cut finite element method.

4.4 Material parameters

The problem for the single domain contains three material parameters, ρ, λ, and μ.
However, by rescaling (see [16]), one can show that the dimensionless equation only
depends on the ratio, β, between the Lamé parameters:

β = λ

μ
. (86)

Thus, we can without loss of generality assume that the equation is already in dimen-
sionless form and set ρ = μ = 1. Now, we can obtain different physical behaviors
by varying λ. For the interface problem, we shall also assume that we are working in
dimensionless form. By a corresponding analysis, it is possible to show that we can
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set ρ1 = μ2 = 1 and obtain different physical behavior by varying λ1, ρ2, λ2, and
μ2.

5 Numerical experiments

In this section, we present some numerical examples. First, we investigate if the error
converges with the expected order. This is done for the single domain problem in
Section 5.1 and for the interface problem in Section 5.2. In Section 5.3, we investigate
how the properties of the discretized matrices in (82) change when the smallest cut
in the mesh approaches zero. To implement the method, we have used the finite ele-
ment library deal.II [6]. A level-set function has been used to represent the immersed
boundary/interface. On intersected elements, individual quadrature rules need to be
generated, and for these, we have used the algorithm from [25].

Remark 5 As long as the immersed boundary/interface is smooth, the correspond-
ing level-set function will be smooth, at least in a neighborhood of the bound-
ary/interface. The boundary/interface can then be well represented by the zero
contour of a piecewise polynomial approximation of the level-set function. However,
if the boundary/interface is non-smooth, a different representation of the geometry
is needed to achieve high accuracy. Also, the quadrature rules on the intersected
elements need to take such non-smoothness into account if high accuracy is to be
maintained.

Unless stated otherwise, the following material parameters have been used in the
experiments below:

ρ = ρ1 = 1, ρ2 = 1.1154,

λ = λ1 = 1.1429, λ2 = 2.6182, (87)

μ = μ1 = 1, μ2 = 1.8.

These parameters correspond to material 1 being sandstone and material 2 being
granite; these are two of the most common rock types. Note that by using the present
model, we have assumed that the materials are linear, homogeneous, and isotropic,
which possibly is unrealistic for these types of rock.

For waves in elastic materials, two different wave speeds are of importance. The
pressure-, cp, and shear-wave speed, cs . These relate to the material parameters as
follows:

cp =
√

λ + 2μ

ρ
, cs =

√
μ

ρ
. (88)

The parameters in (87) correspond to the following wave speeds:

cp = cp,1 = 1.7728, cp,2 = 2.3611,

cs = cs,1 = 1, cs,2 = 1.2704.
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For time discretization, we have used the explicit fourth-order accurate classical
Runge-Kutta after rewriting the second-order system (82) as a first-order system by
introducing an auxiliary variable. In the experiment below, a time step

τ = 0.2
h

p2

(
max

Ω
(cp)

)−1

, (89)

has been used. The condition number of the mass matrix is expected to be large, so a
direct solver was used to invert M during the time-stepping of (82).

5.1 Convergence for the single domain problem

Assume that we have an elastic pressure wave traveling through R
2 in the x-direction:

uin
1 (x, t) = cos(ω(t − x/cp)), uin

2 = 0. (90)

Here, ω is a constant which we choose as ω = π . Let this wave hit a circular inclu-
sion (vacuum inside) with radius, R = 1. At the boundary of the inclusion, ΓN , a
homogeneous Neumann boundary condition is enforced. If we consider this problem
in all of R2, the total solution, ũ, will be the sum of the incoming, uin, and reflected
wave, uref:

ũ = uin + uref. (91)

The reflected wave can be computed analytically. The total analytical solution (given
in [33]) is periodic in time and can be written as a series expansion in Bessel and
Hankel functions. In this paper, we truncate the series and use it as our solution ũ.
Since the solution is rather complicated, we do not restate the series expansion here,
but merely refer the interested reader to [33].

Consider now the single domain problem in (1) posed on the finite domain as in
Fig. 1a. We have a finite square domain with side length L = 2π . As in Fig. 2a, the
outer boundary is aligned with the mesh but the inner boundary is not. We want to
make the solution, u, on this truncated domain equal to the analytical solution, ũ, on
R

2. To achieve this, we set the initial conditions equal to ũ:

u|t=0 = ũ|t=0 ,
∂u

∂t

∣∣∣∣
t=0

= ∂ũ

∂t

∣∣∣∣
t=0

, (92)

and impose a Dirichlet boundary condition on the outer boundary equal to ũ:

u|ΓD
= ũ. (93)

We solve this problem until the end time T = 2 (corresponding to one period) and
compute the L2-error for decreasing mesh sizes. Snapshots of the solution at the
initial time and a quarter of a period later are shown in Fig. 5.

The error in L2-norm as a function of element size is shown in Fig. 6 for Q1 to
Q3 elements. The straight lines in the figure denote the expected order of accuracy.
We see that the order is a bit low for large h, but when going to finer h, we get the
expected order or even slightly higher order than expected.
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Fig. 5 Snapshots of the solved single domain problem

5.2 Convergence for the interface problem

Consider now a similar setup as in Section 5.1. We have a plane wave of the form (90)
traveling through a material in R

2 towards a disc. The material has properties ρ1, λ1,
μ1, and the disc has a radius equal to 1. However, instead of vacuum, we replace the

-1.2 -1 -0.8 -0.6 -0.4 -0.2
-4

-3

-2

-1

0

1

Fig. 6 L2-error versus element size for the single domain problem, together with straight lines correspond-
ing to the expected order of accuracy
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material of the disc by another material with properties ρ2, λ2, μ2. In the same way
as before, the reflected wave can be solved for analytically and the total solution, ũ,
can be found in [33] in the form of a series expansion. We again truncate the series
and use it as our solution.

Now, we solve the interface problem (4) posed on the finite domain in Fig. 1b.
Again, we have a square domain with side length 2π . To make the solution of the
problem equal to the analytical solution, we again set the initial condition and the
outer Dirichlet boundary condition equal to ũ, as in (92)–(93). Snapshots of the solu-
tion at two different times are seen in Fig. 7. We see that the displacement in the
x-direction looks like the plane wave in (90), but since the wave speed is higher in
Ω2, the plane wave gets distorted.

To verify the convergence, we solve until the end time T = 2 (corresponding to
one period) and then compute the error. The error in L2-norm as a function of element
size is seen in Fig. 8. We see that the order of accuracy is as expected for Q1 and Q2
elements. For Q3 elements, the order is a bit low for large h, but eventually reaches
the expected order when we go to finer h.

5.3 Matrix properties with decreasing cut size

Consider the setup illustrated in Fig. 9a for the single domain and in Fig. 9b for the
interface problem. For both setups, we have a rectangular domain on top of a square
grid. For the single domain problem in Fig. 9a, the left, bottom, and top boundary are
aligned with the mesh, but the right domain boundary intersects the last column of

Fig. 7 Snapshots of the solved interface problem
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Fig. 8 L2-error versus element size for the interface problem, together with straight lines corresponding
to the expected order of accuracy

elements with a cut of size hcut. For the interface problem, all boundaries are aligned
with the mesh boundaries, but the immersed interface intersects the middle column
of elements with a cut of size hcut. We are now interested in how the properties of the
mass and stiffness matrix change when we vary the size of hcut. In the experiment,
we use a background mesh containing 9 × 9 elements, which is slightly finer than
what is illustrated in Fig. 9.

How the condition number of the mass matrix changes is seen in Fig. 10a for
the single domain problem. We see that when the cut size is large (hcut/h ≈ 1) the
condition number is small and initially grows when hcut is decreased. However, as
the cut size is decreased further the condition number becomes constant, as expected
from the theory. We also see that the constant level increases very fast when we

Fig. 9 Experiments where elements are intersected with a cut of size hcut. a Single domain problem.
b Interface problem
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Fig. 10 Condition number of the mass matrix when decreasing the size of hcut in Fig. 9. a Single domain
problem. b Interface problem

increase the order of the elements, which is consistent with the results previously
presented in [12, 27].

In Fig. 10b, we see the condition number of the mass matrix for the interface
problem. Note that we have f (hcut/h) on the x-axis, where

f (x) = log10 (x) − log10 (1 − x) . (94)

This makes the x-axis “almost logarithmic” as hcut/h approaches both 0 and 1, since
f (x) is monotone on the interval (0, 1) and maps (0, 1) to (−∞, ∞). In Fig. 10b, we
see that the behavior is analogous to the single domain problem as hcut/h approaches
0. We also see that the curve is almost mirrored in the point hcut = h/2, and that
the curve is not exactly mirrored can be explained by the difference in material
parameters.

In the same way, the condition number of the stiffness matrix is seen in Fig. 11a
and b. We see that the dependence is similar as for the mass matrix in Fig. 10a and b.

The CFL number computed from (85) is shown in Fig. 12a for the single domain
problem and in Fig. 12b for the interface problem. We see in the figures that the CFL
number is completely independent of the size of the cut. We also see that the CFL
number becomes smaller when we increase the order of the elements. This is also the
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Fig. 11 Condition number of the stiffness matrix when decreasing the size of hcut in Fig. 9. a Single
domain problem. b Interface problem
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Fig. 12 CFL number when decreasing the size of hcut in Figure 9. a Single domain problem. b Interface
problem

case when using the standard (non-cut) finite element method. Note that the scale is
quite different in Figs. 10 and 11 compared to Fig. 12.

5.4 Example with a non-trivial geometry

Finally, we solve the single domain problem (1) with a slightly more complicated
geometry, to demonstrate that it is easy to handle more general geometries. We
consider a background mesh over Ω0 = [−6, 2]×[−2, 2], and the following domain:

Ω = {x ∈ Ω0 : ψ(x) < 0}. (95)

In (95), ψ : Rd → R is the following level-set function:

ψ(x) = R + R0 sin(ω arg(x))) −
√

x2
1 + x2

2 , (96)

where R = 1, R0 = 0.4, and ω = 4. The boundaries of Ω0 are aligned with the mesh,
while the boundary described by ψ is immersed in the mesh: Γ C = {x : ψ(x) = 0}.
Let λ = 1, μ = 2, ρ = 3 and let the initial conditions, (1d)–(1e), be zero: u0 = 0,
w0 = 0. A homogeneous Dirichlet boundary condition is applied on Γ C . On the
outer boundary, ∂Ω0, the following Dirichlet boundary condition is applied:

gD
1 (x, t) = 0, (97)

gD
2 (x, t) =

{
cos(πx2)e

−(t−tc)
2/σ 2

, x1 = −6,

0, x1 	= −6,
(98)

where tc = 1.5 and σ = 0.25. This means that the left boundary generates a pressure
wave package in the u2 component. In Fig. 13, we see a few snapshots of the norm
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Fig. 13 Norm of the displacement of the solution to the problem described in Section 5.4. At times,
t ≈ 5.92, 7.10, 8.29, 9.47, 10.66, 11.84 (listing left to right and top-down). Solved with an element size
h = 0.2 and Q3 elements.

of the displacement,
√

u2
1 + u2

2, in the interval t ∈ [0, 12]. We see that the wave
propagates towards the immersed boundary, hits it, and is reflected.

6 Discussion

In this paper, we have described a high-order cut finite element method for the elastic
wave equation, which can handle both boundaries and material interfaces without
requiring alignment of element boundaries. We have implemented the method in 2
space dimensions using the finite element library [6], but the extension to 3 space
dimensions is straightforward. The numerical experiments in Sections 5.1 and 5.2
using elements with piecewise linear, quadratic, and cubic basis functions show that
the method converges with orders 2, 3, and 4, which are the orders expected from
Theorem 1. From the experiment in Section 5.3, we see that the method is robust
when the size of the smallest cut in the mesh approaches zero.

A choice of numerical coefficients in the expressions of γ i
M , γ i

A, γI , and γD , see
(39), (42), and (43), has been made. As far as we have seen, the method is not par-
ticularly sensitive to this choice. Still, one can wonder what happens when they are
chosen differently. If γD and γI are chosen too small, coercivity is lost and the method
becomes unstable, due to eigenvalues of the stiffness matrix becoming negative. This
has nothing to do with the method being immersed. The same thing occurs also when
symmetric Nitsche techniques are used in non-cut methods. Generally, one wants to
choose γD and γI close to the stability limit. If they are chosen larger than necessary,

Adv Comput Math (2020)  46: 45 Page 25 of 28 45



the CFL number becomes smaller. The influence of the stabilization parameters γ i
A

and γ i
M on the condition numbers of the mass and stiffness matrix were discussed in

[9, 26], for linear P1 elements. There one could see that the condition numbers had
a minimum when either stabilization parameter increased from 0. However, the con-
dition number of either matrix increased rather slowly after passing the minimum.
Thus, choosing γ i

M or γ i
A slightly larger than necessary does not have a severe effect.

As mentioned earlier, high-order methods are typically attributed to being more
efficient for hyperbolic problems. We have not compared efficiency for different
orders of the present method, but several aspects would affect the efficiency. When
increasing the order of elements, the order of the quadrature must also be increased.
Creating quadrature rules on the intersected elements is typically expensive, and
using more quadrature points means more work. However, for a fixed geometry this
only needs to be done once. Therefore, the question of whether or not it pays off
to increase the order likely depends on what algorithm is being used to generate the
quadrature and on how long the time interval of interest is. If the time interval is suf-
ficiently long, we do not expect the quadrature to destroy the efficiency of the higher
order method. A second aspect is the increased work in the time-stepping of (82),
due to stabilization being added to the mass matrix. When Gauss-Lobatto quadrature
is used on the non-intersected elements (see Remark 3), a suitable reordering of the
degrees of freedom yields a mass matrix which consist of one large diagonal block
and a much smaller non-diagonal block. The condition number of the small block
will potentially be large when the polynomial order of the elements is high, but as
long as the block is small enough to be factorized, we have seen no difficulties. How-
ever, if an iterative method must be used, there could be severe loss of efficiency if
no suitable preconditioning technique is found. A third aspect is the reduction of the
CFL number when increasing the polynomial order of the elements. The reduction is
not particular to the cut finite element method but will impact the efficiency.

Future work involves investigating a broader set of materials. The parameters (87)
of the two materials used in the experiments for the interface problem are differ-
ent but do not differ significantly. A future possibility would be to test how more
extreme differences in material parameters affect the performance of the method.
For the interface problem, the limit μ2 → 0 is particularly important. In this case,
the material 2 stops being elastic and the problem on Ω2 becomes equivalent to the
acoustic wave equation [22]. One disadvantage of taking the limit μ2 → 0 is that
the problem on Ω2 still is a system. Thus, one future research direction would be to
consider the problem of the elastic wave equation coupled directly with the acoustic
wave equation.
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5. Appelö, D., Petersson, N.A.: A fourth-order accurate embedded boundary method for the wave
equation. SIAM J. Sci. Comput. 34(6), A2982–A3008 (2012). http://epubs.siam.org/doi/abs/10.1137/
09077223X

6. Arndt, D., Bangerth, W., Davydov, D., Heister, T., Heltai, L., Kronbichler, M., Maier, M., Pelteret,
J.P., Turcksin, B., Wells, D.: The deal II library, version 8.5. J. Numer. Math 25(3), 137–146 (2017).
https://doi.org/10.1515/jnma-2016-1045

7. Burman, E.: Ghost penalty. Comptes Rendus Mathematique 348(21-22), 1217–1220 (2010).
https://doi.org/10.1016/j.crma.2010.10.006

8. Burman, E., Claus, S., Hansbo, P., Larson, M.G., Massing, A.: Cut FEM: discretizing geometry and
partial differential equations. International Journal for Numerical Methods in Engineering 104(7),
472–501 (2015). https://doi.org/10.1002/nme.4823

9. Burman, E., Hansbo, P.: Fictitious domain finite element methods using cut elements:
II. A stabilized Nitsche method. Applied Numerical Mathematics 62(4), 328–341 (2012).
https://doi.org/10.1016/j.apnum.2011.01.008

10. De Basabe Jonás D., Sen Mrinal, K., Wheeler, M.F.: The interior penalty discontinuous Galerkin
method for elastic wave propagation: grid dispersion. Geophysical Journal International 175(1), 83–93
(2008). https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-246X.2008.03915.x

11. Duru, K., Virta, K.: Stable and high order accurate difference methods for the elastic wave equation
in discontinuous media. Journal of Computational Physics 279, 37–62 (2014)

12. Hansbo, P., Larson, M.G., Larsson, K.: Cut finite element methods for linear elasticity problems.
In: Bordas, S., Burman, E., Larson, M., Olshanskii, M. (eds.) Geometrically Unfitted Finite Element
Methods and Applications, pp. 25–63, Lecture Notes in Computational Science and Engineering, vol.
121. Springer International Publishing, Cham (2017)

13. Johansson, A., Larson, M.G., Logg, A.: High order cut finite element methods for the stokes problem.
Advanced Modeling and Simulation in Engineering Sciences 2(1), 24 (2015)

14. Karniadakis, G.E., Sherwin, S.J.: Spectral/hp Element Methods for CFD. Oxford University Press,
New York (1999). http://ebookcentral.proquest.com/lib/uu/detail.action?docID=241558

15. Kreiss, H.O., Oliger, J.: Comparison of accurate methods for the integration of hyperbolic equations.
Tellus 24(3), 199–215 (1972). https://doi.org/10.1111/j.2153-3490.1972.tb01547.x

16. Langtangen, H.P., Pedersen, G.K.: Scaling of Differential Equations. Springer, Berlin Heidelberg New
York (2016). http://link.springer.com/10.1007/978-3-319-32726-6

17. Larson, M.G., Bengzon, F.: The Finite Element Method: Theory, Implementation and Applications,
Text in Computational Science and Engineering vol. 10. Springer, Berlin Heidelberg (2013)

18. Lederer, P., Pfeiler, C.M., Wintersteiger, C., Lehrenfeld, C.: Higher order unfitted FEM for Stokes
interface problems. Proceedings in Applied Mathematics and Mechanics 16(1), 7–10 (2016). https://
onlinelibrary.wiley.com/doi/abs/10.1002/pamm.201610003

19. Lombard, B., Piraux, J.: Numerical treatment of two-dimensional interfaces for acoustic and elastic
waves. Journal of Computational Physics 195(1), 90–116 (2004)

20. Lombard, B., Piraux, J., Gélis, C., Virieux, J.: Free and smooth boundaries in 2-D finite-difference
schemes for transient elastic waves. Geophysical Journal International 172(1), 252–261 (2008)

21. Massing, A., Larson, M.G., Logg, A., Rognes, M.E.: A stabilized Nitsche fictitious domain
method for the Stokes problem. Journal of Scientific Computing 61(3), 604–628 (2014).
https://doi.org/10.1007/s10915-014-9838-9
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