
SIMPLE NON-EXTENSIVE SPARSIFICATION OF THE HIERARCHICAL
MATRICES§

DARIA A. SUSHNIKOVA¶ AND IVAN V. OSELEDETS‡¶

Abstract.
In this paper, we consider the matrices approximated in H 2 format. The direct solution, as well as the precondi-

tioning, of systems with such matrices is a challenging problem. We propose a non-extensive sparse factorization of
the H 2 matrix that allows to substitute direct H 2 solution with the solution of the system with an equivalent sparse
matrix of the same size. The sparse factorization is constructed of parameters of the H 2 matrix. In the numeri-
cal experiments, we show the consistency of this approach in comparison to the other approximate block low-rank
hierarchical solvers, such as HODLR[3], H2Lib[5], and IFMM[11].

Key words. H 2 matrix, sparse factorization, preconditioning

1. Introduction. Problems arising in the discretization of boundary integral equations
(and a number of other problems with approximately separable kernels) lead to matrices that
can be well-approximated by hierarchical block low-rank (H [15, 17], mosaic skeleton[27])
matrices. These are the matrices hierarchically divided into blocks, some of which has low-
rank. The development of the H matrices is the H 2[16, 6] matrices, which are the hier-
archical block low-rank matrices with nested bases. The nested basis property leads to the
additional improvement in terms of storage and complexity of different operations such as
matrix-vector products. Approximate solution and preconditioning of systems with H 2 ma-
trices is a rapidly developed area[9, 3, 11, 19], however, construction of the accurate, time
and memory efficient factorization that leads to approximate solution is still a challenging
problem. In this paper, we propose a new representation of H 2 matrices. Namely, we show
that H 2 factorization of matrix A ∈ RN×N is equivalent to the factorization

A =USV>, (1.1)

where S ∈ RN×N is a sparse matrix. Note that the size of matrix S matches the size of matrix
A. U ∈RN×N and V ∈RN×N are orthogonal matrices that are products of block-diagonal and
permutation matrices. Once the factorization (1.1) is built, we can substitute a solution of the
system

Ax = b,

by a solution of the system with the sparse matrix:

Sy =U>b, (1.2)

where x =V y. The system (1.2) can be easily solved using standard sparse tools. In this paper
we propose:

• Sparse non-extensive1 factorization for H 2 matrix that leads to the solver and the
preconditioner.

‡Skolkovo Institute of Science and Technology, Nobel St. 3, Skolkovo Innovation Center, Moscow, 143025
Moscow Region, Russia (i.oseledets@skolkovotech.ru)

¶Institute of Numerical Mathematics Russian Academy of Sciences, Gubkina St. 8, 119333 Moscow, Russia
§Section 2 is supported by Russian Foundation for Basic Research grant 17-01-00854, Sections 3, 4 are sup-

ported by Russian Foundation for Basic Research grant 16-31-60095, Sectiom 5 is supported by Russian Science
Foundation grant 15-11-00033.

1The term non-extensive means that the sizes of the factors S, U and V are equal to the size of the matrix A (in
opposition to extensive[2, 11, 26] sparse factorizations of H 2 matrix).

1

ar
X

iv
:1

70
5.

04
60

1v
3

 [
m

at
h.

N
A

]
 2

8
A

pr
 2

01
8

• The algorithm that allows to construct factors U , S and V from parameters of H 2

matrix.
• Numerical comparison of the proposed method with HODLR[1], IFMM[11] and

H2Lib[5] packages.
The main idea of the sparsification algorithm is the compression of the low-rank blocks (the
very close idea of the compression of the fill-in blocks during the block Cholesky factor-
ization of a sparse matrix is presented in works[25, 29]). The main difference between the
presented sparse factorization and the other methods of sparsification[2, 11, 26] is a size of
factors. In the other methods, the hierarchical matrix is factorized into the sparse matrices
of larger sizes. The characteristic inflating coefficient is k = 5 (it depends on the number of
levels in the cluster tree[2, 26]). The matrix extension is a major drawback since it increases
the complexity of matrix computations. We propose the factorization that takes H 2 matrix
and returns the sparse factors of the same size. Another drawback of the extended sparse
factorizations is that resulting sparse matrix may lose a positive definiteness of the origi-
nal H 2 matrix. Proposed sparsification preserves symmetry and positive definiteness of the
H 2 matrix.

2. Compression algorithm. Consider the dense matrix A ∈ RN×N that can be approxi-
mated in H 2 format (has corresponding low-rank blocks). Formal definition of the H 2 ma-
trix is presented in Section 4.1, here we give basic facts that are used in the current section.
Matrix A is a block matrix with following properties. It consists of two non-intersecting
“close” and “far” matrices:

A =Ck +Fk, k ∈ 0, . . . ,L

block size of zero level is B, block size of k-th level Bk is

Bk = 2kB,

Ck ∈ RN×N is block-sparse matrix of full-rank close blocks, and Fk ∈ RN×N is block matrix
of far blocks, see Figure 2.1b. The matrix Fk has low-rank block rows and block columns.
Moreover, the nested basis property holds: basis rows for block rows and columns on level l
are a subset of basis rows at level (l−1). This is used in the multilevel computations, which
are described in Section 2.2.

(a) Matrix C0 (b) Matrix F0

Fig. 2.1: Close and far blocks of matrix A at level l = 0

2

2.1. Compression at zero level. First consider the compression procedure at zero block
level (l = 0). Assume that the number of block rows and columns at zero level is M. Nonzero
block Fi j ∈ RB×B of far matrix F0 has low rank:

Fi j ≈ ŨiF̃i jṼ>j , ∀i, j ∈ 1, . . . ,M

where F̃i j ∈ RN×N is the compressed far block with the following structure:

F̃i j =

[
Ḟi j 0
0 0

]
,

where Ḟi j ∈Rr×r. Matrices Ũi ∈RN×N and Ṽj ∈RN×N are orthogonal. The blocks in i-th row
have the same left orthogonal compression factor Ũi and all blocks in j-th column have the
same right factor Ṽ>j .

The goal of the compression procedure is to sparsify the matrix A by obtaining the com-
pressed blocks F̃i j instead of original blocks Fi j. One can achieve this by finding Ũi and
Ṽj compression matrices and applying matrix Ũ>i to i-th row and Ṽj to j-th column. We
introduce the block-diagonal orthogonal compression matrix

U>0 =

Ũ>1 0 0

0
. . . 0

0 0 Ũ>M

 . (2.1)

Similarly, for block columns we obtain the block-diagonal orthogonal compression matrix

V0 =

Ṽ1 0 0

0
. . . 0

0 0 ṼM

 . (2.2)

Applying matrices U0 and V0 to the matrix A we obtain the matrix A1 with compressed far
matrix:

A1 =U>0 AV0.

The process is illustrated in Figure 2.2.

(a) Matrix A (b) Matrix A1

Close blocks

Far blocks

Fig. 2.2: Zero level compression

3

Finally, we obtain:

A1 =U>0 (C0 +F0)V0 =U>0 C0V0 + F̃1,

where F̃1 is a compressed far matrix which consists of blocks F̃i j. Note that the matrix C0 is
available as one of the parameters of the H 2 format, it is a so-called “close matrix”.

2.2. Compression at the first level (l = 1). For each block row in A1 we denote the
rows with zero far blocks by “non-basis”, and the other rows by “first level basis”. Assume
that each block row (column) has r basis rows (columns) and (B− r) non-basis. Introduce
the permutation Pr1 that puts non-basis block rows before the basis ones preserving the row
order and permutation Pc1 that does the same for columns, see Figure 2.4a. For the permuted
matrix

Ã1 = Pr1A1Pc1

we obtain

Ã1 =

[
An1n1 An1b1
Ab1n1 Ab1b1

]
,

where An1n1 ∈ RM(B−r)×M(B−r) is a submatrix on the intersection of non-basis rows and non-
basis columns, Ab1n1 ∈RMr×M(B−r) is on the intersection of basis rows and non-basis columns
and so on, see Figure 2.4a. Denote the permuted far matrix:

F̂1 = (Pr1F̃1Pc1).

Note that permutations Pr1 and Pc1 concentrate all nonzero blocks of compressed far zone F̃1
inside of the submatrix Ab1b1 . Denote permuted close matrix:

Ĉ1 = (Pr1U>0 C0V0Pc1). (2.3)

Consider the submatrix Ab1b1 ∈RMr×Mr, note that this matrix has exactly the same close and
far block structure as the matrix A, but the block size in Ab1b1 is r. Now we join block rows
and columns of the matrix Ab1b1 by groups of J blocks (e.g. J = 2 in Figure 2.3a). Assume
that Jr = B.

We will call the grouped blocks “big blocks”. Among these blocks, the big block that
consists only of far sub-blocks will be called far, the big block that contains at least one close
small block will be referred to as close. Denote blocks of the far matrix F̂1 that become close
after grouping by F̂ml1, see Figure 2.3. We also introduce a new close matrix with big blocks
by

C1 = Ĉ1 + F̂ml1. (2.4)

Denote far matrix with big blocks by F1. Consider this joining for the block Ab1b1 :

Ab1b1 = (Ĉ1)b1b1 + F̂1 = (Ĉ1)b1b1 + F̂ml1 +F1 = (C1)b1b1 +F1.

4

(a) Ab1b1 = (Ĉ1)b1b1 + F̂1 (b) Ab1b1 = (C1)b1b1 +F1

Matrix (Ĉ1)b1b1

Matrix F1

Matrix F̂ml1

Fig. 2.3: Small (r-size) and big (B-size) far and close blocks of matrix Ab1b1

Similarly, for the matrix Ã1:

Ã1 = Ĉ1 + F̂1 = Ĉ1 + F̂ml1 +F1 =C1 +F1.

It can be shown that block rows and columns of the matrix F1 have low-rank by the properties
of the H 2 matrix A. Similarly to (2.1) compute orthogonal block-diagonal matrices
Ub1 ,Vb1 ∈ RMr×Mr that compress matrix F1.

Multiplication of matrix F1 by matrices Ub1 and Vb1 leads to compression:

F̃2 =U>b1
F1Vb1 , (2.5)

where the matrix F̃2 consists of compressed blocks.
Now we introduce extended matrices Ub1 and Vb1 that can be applied to matrix Â1:

U1 =

[
I(N−Mr)×(N−Mr) 0

0 Ub1

]
, V1 =

[
I(N−Mr)×(N−Mr) 0

0 Vb1

]
. (2.6)

Applying matrices U1 and V1 to matrix Ã1 we obtain the matrix with compressed first
level:

A2 =U>1 Ã1V1.

The process of the first level compression is shown in Figure 2.4b.

(a) Matrix Ã1 (b) Matrix Â1

Close blocks

Far blocks

Basis rows
and columns

New blocks

Fig. 2.4: The first level compression

5

For the first level we obtain

A2 =U>1 (C1 +F1)V1 =U>1 C1V1 + F̂2.

2.3. Compression at all levels. We apply permutation and repeat this procedure L times
and obtain:

A1 =U>0 AV0 =U>0 C0V0 + F̂1

A2 =U>1 U>0 AV0V1 =U>1 C1V1 + F̂2

...

AL =

(
L

∏
k=0

U>k

)
A

(
0

∏
k=L

Vk

)
=U>L−1CL−1VL−1 + F̂L = S,

(2.7)

thus

A =

(
0

∏
k=L

Uk

)
S

(
L

∏
k=0

V>k

)
.

If we denote

U =
L

∏
k=0

Uk, V =
L

∏
k=0

Vk, (2.8)

then the final result of the algorithm is a sparse approximate factorization

A =USV>, (2.9)

where S is a sparse matrix of the same size as matrix A, U and V are orthogonal matrices that
are products of permutation and block-diagonal orthogonal matrices.

REMARK 2.1. If matrix A is approximated into H 2 format, then matrices S, U and V
can be constructed from parameters of the H 2 representation, see details in Section 4.

REMARK 2.2. Sparsity of the matrix S is proven in Section 3.

PROPOSITION 2.1. If the matrix A is symmetric and positive definite, then the factors U
and V are equal and the matrix S is symmetric and positive definite.

Proof. If the matrix A is symmetric and positive definite, then from the steps of compres-
sion algorithm, compression matrices Ui and Vi, i∈ 0, . . . ,L are equal, thus, by equations (2.8),
U =V . Since S =U>AV , U =V and A is symmetric and positive definite, then S is symmetric
and positive definite matrix.

REMARK 2.3. The proposed sparsification algorithm is applicable to the special cases
of H 2 matrices such as HSS (Hierarchically Semiseparable), HOLDR (Hierarchical Off-
Diagonal Low-Rank).

6

2.4. Pseudo code of the compression algorithm.
Algorithm 1: Compression algorithm

Input:
A ∈ RN×N - matrix with H 2 structure
L - number of levels

Compression:
for k = 0, . . . ,L do

Mk - number of blocks on level Mk
Prk, Pck basis-non-basis permutations
Ãk = PrkA1Pck, (Pr0 = I,Pc0 = I)
for i = 1, . . . ,Mk do

Compute Uki (using SVD of i-th block row of Abkbk)
Compute Vki (using SVD of i-th block column of Abkbk)

Uk = Prk diag(Uk1, . . . ,UkMk)
Vk = Pck diag(Vk1, . . . ,VkMk)

A j+1 =U jA jV>j

Output: Factorization A≈USV>

U =
(
∏

L
k=0 Uk

)
,

V =
(
∏

L
k=0 Vk

)
,

S = AL =
(
∏

L
k=0 U>k

)
A
(
∏

0
k=L Vk

)
3. Sparsity of the matrix S. First, define the block sparsity pattern of a block sparse

matrix. For a matrix A with M1 block columns, M2 block rows and block size B define
bsp(A)M1×M2

B×B (block sparsity pattern) as a function

bsp : RM1B×M2B→ BM1×M2 ,

where B = {0,1}. The function takes block matrix A ∈ RM1B×M2B as input and returns as
output the matrix R = bsp(A)M1×M2

B×B ∈ BM1×M2 such that{
Ri j = 1, if Ai j ∈ RB×B is nonzero block,
Ri j = 0, if Ai j ∈ RB×B is zero block.

By #bsp(A)M1×M2
B×B define the number of nonzero blocks of matrix A and the number of ones

in matrix R.
PROPOSITION 3.1. If the matrix A has H 2 structure, the compression Algorithm 1 has

L levels, the block size on each level is B, the matrix A has zero level close matrix C, and the
far blocks are compressed with rank r = B/2, then the compression algorithm for the matrix
A leads to the factorization:

A =U>SV

where U and V are orthogonal matrices equal to the multiplication of block-diagonal com-
pression and permutation matrices

U =

(
K

∏
j=0

U jP>j

)
, V =

(
K

∏
j=0

VjP>j

)
,

7

S is a sparse matrix that has

#S 6

(
4L+6(

1
2L −1)

)
#bsp(C)M×M

B×B

nonzero blocks2 of size (r× r).
Proof. Consider the matrix S from (2.9). Let matrix Si j correspond to i-th level non-basis

hyper row and j-th level non-basis hyper column. Thanks to basis-non-basis row and column
permutations Pri and Pci matrix S is separated into blocks Si j, where i, j ∈ 0, . . . ,L.

The number of nonzero blocks in S is equal to sum of nonzero blocks in Si j:

#S =
L

∑
i=0

L

∑
j=0

#Si j.

Let us compute the number of nonzero blocks in block Si j. Since on each level we join block
rows by groups of J blocks, we obtain:

bsp(Si j)
M/2i×M/2 j

r×r = bsp(C)
M/2i×M/2 j

2iB×2 jB ,

where i, j ∈ 0, . . . ,L.
Note that

bsp(C)
M/2i×M/2 j

2iB×2 jB 6
#bsp(C)M×M

B×B

2min(i, j)

Thus

#S 6
L

∑
i=0

L

∑
j=0

#bsp(C)
M/2i×M/2 j

2iB×2 jB =
L

∑
i=0

(
2(L− i)−1

2i

)
#bsp(C)M×M

B×B =

=

(
4L+6(

1
2L −1)

)
#bsp(C)M×M

B×B .

Obtain

#S 6

(
4L+6(

1
2L −1)

)
#bsp(C)M×M

B×B .

Thus, the number of nonzero blocks in matrix S is less than the number of nonzero blocks in
close matrix C multiplied by constant (4L+ 6(1

2L − 1)), if matrix C is block-sparse, and all
proposition conditions are met, then matrix S is also sparse.

4. Building sparse factorization from H 2 coefficients.

4.1. Definition of H 2 matrix. In this section we consider the matrix A approximated
in H 2 format. There exists a number of efficient ways to build this approximation[22, 6].
In this paper, we do not consider the process of building the H 2 matrix and assume that it
is given. Let us explain in details how to construct factors in the decomposition (2.9) from
parameters of H 2 matrix A. First, we give the definition of H 2 matrix, the more detailed
definition can be found in[6].

DEFINITION 4.1 (Row and column cluster trees). Cluster trees of rows and columns Tr
and Tc define the hierarchical division of block rows and columns. At each level of the row

2The symbol # before the matrix means the number of nonzero (r× r) blocks in this matrix.

8

cluster tree Tr, each node corresponds to a block row of the matrix A, child nodes correspond
to the subrows of this row. Same for the column cluster tree Tc.

DEFINITION 4.2 (Block cluster tree). Let Trc be a tree. Trc is a block cluster tree for
Tr and Tc if it satisfies the following conditions:

• root(Trc) = (root(Tr),root(Tc)).
• Each node b ∈Trc has the form b = (t,s) for t ∈Tr and s ∈Tc.
• Let b = (t,s) ∈Trc. If sons(b) 6=∅, then

sons(b) =

{t}× sons(s) if sons(t) 6=∅,sons(s) 6=∅,

sons(t)×{s} if sons(t) 6=∅,sons(s) 6=∅,

sons(t)× sons(s) otherwise.

DEFINITION 4.3 (Admissibility condition). Let Tr and Tr be a row and column cluster
trees. A predicate

A = Tr×Tc −→ {True,False}

is an admissibility condition for Tr and Tr if

A (t,s) =⇒A (t ′,s) holds for all t ∈Tr,s ∈Tc, t ′ ∈ sons(t)

and

A (t,s) =⇒A (t,s′) holds for all t ∈Tr,s ∈Tc,s′ ∈ sons(s).

If A (t,s), the pair (t,s) is called admissible.
DEFINITION 4.4 (Admissibility block cluster tree). Let Trc be a block cluster tree for

Tr and Tc, let A be an admissibility condition. If for each (t,s) ∈ Trc either sons(t) 6=∅ 6=
sons(s) or A (t,s) = True holds, the block cluster tree Trc called A -Admissible.

DEFINITION 4.5 (Farfield and nearfield). Let Trc be a block cluster tree for Tr and Tc,
let A be an admissibility condition. The index set

I +
N×N := {(t,s) ∈IN×N : A (t,s) = True}

is called set of farfield blocks. The index set

I −N×N := {(t,s) ∈IN×N : A (t,s) = False}

is called set of nearfield blocks.
DEFINITION 4.6 (Cut-off matrices). Let Tr be a row cluster tree. For all tree nodes

t ∈Tr the cut-off matrix χt ∈ RN×N corresponding to t is defined by

(χt)i j =

{
1 if i = j ∈ t,
0 otherwise,

for all i, j ∈ N.

DEFINITION 4.7 (Cluster basis). Let K = (Kt)t∈Tr be a family of finite index sets (rank
distribution for Tr). Let R = (Rt)t∈Tr be a family of matrices satisfying Rt ∈ RN×Kt

t̂ for all
t ∈ Tr. Then R is called row cluster basis and the matrices Rt are called row cluster basis
matrices. Analogically for column cluster basis E and column cluster basis matrices Es,
s ∈Tc.

DEFINITION 4.8 (Close matrix). The matrix C ∈ RN×N is close if

C = ∑
b=(s,t)∈I −N×N

χtAχs

9

DEFINITION 4.9 (H 2 matrix). The matrix A ∈ RN×N is approximated in H 2 format
if Tc and Tr are block cluster trees of columns and rows of matrix A, if there exist a row
cluster basis R (row transition matrices), the column cluster basis E (column transition ma-
trices), a family D = (Db)b∈I +

N×N
of matrices satisfying Db ∈RKt×Ls for all b = (s, t)∈I +

N×N
(interaction list), and close matrix C, and if

A =C+ ∑
b=(s,t)∈I +

N×N

Rt Db E∗s .

4.2. Construction of matrices U and V from the coefficients of H 2 matrix. Let
us first construct orthogonal matrices U and V from the factorization (2.9). According to
equation (2.8):

U =
L

∏
k=0

PrkUk,

and

V =
L

∏
k=0

PckVk.

Note that matrices Uk and Vk,k ∈ 0, . . . ,L, are very close in their meaning to cluster basis ma-
trices Rt and Es both are level compression matrices. The difference between these matrices
is that the diagonal blocks of matrices Uk and Vk are square orthogonal blocks, and diagonal
blocks of matrices Rt and Es are rectangular non-orthogonal blocks.

Thus we can take matrices Rt and Es, orthogonalize blocks, complete each block to
square orthogonal block and obtain the matrices Uk and Vk. The algorithm that orthogonalizes
blocks of matrices Rt and Es is known as the H 2 compression algorithm, it can be found
in[6, 7]. Compression of blocks can be done by QR decomposition of blocks with the square
Q factor. Permutations Prk and Pck can be constructed from the cluster trees.

4.3. Construction of the matrix S from the coefficients of H 2 matrix. According to
equations (2.7), equation (2.3) and equation (2.4):

S =U>L−1CL−1VL−1 + F̂L =

=U>L−1(. . .(U
>
1 (U>0 C0V0 + F̂ml1)V1 + F̂ml2) . . .)VL−1 + F̂L.

Construction of matrices Ui and Vi is shown in the previous subsection, matrix C0 is
stored in the H 2 matrix explicitly as close matrix C, matrices F̂mli are exactly matrices Di
from interaction list, matrix F̂L is matrix DL. Thus, matrix S can be easily computed from the
coefficients of the H 2 matrix.

5. Numerical experiments. Sparsification algorithm is implemented in the Python pro-
gramming language. For the H 2 matrix implementation we use the h2tools[22] library. All
computations are performed on MacBook Air with a 1.3GHz Intel Core i5 processor and 4
GB 1600 MHz DDR3 RAM.

First, we numerically show that the matrix S in factorization (2.9) is indeed sparse. Then
we give the timing and storage requirements of the sparse factorization. Thereafter we con-
sider the sparse factorization of the H 2 matrix combined with a sparse direct solver as a

10

direct solver for the system with the H 2 matrix and compare this approach with HODLR di-
rect solver and H 2-LU solver from H 2Lib library. Finally, we consider sparse factorization
with the matrix S factorized by the ILUt method as a preconditioner for GMRES solver.

We want to note that the sparsification algorithm does not worsen the accuracy of the
H 2 approximation. It follows from the algorithm and it is confirmed in the experiments.
Therefore, in the experiments below, we omit the accuracy of the sparse factorization and
show only the H 2 approximation accuracy to avoid redundancy.

5. Numerical experiments. In Section 3 we have studied the sparsity of the factor S
from the factorization (2.9) analytically. Here we present the numerical illustration that matrix
S is indeed sparse. Tests are performed for two H 2 matrices.

EXAMPLE 5.1. H 2 approximation of the matrix

Ai j =

{
1

|ri−r j | if i 6= j

0, if i = j
, (5.1)

where ri ∈R2 or ri ∈R3 is the position of the i-th element. Elements are randomly distributed
in identity square Ω = [0,1]× [0,1] in R2 case and in identity cube Ω = [0,1]× [0,1]× [0,1]
in R3 case. The H 2 approximation accuracy is ε = 10−6. In Figure 5.1 the factor S of the
sparse factorization of the H 2 matrix with the core (5.1) is marked by “inv”.

EXAMPLE 5.2. H 2 approximation of the matrix

Ai j = 2δi j + exp(−||ri− r j||2), (5.2)

where ri ∈R2 or ri ∈R3 is the position of the i-th element. Elements are randomly distributed
in identity square Ω = [0,1]× [0,1] in R2 case and in identity cube Ω = [0,1]× [0,1]× [0,1]
in R3 case. The H 2 approximation accuracy is ε = 10−6, In Figure 5.1 the factor S of the
sparse factorization of the H 2 matrix with the core (5.2) is marked by “exp”.

We consider the sparse factorization (2.9) of the H 2 matrices from Examples 5.1 and 5.2
in 2D and 3D. In Figure 5.1 we show the number of nonzero elements per row in the factor
S. Since for all considered matrices the number of nonzero elements per row is constant (and
does not grow with the matrix size), we conclude that the matrix S in factorization (2.9) is
indeed sparse.

11

104 105

Size of matrix, N

200

400

600

800

1000

1200

N
u
m

b
e
r

o
f

n
o
n
ze

ro
s

p
e
r

ro
w inv 2D

inv 3D

exp 2D

exp 3D

Fig. 5.1: Number of nonzero elements per row in factor S for H 2 matrices from Exam-
ples 5.1 and 5.2 in 2D and 3D.

5. Numerical experiments. In Figure 5.2 we show the time of the sparse factorization
of H 2 matrices with the cores (5.1) and (5.2) (approximation accuracy is ε = 10−6) denoted
by ”inv” and ”exp”.

104 105

Size of matrix, N

10-1

100

101

102

T
im

e
,

se
c

inv 2D

inv 3D

exp 2D

exp 3D
t= aN

Fig. 5.2: Timing of sparsification building for matrices from Examples 5.1 and 5.2 in 2D and
3D.

Sparsification time grows almost linearly. In Figure 5.3 we show the memory require-
ments of the matrix (5.1) in 2D and 3D, also we show the memory requirements of its H 2 ap-
proximation (ε = 10−6), of the sparse factorization (sum of U, S, and V) and of the factor S

12

separately.

104 105

Size of matrix, N

100

101

102

103

104

105

106

M
e
m

o
ry

,
M

B

S

U+S+V

H2

Full

(a) 2D case

104 105

Size of matrix, N

100

101

102

103

104

105

106

M
e
m

o
ry

,
M

B

S

U+S+V

H2

Full

(b) 3D case

Fig. 5.3: Storage requirements for the original matrix (5.1), its H 2 approximation and the
sparse factorization.

In Figure 5.4 we show the memory requirements of the matrix (5.2) in 2D and 3D, also
we show the memory requirements of its H 2 approximation (ε = 10−6), of the sparse fac-
torization (sum of U, S, and V) and of the factor S separately.

104 105

Size of matrix, N

100

101

102

103

104

105

106

M
e
m

o
ry

,
M

B

S

U+S+V

H2

Full

(a) 2D case

104 105

Size of matrix, N

100

101

102

103

104

105

106

M
e
m

o
ry

,
M

B

S

U+S+V

H2

Full

(b) 3D case

Fig. 5.4: Storage requirements for the original matrix (5.2), its H 2 approximation and the
sparse factorization.

For all examples, the memory requirements of both H 2 and the sparse factorization
grows almost linearly, unlike the memory requirements of the original matrix which scales
quadratically.

5.3. Comparison to HODLR. Paper[3] considers the HODLR approximation of the
dense matrix and its factorization as an efficient way to compute the determinant of the dense

13

matrix. We propose the H 2 approximation of the dense matrix, its sparsification and factor-
ization of the sparse matrix as an alternative. The triangular factorization of the sparse matrix
is computed by CHOLMOD[12] package. Tests are performed for 3D data, for matrix

Ai j = 2δi j + exp(−||ri− r j||2),

where ri ∈ R3 is the position of the i-th element. Both HODLR and H 2 approximation
accuracy is ε = 10−6. The HODLR factorization accuracy is ϑ = 10−5, the accuracy of the
triangular factorization of the sparse matrix is ϑ = 10−10 (which is redundant, but the used
package has no accuracy options). In Figure 5.5 we show the time comparison for this two
approaches.

104 105

Size of matrix, N

0

50

100

150

200

250

300

350

T
im

e
,

se
c

HODLR factorization

HODLR approximation

SP factorization

SP sparsification

SP approximation

Fig. 5.5: Comparison of the H 2 sparsification approach with HODLR solver in 3D.

Total solution time comparison in 2D and 3D is presented in Figure 5.6.
14

104 105

Size of matrix, N

10-1

100

101

102

103

T
im

e
,

se
c

Sparsification 2D

Sparsification 3D

hodlr 2D

hodlr 3D

Fig. 5.6: Comparison of the H 2 sparsification approach with HODLR solver in 2D and 3D.

5.4. Comparison to H2Lib liberary. In this subsection we compare the approach pro-
posed in this paper (sparse non-extensive factorization of the H 2 matrix, triangular factor-
ization of the sparse matrix and then the solution of the system) with the approach based
on H 2-LU factorization, proposed in the work[9] and implemented in H2lib package[5].
The H 2-LU factorization takes the H 2 matrix and returns the triangular factors L and U in
H 2 format. The triangular factorization of the sparse matrix is computed by CHOLMOD[12]
package. Tests are performed on the following problem.

EXAMPLE 5.3. Consider the Dirichlet boundary value problem for Laplace’s equation{
−∆u(x) = 0 x ∈Ω,

u(x) = f (x) x ∈ Γ = ∂Ω,
(5.3)

where Ω= [−1,1]3 is a cube. The standard technic: using the single layer potential we obtain
boundary integral formulation of the equation (5.3).∫

Γ

G(x− y)ϕ(y)dsy = f (x), (5.4)

where G(x) = 1
4π

1
|x| is the fundamental solution for the Laplace operator. Then we discretize

the integral equation (5.4) on the triangular grid on Γ using the Galerkin method. Obtained
dense matrix is approximated in H 2 format with accuracy ε = 10−6. The accuracy of the
H 2-LU factorization is ϑ = 10−6, the accuracy of the triangular factorization of the sparse
matrix is ϑ = 10−10.

In Table 5.1 we show the time comparison of the solution of the system with matrix
from Example 5.3, using H 2-LU and sparsification approaches. For the H 2-LU we show
the approximation in H 2 format and factorization time, for the sparsification we show the
approximation in H 2 format, sparsification and sparse factorization time. In both cases, time
of the solution of the system with factorized matrix is negligible, so we do not show it.

15

N 3072 12288 49152 196608
H2Lib approx., sec 6.72 24.26 104.97 487.24
H2Lib factor., sec 13.56 164.00 1712.17 10970.43
Sp. approx., sec 4.8 26.34 110.91 399.43
Sp. sp., sec 2.16 10.12 63.47 323.23
Sp. factor., sec 0.19 1.30 7.83 56.89

Table 5.1: Comparison with H2Lib.

In Figure 5.7 we show the comparison of the total time, required for the system solution.

104 105

Size of matrix, N

101

102

103

104

Ti
m

e,
 se

c

Sparsification
H2lib

Fig. 5.7: Total time required for the system solution using H 2 sparsification and H2lib solver.

The sparsification approach has not only better timing, but also better asymptotics.

5.5. Sparsification method as a preconditioner. H 2 matrix is an efficient tool to mul-
tiply a matrix by a vector. This allows to apply iterative solvers like GMRES to solution of
the systems with H 2 matrix. But the preconditioning is still a challenging problem due to
complexity of the factorization of the H 2 matrix. We propose to use the approximately fac-
tored sparsification of the H 2 matrix as a preconditioner to iterative method. For tests we
use randomly distributed 3D data with following interaction matrix.

EXAMPLE 5.4.

Ai j =

1 if i = j

|ri−r j |
d if 0 < |ri− r j|< d
d

|ri−r j | , if |ri− r j|> d
,

where ri ∈ R3 is the position of the i-th element. This example is used for testing of IFMM
(Inverse Fast Multipole Method) method as a preconditioning in[11], so we have chosen this
example for the convenient comparison.

16

This matrix is useful for the iterative tests since condition number of this matrix signifi-
cantly depends on the parameter d: the larger d is, the larger condition number is.

Example with well-conditioned matrix. First, consider the matrix from Example 5.4
with d = 10−3, condition number cond(A) = 10. We solve this system using GMRES iterative
solver for the matrix approximated in H 2 format with accuracy ε = 10−9 and as a precondi-
tioner we use H 2 approximation of the matrix A with accuracy ε = 10−3 sparsified and fac-
torized with ILUt decomposition. Figure 5.8 shows convergence of the GMRES method with
different ILUt threshold parameters. The required residual of the GMRES method r = 10−10.

0 50 100 150 200 250

Time, sec

1011

1010

109

108

107

106

105

104

103

102

101

100

R
es

id
ua

l

ILUt, tau =0.01
ILUt, tau =0.02
ILUt, tau =0.05
ILUt, tau =0.1
ILUt, tau =0.5
Without prec

Fig. 5.8: Convergence of GMRES with different drop tolerance parameter of the ILUt pre-
conditioner

The standard trade off: the more time on the preconditioner building we spend, the faster
iterations converge. Figure 5.9 illustrates the total time required for the system solution (in-
cluding the sparsification construction).

17

0.
01

0.
02

0.
05 0.

1

0.
5

no
 p

re
c

Tolerance of ILUt

0

50

100

150

200

250

300

T
im

e,
 s

ec

Iterations
Preconditioner
Sparsification

Fig. 5.9: Contribution into total time of sparsification, factorization and iterations

We show the total time required for H 2 matrix sparsification, time required for build-
ing the ILUt preconditioner with dropping tolerance τ = 2× 10−2 and iterations timing in
Figure 5.10a.

104 105

Size of problem, N

0

20

40

60

80

100

120

T
im

e,
 s

ec

Iterations
Factorization
Sparsification

(a) Contribution into total time of sparsification,
factorization and iterations

104 105

Size of matrix, N

100

101

102

103

T
im

e,
 s

ec

Total time
t= aN 1. 16

(b) Total time

Fig. 5.10: Total solution time

Example with ill-conditioned matrix. Consider the matrix from Example 5.4 with d =
10−2, condition number cond(A) = 104. As in the previous paragraph, we solve this system
using GMRES iterative solver for the matrix approximated in H 2 format with accuracy ε =
10−9 and as a preconditioner we used H 2 approximation of the matrix A with accuracy
ε = 10−3 sparsified and factorized with ILUt decomposition. In Figure 5.11 convergence till
the tolerance 10−10 for different ILUt parameters is shown.

18

0 100 200 300 400 500 600

Time, sec

1011

1010

109

108

107

106

105

104

103

102

101

100

101

102

103

R
es

id
ua

l

SP, tau =0.005
SP, tau =0.01
SP, tau =0.05
SP, tau =0.1
SP, tau =0.5
Without prec

Fig. 5.11: Convergence of GMRES with different preconditioners, N = 105

In Figure 5.12 the total solution time for different ILUt parameters is shown.

0.
0

0.
01

0.
05 0.

1

0.
5

no
 p

re
c

Tolerance of ILUt

0

100

200

300

400

500

600

T
im

e,
 s

ec

iter
prec
sp

Fig. 5.12: Contribution into total time of sparsification, factorization and iterations, N = 105

As we can see, the optimal ILUt parameter for this problem is τ = 10−2. Figure 5.13b
presents the total time required for solution of the system with optimal ILUt parameter.

19

104 105

Size of problem, N

0

50

100

150

200

250

T
im

e,
 s

ec

Iterations
Factorization
Sparsification

(a) Contribution into total time of sparsification,
factorization and iterations

104 105

Size of matrix, N

100

101

102

103

T
im

e,
 s

ec

Total time
t= aN 1. 2

(b) Total time

Fig. 5.13: Total solution time

We compared the results of our solver (GMRES preconditioned by sparsification method)
with results of IFMM solver presented in[11] for the same problem, same parameters and sim-
ilar hardware. For test we used matrix from Example 5.4 with 3D data, matrix size N = 105,
iterative method GMRES till the residual r = 10−10, parameters d = {10−3,10−2} for well-
and ill-conditioned systems. We present the best total solution time achieved in experiments
for both methods in Table 5.2.

d = 10−3 d = 10−2

IFMM solution time, sec 118 301
Sparsification solution time, sec 96 218

Table 5.2: Comparison with IFMM method.

Note that sparsification method is implemented in Python programing language and can
be significantly improved by applying Cython or switching to another programing language
(as C++ or Fortran).

6. Related work. Hierarchical low-rank matrix formats such as H [15, 17, 16, 8],
HODLR[1, 3] (Hierarchical Off-Diagonal Low-Rank), HSS[21, 10, 23] (Hierarchically
Semiseparable), H 2 [16, 6] matrices and etc., that are matrix analogies of the fast multipole
method[14, 13], have two significant features: they do store information in data-sparse for-
mats and they provide the fast matrix by vector product. Fast (O(N), where N is size of the
matrix) matrix by vector product allows to apply iterative solvers. Data-sparse representation
allows to store matrix in O(N) cells of memory, but storage scheme is usually complicated.

If the hierarchical matrix is ill-conditioned, then pure iterative solver fails and it is re-
quired to apply either approximate direct solver or preconditioner (that is also approximate
direct solver, probably with lower accuracy). Due to complex storage schemes of hierarchi-
cal matrices, construction of the approximate direct solver is a challenging problem. There
exists two general approaches to approximate direct solution of H 2 matrix: factorization
of hierarchical matrix[4, 21, 23], and sparsification of the hierarchical matrix followed by
factorization of the sparse matrix[2, 26].

20

The factorization approach is more popular for hierarchical matrices with strong low-
rank structure, also known as hierarchical matrices with weak-admissibility criteria[18]
(H [15, 17], HODLR[1, 3], HSS[21, 10, 23] matrices). For the H matrix, the algorithm H -
LU[4] with almost linear complexity was proposed. This algorithm has been successfully
applied to many problems. The major drawback of the H -LU algorithm is that factorization
time and memory required for L and U factors can be quite large. Approximate direct solvers
based on factorization of HSS and HODLR matrices are also well studied and found many[23,
28, 20, 24, 1, 3, 21] successful applications.

One of the approaches to the solution of the systems with H 2 matrices is the sparse
factorization (sparsification). The sparsification approach is usually applied to hierarchical
matrices with weak-admissibility criteria (H 2 matrices). Sparsification algorithms transform
H 2 matrix into the sparse matrix and then factorize the sparse matrix. Algorithm, proposed
in this paper is the sparsification algorithm. The main difference between presented work and
the other sparse factorizations[2, 11, 26] is a size of sparse factors. The main benefit of the
non-extensive sparsification is that it preserves the size of the factorized H 2 matrix, while
the other sparsification algorithms return extended factors.

7. Conclusions. We have proposed a new approach to the solution of the systems with
H 2 matrices that is based on sufficient non-extensive sparsification of the H 2 matrix. Pro-
posed sparsification is suitable for any H 2 matrices (including non-symmetric) and preserves
such important properties of the matrix as its size, symmetry (if exists) and positive definite
(if exists).

REFERENCES

[1] S. AMBIKASARAN AND E. DARVE, An O(n logn) fast direct solver for partial hierarchically semi-separable
matrices, J. Sci. Comput., 57 (2013), pp. 477–501.

[2] S. AMBIKASARAN AND E. DARVE, The inverse fast multipole method, arXiv preprint arXiv:1309.1773,
(2014).

[3] S. AMBIKASARAN, D. FOREMAN-MACKEY, L. GREENGARD, D. W. HOGG, AND M. ONEIL, Fast direct
methods for gaussian processes, IEEE T. Pattern Anal., 38 (2016), pp. 252–265.

[4] M. BEBENDORF, Hierarchical LU decomposition-based preconditioners for BEM, Computing, 74 (2005),
pp. 225–247.

[5] S. BÖRM, H 2lib package. http://www.h2lib.org/.
[6] , Efficient numerical methods for non-local operators: H 2-matrix compression, algorithms and anal-

ysis, vol. 14, European Mathematical Society, 2010.
[7] , H 2-matrix compression, in New Developments in the Visualization and Processing of Tensor Fields,

Springer, 2012, pp. 339–362.
[8] S. BÖRM, L. GRASEDYCK, AND W. HACKBUSCH, Introduction to hierarchical matrices with applications,

Eng. Anal. Bound Elem., 27 (2003), pp. 405–422.
[9] S. BÖRM AND K. REIMER, Efficient arithmetic operations for rank-structured matrices based on hierarchical

low-rank updates, Computing and Visualization in Science, 16 (2013), pp. 247–258.
[10] S. CHANDRASEKARAN, P. DEWILDE, M. GU, W. LYONS, AND T. PALS, A fast solver for HSS representa-

tions via sparse matrices, SIAM J. Matrix Anal. A., 29 (2006), pp. 67–81.
[11] P. COULIER, H. POURANSARI, AND E. DARVE, The inverse fast multipole method: using a fast approximate

direct solver as a preconditioner for dense linear systems, arXiv preprint arXiv:1508.01835, (2015).
[12] T. A. DAVIS AND W. W. HAGER, Dynamic supernodes in sparse Cholesky update/downdate and triangular

solves, ACM T. Math. Software, 35 (2009), p. 27.
[13] L. GREENGARD AND V. ROKHLIN, A fast algorithm for particle simulations, J. Comput. Phys., 73 (1987),

pp. 325–348.
[14] L. GREENGARD AND V. ROKHLIN, The rapid evaluation of potential fields in three dimensions, Springer,

1988.
[15] W. HACKBUSCH, A sparse matrix arithmetic based on H -matrices. part i: Introduction to H -matrices,

Computing, 62 (1999), pp. 89–108.
[16] W. HACKBUSCH, B. KHOROMSKIJ, AND S. SAUTER, On H 2-matrices, in H.-J. Bungartz, et al. (eds.),

Lectures on Applied Mathematics, Springer-Verlag, Berlin Heidelberg, 2000, pp. 9–30.

21

[17] W. HACKBUSCH AND B. N. KHOROMSKIJ, A sparse h-matrix arithmetic., Computing, 64 (2000), pp. 21–47.
[18] W. HACKBUSCH, B. N. KHOROMSKIJ, AND R. KRIEMANN, Hierarchical matrices based on a weak admis-

sibility criterion, Computing, 73 (2004), pp. 207–243.
[19] M. MA AND D. JIAO, Accuracy directly controlled fast direct solutions of general H 2-matrices and

its application to electrically large integral-equation-based electromagnetic analysis, arXiv preprint
arXiv:1703.06155, (2017).

[20] P. G. MARTINSSON, A fast randomized algorithm for computing a hierarchically semiseparable representa-
tion of a matrix, SIAM J. Matrix Anal. A., 32 (2011), pp. 1251–1274.

[21] P.-G. MARTINSSON AND V. ROKHLIN, A fast direct solver for boundary integral equations in two dimen-
sions, J. Comput. Phys., 205 (2005), pp. 1–23.

[22] A. Y. MIKHALEV AND I. V. OSELEDETS, Iterative representing set selection for nested cross approximation,
Numerical Linear Algebra with Applications, 23 (2016), pp. 230–248.

[23] Z. SHENG, P. DEWILDE, AND S. CHANDRASEKARAN, Algorithms to solve hierarchically semi-separable
systems, in System theory, the Schur algorithm and multidimensional analysis, Springer, 2007, pp. 255–
294.

[24] S. SOLOVYEV, Multifrontal hierarchically solver for 3d discretized elliptic equations, in International Con-
ference on Finite Difference Methods, Springer, 2014, pp. 371–378.

[25] D. A. SUSHNIKOVA AND I. V. OSELEDETS, ”Compress and eliminate” solver for symmetric positive definite
sparse matrices, arXiv preprint arXiv:1603.09133, (2016).

[26] D. A. SUSHNIKOVA AND I. V. OSELEDETS, Preconditioners for hierarchical matrices based on their ex-
tended sparse form, Russ. J. Numer. Anal. M., 31 (2016), pp. 29–40.

[27] E. E. TYRTYSHNIKOV, Mosaic-skeleton approximations, Calcolo, 33 (1996), pp. 47–57.
[28] J. XIA, S. CHANDRASEKARAN, M. GU, AND X. S. LI, Superfast multifrontal method for large structured

linear systems of equations, SIAM J. Matrix Anal. A., 31 (2009), pp. 1382–1411.
[29] K. YANG, H. POURANSARI, AND E. DARVE, Sparse hierarchical solvers with guaranteed convergence,

arXiv preprint arXiv:1611.03189, (2016).

22

