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Abstract

In this paper we consider fully discrete approximations with inf-sup

stable mixed finite element methods in space to approximate the Navier-

Stokes equations. A continuous downscaling data assimilation algorithm

is analyzed in which measurements on a coarse scale are given represented

by different types of interpolation operators. For the time discretization

an implicit Euler scheme, an implicit and a semi-implicit second order

backward differentiation formula are considered. Uniform in time er-

ror estimates are obtained for all the methods for the error between the

fully discrete approximation and the reference solution corresponding to

the measurements. For the spatial discretization we consider both the

Galerkin method and the Galerkin method with grad-div stabilization.

For the last scheme error bounds in which the constants do not depend

on inverse powers of the viscosity are obtained.

AMS subject classifications. 35Q30, 65M12, 65M15, 65M20, 65M60, 65M70,
76B75.
Keywords. data assimilation, downscaling, Navier-Stokes equations, uniform-
in-time error estimates, fully discrete schemes, mixed finite elements methods.

1 Introduction

Data assimilation refers to a class of techniques that combine experimental data
and simulation in order to obtain better predictions in a physical system. There
is a vast literature on data assimilation methods (see e.g., [4], [12], [33], [35],
[39], and the references therein). One of these techniques is nudging in which a
penalty term is added with the aim of driving the approximate solution towards
coarse mesh observations of the data. In a recent work [6], a new approach,
known as continuous data assimilation, is introduced for a large class of dissi-
pative partial differential equations, including Rayleigh-Bénard convection [17],
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the planetary geostrophic ocean dynamics model [18], etc. (see also references
therein). Continuous data assimilation has also been used in numerical studies,
for example, with the Chafee-Infante reaction-diffusion equation, the Kuramoto-
Sivashinsky equation (in the context of feedback control) [36], Rayleigh-Bénard
convection equations [3], [16], and the Navier-Stokes equations [24], [27]. How-
ever, there is still less numerical analysis of this technique. The present work
concerns with the numerical analysis of continuous data assimilation for the
Navier-Stokes equations for fully discrete schemes with inf-sup stable mixed
finite element methods (MFE) in space.

We consider the Navier-Stokes equations (NSE)

∂tu− ν∆u + (u · ∇)u+∇p = f in (0, T ]× Ω,

∇ · u = 0 in (0, T ]× Ω, (1)

in a bounded domain Ω ⊂ R
d, d ∈ {2, 3}. In (1), u is the velocity field, p the

kinematic pressure, ν > 0 the kinematic viscosity coefficient, and f represents
the accelerations due to external body forces acting on the fluid. The Navier-
Stokes equations (1) must be complemented with boundary conditions. For
simplicity, we only consider homogeneous Dirichlet boundary conditions u = 0

on ∂Ω.
As in [37] we consider given coarse spatial mesh measurements, correspond-

ing to a solution u of (1), observed at a coarse spatial mesh. We assume that
the measurements are continuous in time and error-free and we denote by IH(u)
the operator used for interpolating these measurements, where H denotes the
resolution of the coarse spatial mesh. Since no initial condition for u is avail-
able one cannot simulate equation (1) directly. To overcome this difficulty it
was suggested in [6] to consider instead a solution v of the following system

∂tv − ν∆v + (v · ∇)v +∇p̃ = f − β(IH(v)− IH(u)), in (0, T ]× Ω,

∇ · v = 0, in (0, T ]× Ω, (2)

where β is the nudging parameter.
In [23] the continuous in time data assimilation algorithm is analyzed and two

different methods are considered: the Galerkin method and the Galerkin method
with grad-div stabilization. In this paper we extend the results in [23] to the fully
discrete case. For the time discretization of equation (2), we consider the fully
implicit backward Euler method and the second order backward differentiation
formula (BDF2), both in the fully implicit and semi-implictit cases. For the
spatial discretization we consider inf-sup stable mixed finite elements. As in
[23] we consider both the Galerkin method and the Galerkin method with grad-
div stabilization. Although grad-div stabilization was originally proposed in [19]
to improve the conservation of mass in finite element methods, it was observed
in the simulation of turbulent flows in [32], [40] that grad-div stabilization has
the effect of producing stable (non-oscillating) simulations.

For the three time discretization methods that we consider and the two
different spatial discretizations (Galerkin method with or without grad-div sta-
bilization) we prove uniform-in-time error estimates for the approximation of
the unknown reference solution, u, corresponding to the coarse-mesh measure-
ment IH(u). As in [23], for the Galerkin method without stabilization, the
spatial error bounds we prove are optimal, in the sense that the rate of conver-
gence is that of the best interpolant. In the case where grad-div stabilization
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is added, as in [13], [14], we get error bounds where the error constants do not
depend on inverse powers of the viscosity parameter ν. This fact is of impor-
tance in many applications where viscosity is orders of magnitude smaller than
the velocity (or with large Reynolds number).

We now comment on the literature on numerical methods for (2). In [37],
a semidiscrete postprocessed Galerkin spectral method for the two-dimensional
Navier-Stokes equations is studied. Under suitable conditions on the nudging
parameter β, the coarse mesh size H , and the degrees of freedom in the spectral
method, uniform-in-time error estimates are obtained for the error between the
numerical approximation to v and u. The use of a postprocessing technique
introduced in [21] [22], gives a method with a higher convergence rate than
the standard spectral Galerkin method. A fully-discrete method for the spatial
discretization in [37] is analyzed in [30], where the (implicit and semi-implicit)
backward Euler method is used for time discretization and uniform-in-time error
estimates are obtained with the same convergence rate in space as in [37].

Other related works are [34] and [38]. In [38] they only analyze linear
problems and, for the proof of the results on the Navier-Stokes equations they
present, they refer to [34] with some differences that they point out. They also
present a wide collection of numerical experiments. In [34], the authors consider
fully discrete approximations to equation (2) where the spatial discretization is
performed with a MFE Galerkin method with grad-div stabilization. A semi-
implicit BDF2 scheme in time is analyzed in [34], and, as in [30], [37], [23] and the
present paper uniform-in-time error bounds are obtained. In the present paper,
apart from the semi-implicit BDF2 scheme of [34] we also analyze the implicit
Euler and the implicit BDF2 schemes. Respect to the spatial errors we obtain
the same results as in [23]. More precisely, comparing with [34], we remove the
dependence on inverse powers on ν on the error constants of the Galerkin method
with grad-div stabilization. Also, for the standard Galerkin method, although
with constants depending on inverse powers on ν, we get a rate of convergence
for the method in space one unit larger than the method in [34]. These results
are sharp in space, as it can be checked in the numerical experiments of [23].
This means that the Galerkin method with grad-div stabilization has a rate
of convergence r in the L2 norm of the velocity using polynomials of degree
r and that error constants are independent on ν−1 for the grad-div stabilized
method, and dependent in the case of the standard method. The analysis in [34]
is restricted to IHu being an interpolant for non smooth functions (Clément,
Scott-Zhang, etc), since explicit use is made of bounds (24) and (25), which are
not valid for nodal (Lagrange) interpolation. In the present paper, as in [23],
we prove error bounds both for the case in which IHu is an interpolant for non
smooth functions but also for the case in which IHu is a standard Lagrange
interpolant. To our knowledge reference [23] and the present paper are the only
references in the literature where such kind of bounds are proved.

It is important to mention that, compared with [34], [38], [30] and [37],
and as in [23], we do not need to assume an upper bound on the nudging
parameter β. The authors of [34] had observed (see [34, Remark 3.8]) that the
upper bound on β they required in the analysis does not hold in the numerical
experiments. This fact is corroborated by the numerical experiments in [23]
that show numerical evidence of the advantage of increasing the value of the
nudging parameter well above the upper bound in required in previous works
in the literature. The analysis in the present paper, as that in [23], does not
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demand any upper bound on the nudging parameter β.
For the error analysis of the fully discrete method with the implicit Euler

scheme we do not need to assume any restriction on the size of the time step
∆t (Theorem 3.6 below). For the case of the implicit BDF2 and semi-implicit
BDF2 (Theorems 3.9 and 3.12 below) we only need to assume ∆t is smaller
than a constant (that depends on norms of the theoretical exact solution).

The rest of the paper is as follows. In Section 2 we state some preliminaries
and notation. In Section 3 we analyze the fully discrete schemes. First of all,
some general results are stated and proved and then the error analysis of the
implicit Euler method, the implicit BDF2 method and the semi-implicit BDF2
schemes is carried out. In Section 4 some numerical experiments are shown.

2 Preliminaries and Notation

We denote by W s,p(D) the standard Sobolev space of functions defined on the
domain D ⊂ R

d with distributional derivatives of order up to s in Lp(D).
By | · |s,p,D we denote the standard seminorm, and, following [11], for W s,p(D)
we will define the norm ‖ · ‖s,p,D by

‖f‖ps,p,D =
s

∑

j=0

|D|
p(j−s)

d |f |pj,p,D ,

where |D| denotes the Lebesgue measure ofD. Observe that ‖f‖m,p,D |D|
m
d − 1

p is
scale invariant. If s is not a positive integer,W s,p(D) is defined by interpolation
[1]. In the case s = 0, we haveW 0,p(D) = Lp(D). As it is customary, W s,p(D)d

will be endowed with the product norm and, since no confusion will arise, it
will also be denoted by ‖ · ‖W s,p(D). When p = 2, we will use Hs(D) to denote
the space W s,2(D). By H1

0 (D) we denote the closure in H1(D) of the set of
infinitely differentiable functions with compact support in D. The inner product
of L2(Ω) or L2(Ω)d will be denoted by (·, ·) and the corresponding norm by ‖·‖0.
The norm of the dual space H−1(Ω) of H1

0 (Ω) is denoted by ‖ · ‖−1.
We will use the following Sobolev’s inequality [1]: For s > 0, let 1 ≤ p < d/s

and q be such that 1
q = 1

p − s
d . Then, there exists a positive scale invariant

constant cs such that

‖v‖Lq′(Ω) ≤ cs|Ω|
s
d−

1
p+

1
q′ ‖v‖W s,p(Ω),

1

q′
≥ 1

q
, ∀v ∈ W s,p(Ω). (3)

If p > d/s the above relation is valid for q′ = ∞. A similar inequality holds for
vector-valued functions.

We will denote by H and V the Hilbert spacesH = {u ∈
(

L2(Ω))d | div(u) =
0, u · n|∂Ω

= 0}, V = {u ∈
(

H1
0 (Ω))

d | div(u) = 0}, endowed with the inner

product of L2(Ω)d and H1
0 (Ω)

d, respectively.
The following interpolation inequalities will also be used (see, e.g., [11, for-

mula (6.7)] and [20, Exercise II.2.9])

‖v‖L2d/(d−1)(Ω) ≤ c1 ‖v‖1/20 ‖v‖1/21 , ∀v ∈ H1(Ω), (4)

(where, for simplicity, by enlarging the constants if necessary, we may take the
constant c1 in (4) equal to cs in (3) for s = 1) and Agmon’s inequality

‖v‖∞ ≤ cA ‖v‖1/2d−2 ‖v‖
1/2
2 , d = 2, 3, ∀v ∈ H2(Ω). (5)
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The case d = 2 is a direct consequence of [2, Theorem 3.9]. For d = 3, a proof
for domains of class C2 can be found in [11, Lemma 4.10].

We will make use of Poincaré’s inequality,

‖v‖0 ≤ cP |Ω|1/d‖∇v‖0, ∀v ∈ H1
0 (Ω), (6)

where the constant cP can be taken cP ≤
√
2/2. If we denote by ĉP = 1 + c2P ,

then from (6) it follows that

‖v‖1 ≤ (ĉP )
1/2‖∇v‖0, ∀v ∈ H1

0 (Ω). (7)

The constants cs, c1, cA and cP in the inequalities above are all scale-
invariant. This will also be the case of all constants in the present paper unless
explicitly stated otherwise. We will also use the well-known property, see [31,
Lemma 3.179]

‖∇ · v‖0 ≤ ‖∇v‖0 , v ∈ H1
0 (Ω)

d. (8)

Let Th = (τhj , φ
h
j )j∈Jh

, h > 0 be a family of partitions of suitable domains

Ωh, where h denotes the maximum diameter of the elements τhj ∈ Th, and φhj
are the mappings from the reference simplex τ0 onto τhj . We shall assume that
the partitions are shape-regular and quasi-uniform. Let r ≥ 2, we consider the
finite-element spaces

Sh,r =
{

χh ∈ C
(

Ωh

) ∣

∣χh|τh
j
◦ φhj ∈ P r−1(τ0)

}

⊂ H1(Ωh),

S0
h,r = Sh,r ∩H1

0 (Ωh),

where P r−1(τ0) denotes the space of polynomials of degree at most r− 1 on τ0.
For r = 1, Sh,1 stands for the space of piecewise constants.

When Ω has polygonal or polyhedral boundary Ωh = Ω and mappings φhj
from the reference simplex are affine. When Ω has a smooth boundary, and for
the purpose of analysis, we will assume that Ωh exactly matches Ω, as it is done
for example in [10], [41]. At a price of a more involved analysis, though, the
discrepancies between Ωh and Ω can also be included in the analysis (see, e.g.,
[5], [42]).

We shall denote by (Xh,r, Qh,r−1) the MFE pair known as Hood–Taylor
elements [8, 44] when r ≥ 3, where

Xh,r =
(

S0
h,r

)d
, Qh,r−1 = Sh,r−1 ∩ L2(Ωh)/R, r ≥ 3,

and, when r = 2, the MFE pair known as the mini-element [9] where Qh,1 =
Sh,2 ∩ L2(Ωh)/R, and Xh,2 = (S0

h,2)
d ⊕ Bh. Here, Bh is spanned by the bubble

functions bτ , τ ∈ Th, defined by bτ (x) = (d + 1)d+1λ1(x) · · ·λd+1(x), if x ∈ τ
and 0 elsewhere, where λ1(x), . . . , λd+1(x) denote the barycentric coordinates
of x. All these elements satisfy a uniform inf-sup condition (see [8]), that is, for
a constant βis > 0 independent of the mesh size h the following inequality holds

inf
qh∈Qh,r−1

sup
vh∈Xh,r

(qh,∇ · vh)
‖vh‖1‖qh‖L2/R

≥ βis. (9)

To approximate the velocity we consider the discrete divergence-free space

Vh,r = Xh,r ∩
{

χh ∈ H1
0 (Ωh)

d | (qh,∇ · χh) = 0 ∀qh ∈ Qh,r−1

}

.
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For each fixed time t ∈ [0, T ], notice that the solution (u, p) of (1) is also the
solution of a Stokes problem with right-hand side f − ut − (u · ∇)u. We will
denote by (sh, qh) ∈ (Xh,r, Qh,r−1), its MFE approximation, solution of

ν(∇sh,∇ϕh)− (qh,∇ · ϕh) = ν(∇u,∇ϕh)− (p,∇ · ϕh)

= (f − ut − (u · ∇u),ϕh) ∀ϕh ∈ Xh,r,(10)

(∇ · sh, ψh) = 0 ∀ψh ∈ Qh,r−1.

Notice that sh = Sh(u) : V → Vh,r is the discrete Stokes projection of the
solution (u, p) of (1) (see [28]), and it satisfies satisfies that for all ϕh ∈ Vh,r,

ν(∇Sh(u),∇ϕh) = ν(∇u,∇ϕh)− (p,∇ · ϕh) = (f − ut − (u · ∇)u,ϕh).

The following bound holds (see e.g., [29]):

‖u− sh‖0 + h‖u− sh‖1 ≤ CNj(u, p)h
j , 1 ≤ j ≤ r, (11)

where here and in the sequel, for v ∈ V ∩Hj(Ω)d and q ∈ L2
0(Ω) ∩Hj−1(Ω) we

denote
Nj(v, q) = ‖v‖j + ν−1‖q‖Hj−1/R, j ≥ 1, (12)

and, when v and q depend on t

N j(v, q) = sup
τ≥0

Nr(v(τ), q(τ)), Mj(v) = sup
τ≥0

‖v(τ)‖j , Mj(p) = sup
τ≥0

‖p(τ)‖Hj/R.

(13)
Assuming that Ω is of class Cm, with m ≥ 3, and using standard duality argu-
ments and (11), one obtains

‖u− sh‖−s ≤ CNr(u, p)h
r+s, 0 ≤ s ≤ min(r − 2, 1). (14)

We also have the following bounds [23, Lemma 3.7]

‖sh‖∞ ≤ D0

(

(‖u‖d−2‖u‖2)1/2 +
(

N1(u, p)Nd−1(u, p)
)1/2

)

(15)

‖∇sh‖L2d/(d−1) ≤ D0

(

N1(u, p)N2(u, p)
)1/2

, (16)

where the constantD0 does not depend on ν. And, arguing as in [23, Lemma 3.7]
one can also prove

‖∇sh‖∞ ≤ D0

(

(‖u‖d−1‖u‖3)1/2 +
(

N2(u, p)Nd(u, p)
)1/2

)

. (17)

We also consider a modified Stokes projection that was introduced in [13] and
that we denote by smh : V → Vh,r satisfying

ν(∇smh ,∇ϕh) = (f − ut − (u · ∇)u−∇p,ϕh), ∀ ϕh ∈ Vh,r, (18)

and the following error bound, see [13]:

‖u− smh ‖0 + h‖u− smh ‖1 ≤ C‖u‖jhj, 1 ≤ j ≤ r. (19)

From [10], we also have

‖∇(u− smh )‖∞ ≤ C‖∇u‖∞, (20)
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where C does not depend on ν. Also we have the following bounds [23, Lemma 3.8]

‖smh ‖∞ ≤ D1(‖u‖d−2‖u‖2)1/2, (21)

‖∇smh ‖L2d/(d−1) ≤ D1

(

‖u‖1‖u‖2
)1/2

, (22)

where the constant D1 is independent of ν.
We will denote by πhp the L2 projection of the pressure p onto Qh,r−1. It is

well-known that

‖p− πhp‖0 ≤ Chj−1‖p‖Hj−1/R, 1 ≤ j ≤ r. (23)

We will assume that the interpolation operator IH is stable in L2, that is,

‖IHu‖0 ≤ c0‖u‖0, ∀u ∈ L2(Ω)d, (24)

and that it satisfies the following approximation property,

‖u− IHu‖0 ≤ cIH‖∇u‖0, ∀u ∈ H1
0 (Ω)

d. (25)

The Bernardi–Girault [7], Girault–Lions [25], or the Scott–Zhang [43] interpo-
lation operators satisfy (25) and (24). Notice that the interpolation can be on
piecewise constants.

Finally, we will denote by ILa
h u ∈ Xh,r the Lagrange interpolant of a con-

tinuous function u. In Subsection 3.4 we consider the case in which IH = ILa
H

for which bounds (24) and (25) do not hold.

3 Fully discrete schemes

We consider the following method to approximate (2). For n ≥ 1 we define

(u
(n)
h , p

(n)
h ) ∈ Xh,r ×Qh,r−1 satisfying for all (ϕh, ψh) ∈ Xh,r ×Qh,r−1

(dtu
(n)
h ,ϕh) + ν(∇u

(n)
h ,∇ϕh) + bh(u

(n)
h ,u

(n)
h ,ϕh) + µ(∇ · u(n)

h ,∇ · ϕh)

+(∇p(n)h ,ϕh) = (f (n),ϕh)− β(IH(u
(n)
h )− IH(u(n)), IHϕh),

(∇ · u(n)
h , ψh) = 0. (26)

In (26) dtu
(n)
h is a finite difference approximation to the time derivative at time

tn = n∆t, where ∆t is the time step. Also, µ is a stabilization parameter that
can be zero in case we do not stabilize the divergence or different from zero in
case we add grad-div stabilization and bh(·, ·, ·) is defined in the following way

bh(uh,vh,ϕh) = ((uh · ∇)vh,ϕh) +
1

2
(∇ · (uh)vh,ϕh), ∀uh,vh,ϕh ∈ Xh,r.

It is straightforward to verify that bh enjoys the skew-symmetry property

bh(u,v,w) = −bh(u,w,v) ∀u,v,w ∈ H1
0 (Ω)

d. (27)

Let us observe that taking ϕh ∈ Vh,r from (26) we get

(dtu
(n)
h ,ϕh) + ν(∇u

(n)
h ,∇ϕh) + bh(u

(n)
h ,u

(n)
h ,ϕh) + µ(∇ · u(n)

h ,∇ ·ϕh) =

(f (n),ϕh)− β(IH(u
(n)
h )− IH(u(n)), IHϕh). (28)

7



For the analysis below, we introduce the values µ and k, defined as follows

µ =

{

0, if µ = 0,
1, otherwise,

k =

{

0, if µ = 0,
1/µ, otherwise.

(29)

Lemma 3.1 The following bound holds for vh, v̂h,wh, ŵh ∈ Vh, and ε, δ > 0,

|bh(v̂h,vh, eh)− bh(ŵh,wh, eh)| ≤
1

δ
L̂(wh, ε)‖eh‖20

+ δ

(‖∇w‖∞
2

‖êh‖20 +
ε

4
‖∇ · êh‖20

)

,

where eh = vh −wh, êh = v̂h − ŵh and

L̂(wh, ε) =

(‖∇wh‖∞
2

+
‖wh‖2∞

4ε

)

, (30)

Proof: Adding ±bh(v̂h,wh, eh) and applying the skew-symmetry property
(27) we have

|bh(v̂h,vh, eh)− bh(ŵh,wh, eh)| = |bh(êh,wh, eh)| ≤ ‖∇wh‖∞‖êh‖0‖eh‖0

+
1

2
‖∇ · êh‖0‖wh‖∞‖eh‖0 ≤ ‖∇wh‖∞

2δ
‖eh‖20 + δ

‖∇wh‖∞
2

‖êh‖20

+
‖wh‖2∞
4δǫ

‖eh‖20 +
δǫ

4
‖∇ · êh‖20.

�

The proof of the following lemma is similar to the proof of [23, Lemma 3.1].

Lemma 3.2 Let (u
(n)
h )∞n=0 be the finite element approximation defined in (28)

and let (w
(n)
h )∞n=0, (τ

(n)
h )∞n=0, (θ

(n)
h )∞n=1 in Vh,r be sequences satisfying

(dtw
(n)
h ,ϕh) + ν(∇w

(n)
h ,∇ϕh) + bh(w

(n)
h ,w

(n)
h ,ϕh) + µ(∇ ·w(n)

h ,∇ ·ϕh) =

(f (n),ϕh) + (τ
(n)
h ,ϕh) + µ(θ

(n)
h ,∇ · ϕh), (31)

Assume that the quantity L defined in (39), below, is bounded. Then, if β ≥ 8L

and H satisfies condition (44), below, the following bounds hold for e
(n)
h =

u
(n)
h −w

(n)
h ,

(dte
(n)
h , e

(n)
h ) +

γ

2
‖e(n)h ‖20 +

µ

2
‖∇ · e(n)h ‖20 ≤ k‖θ(n)h ‖20 +

β

2
c20‖u(n) −w

(n)
h ‖20

+

(

(1 − µ)
ĉP
ν

+
µ

2L

)

‖τ (n)
h ‖2−1+µ, (32)

where, µ and k are defined in (29), and γ is defined in (47) below.

Proof: Subtracting (31) from (28) we get the error equation

(dte
(n)
h ,ϕh) + ν(∇e

(n)
h ,∇ϕh) + β(IHe

(n)
h , IHϕh) (33)

+ bh(u
(n)
h ,u

(n)
h ,ϕh)− bh(w

(n)
h ,w

(n)
h ,ϕh) + µ(∇ · e(n)h ,∇ ·ϕh) =

β(IHu(n) − IHw
(n)
h , IHϕh) + (τ

(n)
h ,ϕh) + µ(θ

(n)
h ,∇ · ϕh),
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for all ϕh ∈ Vh,r Taking ϕh = e
(n)
h in (33) we get

(dte
(n)
h , e

(n)
h ) + ν‖∇e

(n)
h ‖20 + β‖IHe

(n)
h ‖20+µ‖∇ · e(n)h ‖20 (34)

≤ |bh(u(n)
h ,u

(n)
h , e

(n)
h − bh(w

(n)
h ,w

(n)
h , eh

(n))|+ β|(IHu(n) − IHw
(n)
h , IHe

(n)
h )|

+ |(τ (n)
h , e

(n)
h )|+ |µ(θ(n)h ,∇ · e(n)h )|.

We will bound the terms on the right-hand side of (34). For the nonlinear term
and the truncation errors we argue differently depending on whether µ = 0 or
µ > 0.

If µ = 0, applying Lemma 3.1 with v̂h = vh = u
(n)
h , ŵh = wh = w

(n)
h , ǫ = ν

and δ = 1, we have

|bh(u(n)
h ,u

(n)
h , e

(n)
h )− bh(w

(n)
h ,w

(n)
h , e

(n)
h )|

≤
(

L̂(w
(n)
h , ν) +

1

2
‖∇w

(n)
h ‖∞

)

‖e(n)h ‖20 +
ν

4
‖∇ · e(n)h ‖20,

≤
(

L̂(w
(n)
h , ν) +

1

2
‖∇w

(n)
h ‖∞

)

‖e(n)h ‖20 +
ν

4
‖∇e

(n)
h ‖20 (35)

where in the last inequality we have applied (8). For the term |(τ (n)
h , e

(n)
h )| when

µ = 0, using (7) we get

|(τ (n)
h , e

(n)
h )| ≤ ‖τ (n)

h ‖−1‖e(n)h ‖1 ≤ (ĉP )
1/2‖τ (n)

h ‖−1‖∇e
(n)
h ‖0

≤ ĉP
ν
‖τ (n)

h ‖2−1 +
ν

4
‖∇e

(n)
h ‖20. (36)

When µ > 0, we bound the nonlinear term by applying Lemma 3.1 with

v̂h = vh = u
(n)
h , ŵh = wh = w

(n)
h , ǫ = µ and δ = 1, that is

|bh(u(n)
h ,u

(n)
h , e

(n)
h )− bh(w

(n)
h ,w

(n)
h , e

(n)
h )|

≤
(

L̂(w
(n)
h , µ) +

1

2
‖∇w

(n)
h ‖∞

)

‖e(n)h ‖20 +
µ

4
‖∇ · e(n)h ‖20, (37)

In the sequel we denote

L = max
n≥0

(

L̂(w
(n)
h , ν) +

1

2
‖∇w

(n)
h ‖∞

)

if µ = 0, (38)

L = max
n≥0

(

2L̂(w
(n)
h , µ) + ‖∇w

(n)
h ‖∞

)

, if µ > 0, (39)

Observe that in the case µ = 0, the left-hand side of (35) can be bounded by

L‖e(n)h ‖20 + (ν/4)‖∇e
(n)
h ‖20, and, in the case µ > 0 the left-hand side of (37) is

bounded by (L/2)‖e(n)h ‖20 + (µ/4)‖∇ · eh‖20.
Next, we bound the last two terms of the right-hand side of (33) when µ > 0.

We have

|(τ (n)
h , e

(n)
h )|+ |µ(θ(n)h ,∇ · e(n)h )| ≤ 1

2L
‖τ (n)

h ‖20 +
L

2
‖e(n)h ‖20

+ k‖θ(n)h ‖20 +
µ

4
‖∇ · e(n)h ‖20, (40)
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where k is defined in (29).
For the second term on the right-hand side of (34) applying (24) we get

β|(IHu(n) − IHw
(n)
h , IHeh)| ≤ βc0‖u(n) −w

(n)
h ‖0‖IHe

(n)
h ‖0

≤ β

2
c20‖u(n) −w

(n)
h ‖20 +

β

2
‖IHe

(n)
h ‖20. (41)

Inserting (35), (36), (37), (40) and (41) into (34) we get

(dte
(n)
h , e

(n)
h ) + (1 + µ)

ν

2
‖∇e

(n)
h ‖20 +

β

2
‖IHe

(n)
h ‖20 +

µ

2
‖∇ · e(n)h ‖20 (42)

≤ L‖eh‖20 + k‖θ(n)h ‖20 +
β

2
c20‖u(n) −w

(n)
h ‖20 +

(

(1− µ)
ĉP
ν

+
µ

2L

)

‖τ (n)
h ‖2−1+µ.

Now we bound

L‖e(n)h ‖20 ≤ 2L‖IHe(n)h ‖20 + 2L‖(I − IH)e
(n)
h ‖20.

Assuming that β ≥ 8L and taking into account that 1 + µ ≥ 1 we get

(dte
(n)
h , e

(n)
h ) +

ν

2
‖∇e

(n)
h ‖20 − 2L‖(I − IH)e

(n)
h ‖20 +

β

4
‖IHe

(n)
h ‖20 +

µ

2
‖∇ · e(n)h ‖20

≤ k‖θ(n)h ‖20 +
β

2
c20‖u(n) −w

(n)
h ‖20 +

(

(1− µ)
ĉP
ν

+
µ

2L

)

‖τ (n)
h ‖2−1+µ. (43)

For the rest of the proof we argue exactly as in the proof of [23, Lemma 3.1].
For the third term on the left-hand side above applying (25) and assuming

H ≤ ν1/2

(8L)1/2cI
(44)

we get −2L‖(I − IH)e
(n)
h ‖20 ≥ − ν

4‖∇e
(n)
h ‖20. Therefore, for the last three terms

on the left-hand side of (43) we have

ν

2
‖∇e

(n)
h ‖20+

β

4
‖IHe

(n)
h ‖20−2L‖(I−IH)e

(n)
h ‖20 ≥ ν

4
‖∇e

(n)
h ‖20+

β

4
‖IHe

(n)
h ‖20. (45)

Now, applying (25) again to bound the right-hand side above we have that

ν

4
‖∇e

(n)
h ‖20 +

β

4
‖IHe

(n)
h ‖20 ≥ γ(‖IHe

(n)
h ‖20 + ‖(I − IH)e

(n)
h ‖20), (46)

where

γ = min

{

ν

4
c−2
I H−2,

β

4

}

. (47)

Finally, since γ(‖IHe
(n)
h ‖20 + ‖(I − IH)e

(n)
h ‖20) ≥ (γ/2)‖e(n)h ‖20, from (43), (45)

and (46) we conclude (32). �

Lemma 3.3 Assume that the constants α and B satisfy 0 < α < 1 and B ≥ 0.
Then if the sequence of real numbers (an)

N
n=0 satisfies

an ≤ αan−1 +B, n = 1, . . . , N

we have that

an ≤ αjan−j +
B

1− α
, 0 ≤ j ≤ n ≤ N.

10



Proof: See e.g., [34]. �

The following result is taken from [23].

Lemma 3.4 The following bounds hold

sup
‖ϕ‖1=1

|bh(u,u,ϕ)− bh(sh, sh,ϕ)| ≤ K0(u, p, |Ω|)‖u− sh‖0, (48)

sup
‖ϕ‖0=0

|bh(u,u,ϕ)− bh(s
m
h , s

m
h ,ϕ)| ≤ K1(u, |Ω|)‖u− smh ‖1, (49)

where

K0(u, p, |Ω|) = C
(

K1(u, |Ω|)+N1(u, p)
1/2

(

Nd−1(u, p)+|Ω|(3−d)/dN2(u, p)
)1/2

)

,

(50)

K1(u, |Ω|) = C
(

(Md−2(u)d−2M2(u))
1/2 + |Ω|(3−d)/(2d)(M1(u)M2(u))

1/2
)

,

(51)
and N j(u, p) and Mj(u) are the quantities in (13).

We will apply Lemma 3.2 taking w
(n)
h = sh(tn), when µ = 0, where sh

satisfies (10), and, when µ > 0 taking w
(n)
h = smh (tn), where smh satisfies (18).

Then, it is easy to check that w
(n)
h satisfies (31) where

(τ
(n)
h ,ϕh) = (u̇(n) − dtw

(n)
h ,ϕh)+ bh(u

(n),u(n),ϕh)− bh(w
(n)
h ,w

(n)
h ,ϕh) (52)

and

(θ
(n)
h ,∇ ·ϕh) = (πhp

(n) − p(n),∇ ·ϕh) + µ(∇ · (u(n) −w
(n)
h ),∇ · ϕh). (53)

Consequently, we define the following quantities, which are related to the right-
hand side of (32), when µ = 0 and when µ > 0, respectively

C0 = max
n≥0

(

2ĉP
ν

‖τ (n)
h ‖2−1 + βc20‖u(n) −w

(n)
h ‖20

)

. (54)

C1 = max
n≥0

(

1

L
‖τ (n)

h ‖20 + βc20‖u(n) −w
(n)
h ‖20 +

2

µ
‖θ(n)h ‖20

)

, (55)

We now estimate the values of C0 and C1.

Lemma 3.5 For C0 and C1 defined in (54) and (55), respectively, the following
bounds hold

C0 ≤4ĉP
ν

max
n≥0

‖ut(tn)− dtw
(n)
h ‖2−1 + Ĉ2

0 (r, β, ν, |Ω|,u, p)h2r (56)

C1 ≤ 2

L
max
n≥0

‖ut(tn)− dtw
(n)
h ‖20 + Ĉ2

1 (r, h, β, µ, |Ω|,u, p)h2r−2 (57)

where

Ĉ2
0 (r, β, ν, |Ω|,u, p) =C

(

β +
4ĉP
ν
K2

0 (u, p, |Ω|)
)

N
2

r(u, p) (58)

Ĉ2
1 (r, h, β, µ, |Ω|,u, p) =C

(

βh2 + µ+
2

L
K2

1(u, p, |Ω|)
)

M2
r (u) +

C

µ
M2

r−1(p).

(59)
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Proof: Applying (11) when µ = 0 and (19) when µ > 0 we get

max
n≥0

‖u(tn)−w
(n)
h ‖20 ≤ Ch2rN

2

r(u, p), µ = 0,

max
n≥0

‖u(tn)−w
(n)
h ‖20 ≤ Ch2rM2

r (u), µ > 0,

where, recall, N r and Mr are defined in (13). Also, applying Lemma 3.4 we
have

sup
‖ϕ‖1=1

|bh(u(tn),u(tn),ϕ)− bh(w
(n)
h ,w

(n)
h ,ϕ)| ≤ K0(u, p, |Ω|)‖u(tn)−w

(n)
h ‖0,

sup
‖ϕ‖0=1

|bh(u(tn),u(tn),ϕ)− bh(w
(n)
h ,w

(n)
h ,ϕ)| ≤ K1(u, |Ω|)‖u(tn)−w

(n)
h ‖1,

so that, applying (11) when µ = 0 and (19) when µ > 0 it follows that

‖τ (n)
h ‖2−1 ≤2‖ut(tn)− dtw

(n)
h ‖2−1 + 2K2

0(u, p, |Ω|)N
2

r(u, p)h
2r, µ = 0,

‖τ (n)
h ‖20 ≤2‖ut(tn)− dtw

(n)
h ‖20 + 2K2

1(u, |Ω|)M2
r (u)h

2r−2, µ > 0,

Similarly, from (23) and (19) we obtain

max
n≥1

‖θ(n)h ‖20 ≤ Ch2r−2M2
r−1(p) + Cµ2h2r−2M2

r (u),

and the proof is finished. �

3.1 Implicit Euler method

In this case, we set
dt = d1t ,

where

d1tu
(n)
h =

u
(n)
h − u

(n−1)
h

∆t
, n ≥ 1. (60)

For the solution u of (1), Taylor expansion easily reveals that

‖ut(tn)− d1tu(tn)‖j ≤ CMj(utt)(∆t)
2, j = 0,−1, n ≥ 1. (61)

For the error e
(n)
h = u

(n)
h −w

(n)
h , it is easy to check that the following relation

holds

∆t(dte
(n)
h , e

(n)
h ) =

1

2
‖e(n)h ‖20 −

1

2
‖e(n−1)

h ‖20 +
1

2
‖e(n)h − e

(n−1)
h ‖20.

Applying Lemma 3.2 we have

‖e(n)h ‖20 − ‖e(n−1)
h ‖20 +∆tγ‖e(n)h ‖20 ≤ ∆tCµ, j = 0, 1, n ≥ 1, (62)

where C0 and C1 are defined in (54–55). Applying Lemma 3.3 with

an = ‖e(n)h ‖20, α = (1 + γ∆t)−1,
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we obtain

‖e(n)h ‖20 ≤
(

1

1 + γ∆t

)n

‖e(0)h ‖20 +
1

γ
Cµ, n ≥ 1. (63)

Notice also that since we are assuming β ≥ 8L we get 1/γ ≤ max (4/β, 1/(2L)) =
1/(2L).

Since the value of Cµ is estimated in Lemma 3.5 we only have to estimate

ut(tn)− dtw
(n)
h . By writing

ut(tn)− dtw
(n)
h = ut(tn)− dtu(tn) + dt(u(tn)−w

(n)
h )

= ut(tn)− dtu(tn) +
1

∆t

∫ tn

tn−1

∂t(u(τ) −wh(τ)) dτ, (64)

estimates (61) and (14) allow us to write

max
n≥0

‖ut(tn)− dtw
(n)
h ‖2−1 ≤M2

−1(utt)(∆t)
2 + CN2

r−1(ut, pt)h
2r, (65)

when µ = 0 and r ≥ 3 and Ω is of class Cr. For the mini element or when Ω is
not of class Cr we have

max
n≥0

‖ut(tn)− dtw
(n)
h ‖2−1 ≤M2

−1(utt)(∆t)
2 + C|Ω|2/dN2

r (ut, pt)h
2r. (66)

When µ > 0, using (19) we have

max
n≥0

‖ut(tn)− dtw
(n)
h ‖20 ≤M2

0 (utt)(∆t)
2 + CM2

r−1(ut)h
2r−2. (67)

Then, from (63), (56), (57), (65), (66), (67) and applying triangle inequality
together with (11) when µ = 0 and (19) when µ > 0 we conclude the following
theorem.

Theorem 3.6 Assume that the solution of (1) satisfies that u ∈ L∞(Hs(Ω)d)∩
W 1,∞(Ω)d and p ∈ L∞(Hs−1(Ω)/R), s ≥ 2. Assume also that, when µ = 0,
ut ∈ L∞(Hmax(2,s−1)(Ω)d), pt ∈ L∞(Hmax(1,s−2)(Ω)/R) and the second deriva-
tive satisfies utt ∈ L∞(H−1(Ω)d), or, when µ > 0, ut ∈ L∞(Hs−1(Ω)d) and
utt ∈ L∞(L2(Ω)d). Let uh be the finite element approximation defined in (28)
when dt is given by (60). Then, if β ≥ 8L and H satisfies condition (44) the
following bound holds for n ≥ 1 and 2 ≤ r ≤ s,

‖u(tn)− u
(n)
h ‖0 ≤ 1

(1 + γ∆t)n/2
‖uh(0)− u(0)‖0 +

C

(νL)1/2
M−1(utt)∆t

+
C

L1/2

(

Ĉ0 +
1

ν1/2
|Ω|(1+r̂−r)/dN r̂(ut, pt)

)

hr, µ = 0.

‖u(tn)− u
(n)
h ‖0 ≤ 1

(1 + γ∆t)n/2
‖uh(0)− u(0)‖0 +

C

L
M0(utt)∆t

+
C

L1/2

(

Ĉ1 +
1

L1/2
Mr−1(ut)

)

hr−1, µ > 0.

where γ is defined in (47), L in (38–39), Ĉ0 and Ĉ1 in (58) and (59), respec-
tively, and r̂ = r − 1 if r ≥ 3 and Ω is of class C3 and r̂ = r otherwise.
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Remark 3.7 For the case µ > 0 one can get a bound of size O(hr) instead

of O(hr−1) for the spatial component of the error comparing u
(n)
h instead of

with w
(n)
h = smh (tn), where smh satisfies (18), with w

(n)
h = sh(tn), where sh

satisfies (10) but adding + µ(∇ · sh,∇ · ϕh) to the left-hand side of the first
equation. However, arguing in this way the constants in the error bounds depend
on inverse powers on ν and then are useful in practice only when ν is not too
small. In the numerical experiments of Section 4 one can observe a rate of
convergence r for the method for the bigger values of ν shown in the figures that
decreases to r − 1 as ν diminishes. This remark applies not only for the error
analysis of the implicit Euler method but also for the other methods analyzed
below.

Remark 3.8 To prove the existence of solution of the fully discrete scheme (28)
for an arbitrary length of the time step one can argue as in [45, Theorem 1.2,
Chapter II] with an argument based on the Brouwer’s fixed point theorem (see
also [30, Proposition 3.2], [31, Remark 7.70]). To prove uniqueness one can
argue as in [30, Theorem 3.7] (see also [31, Remark 7.70]).

3.2 Implicit BDF2

In this case, we set
dt = d2t ,

where

d2tu
(n)
h =

3u
(n)
h − 4u

(n−1)
h + u

(n−2)
h

2∆t
, n ≥ 2. (68)

and

d2tu
(1)
h = d1tu

(1)
h =

u
(1)
h − u

(0)
h

∆t
, (69)

that is, the first step is performed with the implicit Euler method. As before,
Taylor expansion easily reveals

‖ut(tn)− d2tu(tn)‖j ≤ CMj(uttt)(∆t)
3, j = 0,−1, n ≥ 2, (70)

while for n = 1, estimate (61) applies.

For the error e
(n)
h = u

(n)
h −w

(n)
h , and n ≥ 2, it is well-known that (see, e.g.,

[26])

∆t
(

dte
(n)
h , e

(n)
h

)

=‖E(n)
h ‖2G − ‖E(n−1)

h ‖2G

+
1

4
‖v(n)

h − 2v
(n−1)
h + v

(n−2)
h ‖20, (71)

where, here and in he sequel we denote E
(n)
h = (e

(n)
h , e

(n−1)
h ) and

‖E(n)
h ‖2G =

1

4
‖e(n)h ‖20 +

1

4
‖2e(n)h − e

(n−1)
h ‖20 (72)

=
5

4
‖e(n)h ‖20 − (e

(n)
h , e

(n−1)
h ) +

1

4
‖e(n−1)

h ‖20.
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Consequently, considering the eigenvalues λ1 ≥ λ2 > 0 of the matrix

G =
1

4

[

5 −2
−2 1

]

,

we have

λ2

(

‖e(n)h ‖20 + ‖e(n−1)
h ‖20

)

≤ ‖E(n)
h ‖2G ≤ λ1

(

‖e(n)h ‖20 + ‖e(n−1)
h ‖20

)

. (73)

And easy calculation shows

1 ≤ λ1 =
3 + 2

√
2

4
≤ 3

2
. (74)

Applying (32) as before and taking into account the definition of constants C0

and C1 in (54–55) and (71) we have

‖E(n)
h ‖2G − ‖E(n−1)

h ‖2G +
γ

2
∆t‖e(n)h ‖20 ≤ ∆t

Cµ

2
. (75)

Now, arguing as in [34] we add ±γ∆t‖e(n−1)
h ‖20/8 so that we can write

‖E(n)
h ‖2G +

3

8
γ∆t‖e(n)h ‖20 +

γ

8
∆t

(

‖e(n)h ‖20 + ‖e(n−1)
h ‖20

)

≤ ‖E(n−1)
h ‖2G +

γ

8
∆t‖e(n−1)

h ‖20 +∆t
Cµ

2
.

For the third term on the left-hand side above, applying (73) we may write

γ

8
∆t

(

‖e(n)h ‖20 + ‖e(n−1)
h ‖20

)

≥ γ

8λ1
∆t‖E(n)

h ‖2G ≥ γ

12
∆t‖E(n)

h ‖2G, (76)

where in the last inequality we have applied (74) Thus, we have

(

1 +
γ

12
∆t

)

‖E(n)
h ‖2G +

3

8
γ∆t‖e(n)h ‖20 ≤ ‖E(n−1)

h ‖2G +
γ

8
∆t‖e(n−1)

h ‖20 +∆t
Cµ

2
.

Assuming
3

8
γ∆t ≥

(

1 +
γ

12
∆t

) γ

8
∆t,

which holds for

∆t ≤ 24

γ
, (77)

we get

(

1 +
γ

12
∆t

)(

‖E(n)
h ‖2G +

γ

8
∆t‖e(n)h ‖20

)

≤ ‖E(n−1)
h ‖2G +

γ

8
∆t‖e(n−1)

h ‖20 +∆t
Cµ

2
.

Applying Lemma 3.3 with

an = ‖E(n)
h ‖2G +

γ

8
∆t‖e(n)h ‖20, α =

1

1 + γ
12∆t

and B = ∆tCµ/(2α) we get

‖E(n)
h ‖2G +

γ

8
∆t‖e(n)h ‖20 ≤ 1

(

1 + γ
12∆t

)n−1

(

‖E(1)
h ‖2G +

γ

8
∆t‖e(1)h ‖20

)

+
6

γ
Cµ.
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Taking into account that from (72) we get ‖E(n)
h ‖2G ≥ ‖e(n)h ‖20/4 and applying

(73) again and that λ1 ≤ 2, we have

‖e(n)h ‖20 ≤ 4
(

1 + γ
12∆t

)n−1

(

2
(

‖e(1)h ‖20 + ‖e(0)h ‖20
)

+
γ

8
∆t‖e(1)h ‖20

)

+
24

γ
Cµ. (78)

To estimate Cµ on the right-hand side above, after applying Lemma 3.5, we are

left with the estimation of u(tn) − dtw
(n)
h . Arguing as in (64), we may write

ut(tn)− dtw
(n)
h = ut(tn)− dtu(tn) + dt(u(tn)−w

(n)
h ), and taking into account

that dt = d2t , we express

dt(u(tn)−w
(n)
h )

=
3

2∆t

∫ tn

tn−1

∂t(u(τ)−wh(τ)) dτ − 1

2∆t

∫ tn−1

tn−2

∂t(u(τ) −wh(τ)) dτ.

Thus, using (70), and (14) we obtain similar estimates as (65–67) but with

M2
j (utt)(∆t)

2, j = −1, 0, replaced by M2
j (uttt)(∆t)

4. To estimate ‖e(1)h ‖0 on

the right-hand side of (78). we recall that u
(1)
h is obtained by one step of the

implicit Euler method, so that we can use (62), which gives,

‖e(1)h ‖20 ≤ 1

1 + γ∆t

(

‖e(0)h ‖20 +∆tCµ

)

≤ 1

1 + γ
12∆t

(

‖e(0)h ‖20 +∆tCµ

)

. (79)

As before, the value of Cµ is estimated by Lemma3.5, (61) and (65–67). Thus,
we conclude with the following result.

Theorem 3.9 Under the hypotheses of Theorem 3.6, assume also that uttt ∈
L∞(H−1(Ω)d) when µ = 0 or uttt ∈ L∞(L2(Ω)d), otherwise, and that ∆t
satisfies (77). Then, for the finite element approximation, solution of (28)
when dt is given by (68–69), the following bounds hold:

‖u(tn)− u
(n)
h ‖0 ≤ C

(1 + γ
12∆t)

(n−1)/2
‖uh(0)− u(0)‖0

+
C

(νL)1/2
(M−1(utt) +M−1(uttt)) (∆t)

2

+
C

L1/2

(

Ĉ0 +
1

ν1/2
|Ω|(1+r̂−r)/dN r̂(ut, pt)

)

hr, µ = 0.

‖u(tn)− u
(n)
h ‖0 ≤ C

(1 + γ
12∆t)

(n−1)/2
‖uh(0)− u(0)‖0

+
C

L
(M0(utt) +M0(uttt)) (∆t)

2

+
C

L1/2

(

Ĉ1 +
1

L1/2
Mr−1(ut)

)

hr−1, µ > 0.

where γ is defined in (47), L in (38–39), Ĉ0 and Ĉ1 in (58) and (59), respec-
tively, and r̂ = r − 1 if r ≥ 3 and Ω is of class C3 and r̂ = r otherwise.

Remark 3.10 Let us observe that we are considering a scheme in which the
first time step is performed by means of the implicit Euler method and then
we can insert (79) into (78). However, in view of (78), as pointed out in [34],
the first step could, for example, be initialized to zero and the algorithm still
converges to the true solution.
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3.3 Semi-implicit BDF2

Now, we consider a fully discrete approximation satisfying

(dtu
(n)
h ,ϕh) + ν(∇u

(n)
h ,∇ϕh) + bh(ũ

n
h,u

(n)
h ,ϕh) + µ(∇ · u(n)

h ,∇ ·ϕh) =

(f (n),ϕh)− β(IH(u
(n)
h )− IH(u(n)), IHϕh), (80)

where dt is given by (68–69), and

ũ
(n)
h = 2u

(n−1)
h − u

(n−2)
h , n ≥ 2, (81)

and, for simplicity ũ
(1)
h = u

(0)
h .

Arguing as in the proof of Lemma 3.2 with obvious changes, the following
result follows.

Lemma 3.11 Let (u
(n)
h )∞n=0 be the finite element approximation defined in (80)

and let (w
(n)
h )∞n=0, (w̃

(n)
h )∞n=0, (τ

(n)
h )∞n=0, (θ

(n)
h )∞n=1 in Vh,r be sequences satisfy-

ing

(dtw
(n)
h ,ϕh) + ν(∇w

(n)
h ,∇ϕh) + bh(w̃

(n)
h ,w

(n)
h ,ϕh) + µ(∇ ·w(n)

h ,∇ ·ϕh) =

(f (n),ϕh) + (τ
(n)
h ,ϕh) + µ(θ

(n)
h ,∇ · ϕh), (82)

Fix δ > 0, and assume that the quantity L′ defined in (88), below, when µ = 0,
and in (89), below, when µ > 0, is bounded. Then, if β ≥ 8L′/δ and H satisfies
condition

H ≤ (νδ)1/2

(8L′)1/2cI
. (83)

the following bounds hold for e
(n)
h = u

(n)
h −w

(n)
h and ẽ

(n)
h = ũ

(n)
h − w̃

(n)
h ,

(dte
(n)
h , e

(n)
h ) +

γ

2
‖e(n)h ‖20 +

ν

4
‖∇e

(n)
h ‖20 +

3

4
µ‖∇ · e(n)h ‖20

≤ δ

(

1

2
‖∇w

(n)
h ‖∞‖ẽ(n)h ‖20 + (1 − µ)

ν

4
‖∇ẽ

(n)
h ‖20 +

µ

4
‖∇ · ẽ(n)h ‖20

)

(84)

+ k‖θ(n)h ‖20 +
β

2
c20‖u(n) −w

(n)
h ‖20 +

(

(1− µ)
ĉP
ν

+
µ

2L′

)

‖τ (n)
h ‖2−1+µ,

where, µ and k are defined in (29), and γ is defined in (47).

Proof: We follow the proof of Lemma 3.2, that is, subtracting (82) from (80)

and taking ϕh = e
(n)
h we get

(dte
(n)
h , e

(n)
h ) + ν‖∇e

(n)
h ‖20 + β‖IHe

(n)
h ‖20+µ‖∇ · e(n)h ‖20 (85)

≤ |bh(ũ(n)
h ,u

(n)
h , e

(n)
h )− bh(w̃

(n)
h ,w

(n)
h , eh

(n))|+ β|(IHu(n) − IHw
(n)
h , IHe

(n)
h )|

+ |(τ (n)
h , e

(n)
h )|+ |µ(θ(n)h ,∇ · e(n)h )|.

To bound the nonlinear terms, we argue as follows. When µ = 0, we apply

Lemma 3.1 with v̂h = ũ
(n)
h , vh = u

(n)
h , ŵh = w̃

(n)
h , wh = w

(n)
h , and ǫ = ν and

17



we also use (8), so that we have,

|bh(ũ(n)
h ,u

(n)
h , e

(n)
h )− bh(w̃

(n)
h ,w

(n)
h , e

(n)
h )|

≤ 1

δ
L̂(w

(n)
h , ν)‖e(n)h ‖20 +

δ

2
‖∇w

(n)
h ‖∞‖ẽ(n)h ‖20 +

δν

4
‖∇ · e(n)h ‖20

≤ 1

δ
L̂(w

(n)
h , ν)‖e(n)h ‖20 +

δ

2
‖∇w

(n)
h ‖∞‖ẽ(n)h ‖20 +

δν

4
‖∇e

(n)
h ‖20. (86)

When µ is positive, we apply Lemma 3.1 with v̂h = ũ
(n)
h , vh = u

(n)
h , ŵh = w̃

(n)
h ,

wh = w
(n)
h , and ǫ = µ,

|bh(ũ(n)
h ,u

(n)
h , e

(n)
h )− bh(w̃

(n)
h ,w

(n)
h , e

(n)
h )|

≤ 1

δ
L̂(w

(n)
h , µ)‖e(n)h ‖20 +

δ

2
‖∇w

(n)
h ‖∞‖ẽ(n)h ‖20 +

δµ

4
‖∇ · ẽ(n)h ‖20. (87)

We now set

L′ = max
n≥0

L̂(w
(n)
h , ν), if µ = 0, (88)

L′ = 2max
n≥0

L̂(w
(n)
h , µ), if µ > 0. (89)

The rest of the terms on the right-hand side of (85) are bounded as in the proof
of Lemma 3.2, but replacing L by L′. Thus, instead of (42), we now have

(dte
(n)
h , e

(n)
h ) + (3 + µ)

ν

4
‖∇e

(n)
h ‖20 +

β

2
‖IHe

(n)
h ‖20 +

3

4
µ‖∇ · e(n)h ‖20 (90)

≤ 1

δ
L′‖eh‖20 + δ

(

1

2
‖∇w

(n)
h ‖∞‖ẽ(n)h ‖20 + (1− µ)

ν

4
‖∇ẽ

(n)
h ‖20 +

µ

4
‖∇ · ẽ(n)h ‖20

)

+ k‖θ(n)h ‖20 +
β

2
c20‖u(n) −w

(n)
h ‖20 +

(

(1 − µ)
ĉP
ν

+
µ

2L′

)

‖τ (n)
h ‖2−1+µ.

We also bound L′‖e(n)h ‖20 ≤ 2L′‖IHe(n)h ‖20 + 2L′‖(I − IH)e
(n)
h ‖20. Now, since we

are assuming that β ≥ 8L′/δ, so that β/2 − 2(L′/δ) ≥ β/4, and taking into
account that 3 + µ ≥ 3 instead of (43) we get

(dte
(n)
h , e

(n)
h )+

3

4
ν‖∇e

(n)
h ‖20 − 2

L′

δ
‖(I − IH)e

(n)
h ‖20+

β

4
‖IHe

(n)
h ‖20 +

3

4
µ|∇ · e(n)h ‖20

≤ δ

(

1

2
‖∇w

(n)
h ‖∞‖ẽ(n)h ‖20 + (1− µ)

ν

4
‖∇ẽ

(n)
h ‖20 +

µ

4
‖∇ · ẽ(n)h ‖20

)

+ k‖θ(n)h ‖20 +
β

2
c20‖u(n) −w

(n)
h ‖20 +

(

(1− µ)
ĉP
ν

+
µ

2L

)

‖τ (n)
h ‖2−1+µ. (91)

Also, since we are now assuming (83), we have

ν

2
‖∇e

(n)
h ‖20 − 2

L′

δ
‖(I − IH)e

(n)
h ‖20 ≥ ν

4
‖∇e(n)h ‖20, (92)

Thus, arguing as in the rest of the proof of Lemma 3.2, (84) follows. �

As before, we take w
(n)
h = sh(tn) if µ = 0, and w

(n)
h = smh (tn), otherwise.

Notice that the truncation error τ
(n)
h now is

(τ
(n)
h ,ϕh) = (u̇(n) − dtw

(n)
h ,ϕh)+ bh(u

(n),u(n),ϕh)− bh(w̃
(n)
h ,w

(n)
h ,ϕh) (93)
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We also define

C′
0 = max

n≥0

(

2ĉP
ν

‖τ (n)
h ‖2−1 + βc20‖u(n) −w

(n)
h ‖20

)

. (94)

C′
1 = max

n≥0

(

1

L′
‖τ (n)

h ‖20 + βc20‖u(n) −w
(n)
h ‖20 +

2

µ
‖θ(n)h ‖20

)

, (95)

Thus, applying Lemma 3.11 and recalling (71), we have

‖E(n)
h ‖2G − ‖E(n−1)

h ‖2G +
γ

2
∆t‖e(n)h ‖20 +

ν

4
∆t‖∇e

(n)
h ‖20 +

3

4
∆tµ‖∇ · e(n)h ‖20

≤ δ∆t

(

1

2
‖∇w

(n)
h ‖∞‖ẽ(n)h ‖20 + (1 − µ)

ν

4
‖∇ẽ

(n)
h ‖20 +

µ

4
‖∇ · ẽ(n)h ‖20

)

+
∆t

2
C′

µ.

In view of the defintions of γ in (47), L̃ in (30) and L′ in (88–89), and the
restriction (83) we have

1

2
‖∇w

(n)
h ‖∞ ≤ L′ ≤ δ

γ

2
.

Thus, we may write

‖E(n)
h ‖2G − ‖E(n−1)

h ‖2G +
γ

2
∆t‖e(n)h ‖20 +

ν

4
∆t‖∇e

(n)
h ‖20 +

3

4
∆tµ‖∇ · e(n)h ‖20

≤ δ∆t
(

δ
γ

2
‖ẽ(n)h ‖20 + (1− µ)

ν

4
‖∇ẽ

(n)
h ‖20 +

µ

4
‖∇ · ẽ(n)h ‖20

)

+
∆t

2
C′

µ. (96)

We add ±∆t(γ/8)‖e(n−1)
h ‖20 to the left hand side above, so that recalling (76)

and noticing that

‖E(n−1)
h ‖2G =

1

4
‖e(n−1)

h ‖20 +
1

4
‖ẽ(n)h ‖20

and

δ
γ

2
‖ẽ(n)h ‖20 + (1 − µ)

ν

4
‖∇ẽ

(n)
h ‖20 +

µ

4
‖∇ · ẽ(n)h ‖20

≤ 4
(

δ
γ

2
‖E(n−1)

h ‖2G + (1 − µ)
ν

4
‖∇E

(n−1)
h ‖20 +

µ

4
‖∇ ·E(n−1)

h ‖2G
)

where ∇E
(n)
h = (∇e

(n)
h ,∇e

(n−1)
h ) and ∇ ·E(n)

h = (∇ · e(n)h ,∇ · e(n−1)
h ), we may

write
(

1 +
γ

12
∆t

)

‖E(n)
h ‖2G +∆t

(

3

8
γ‖e(n)h ‖20 +

ν

4
‖∇e

(n)
h ‖20 +

3

4
µ‖∇ · e(n)h ‖20

)

≤
(

1 + 2δ2γ∆t
)

‖E(n−1)
h ‖2G +∆t

γ

8
‖e(n−1)

h ‖20

+ δ∆t
(

(1− µ)ν‖∇E
(n−1)
h ‖20 + µ‖∇ ·E(n−1)

h ‖2G
)

+
∆t

2
C′

µ. (97)

We treat separately the cases µ > 0, and µ = 0. For the former, we drop the

term ∆t(ν/4)‖∇e
(n)
h ‖20 on the left hand side of (97) and for the last term on the

left-hand side of (97) we write

3µ

4
‖∇ · e(n)h ‖20 =

µ

2
‖∇ · e(n)h ‖20 +

µ

4

(

‖∇ · e(n)h ‖20 + ‖∇ · e(n−1)
h ‖20

)

− µ

4
‖∇ · e(n−1)

h ‖20

≥ µ

2
‖∇ · e(n)h ‖+ µ

6
‖∇ ·E(n)

h ‖2G − µ

4
‖∇ · e(n−1)

h ‖20
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where, in the last inequality we have argued as in (76). Thus, from (97) it
follows that

(

1 +
γ

12
∆t

)

‖E(n)
h ‖2G +∆t

µ

6
‖∇ ·E(n)

h ‖2G +∆t

(

3

8
γ‖e(n)h ‖20 +

µ

2
‖∇ · e(n)h ‖20

)

≤
(

1 + 2δ2γ∆t
)

‖E(n−1)
h ‖2G + δ∆tµ‖∇ ·E(n−1)

h ‖2G
+∆t

(γ

8
‖e(n−1)

h ‖20 +
µ

4
‖∇ · e(n−1)

h ‖20
)

+
∆t

2
C′

µ. (98)

We chose

δ <
1

12
, (99)

and

∆t ≤ 12

γ
, (100)

so that the following inequalities hold:

(

1 +
γ

12
∆t

)

>
(

1 + 2δ2γ∆t
)

, (101)

1

6
>

1 + γ
12∆t

1 + 2δ2γ∆t
δ,

2 >
1 + γ

12∆t

1 + 2δ2γ∆t
. (102)

Thus, for

an =‖E(n)
h ‖2G +

1

1 + 2δ2γ∆t

(

δ∆tµ‖∇ ·E(n)
h ‖2G

+∆t
(γ

8
‖e(n)h ‖20 +

µ

4
‖∇ · e(n)h ‖20

)

)

,

from (98) it follows that

(

1 +
γ

12
∆t

)

an ≤
(

1 + 2δ2γ∆t
)

an−1 +
∆t

2
C′

µ. (103)

When µ = 0, for the third term on the left-hand side of (97), we write

ν

4
‖∇e

(n)
h ‖20 =

3

16
ν‖∇e

(n)
h ‖20 +

ν

16

(

‖∇e
(n)
h ‖20 + ‖∇e

(n−1)
h ‖20

)

− ν

16
‖∇e

(n−1)
h ‖20

≥ 3

16
ν‖∇e

(n)
h ‖+ ν

24
‖∇E

(n)
h ‖2G − ν

16
‖∇e

(n−1)
h ‖20

where, in the last inequality we have argued as in (76). Now, besides (100), we
assume

δ ≤ 1

48
(104)

so that, besides (101) and (102), the following inequality holds

1

24
>

1 + γ
12∆t

1 + 2δ2γ∆t
δ, (105)
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Thus, arguing as before, we have that for

an =‖E(n)
h ‖2G +

1

1 + 2δ2γ∆t

(

δ∆tν‖∇E
(n)
h ‖2G

+∆t
(γ

8
‖e(n)h ‖20 +

ν

16
‖∇e

(n)
h ‖20

)

)

,

relation (103) holds.
The estimation of C′

µ is done in Lemma 3.15, below, so that we can conclude
with the following result.

Theorem 3.12 Under the hypotheses of Theorem 3.6 but with β ≥ 8L′/δ in-
stead of β ≥ 8L and H satisfying condition (83) instead of (44), assume also
that ∆t satisfies (100). Fix δ ∈ (0, 1/12) if µ > 0 or δ ∈ (0, 1/48) if µ = 0.
Then, for the finite element approximation, solution of (80) when dt is given
by (68–69), the following bounds hold:

‖u(tn)− u
(n)
h ‖0 ≤C

(

1 + 2δ2γ∆t

1 + γ
12∆t

)(n−1)/2

‖uh(0)− u(0)‖0

+
C

(νL)1/2
(M−1(uttt) +K1(u, |Ω|)M0(utt)) (∆t)

2

+
C

L1/2

(

Ĉ0 +
1

ν1/2
|Ω|(1+r̂−r)/dN r̂(ut, pt)

)

hr, µ = 0.

‖u(tn)− u
(n)
h ‖0 ≤C

(

1 + 2δ2γ∆t

1 + γ
12∆t

)(n−1)/2

‖uh(0)− u(0)‖0

+
C

L
(M0(uttt) +K1(u, |Ω|)M1(utt)) (∆t)

2

+
C

L1/2

(

Ĉ1 +
1

L1/2
Mr−1(ut)

)

hr−1, µ > 0.

where γ is defined in (47), L in (38–39), Ĉ0 and Ĉ1 in (58) and (59), respec-
tively, and r̂ = r − 1 if r ≥ 3 and Ω is of class C3 and r̂ = r otherwise.

Remark 3.13 In Theorems 3.6 and 3.9 we assume β ≥ 8L. Let us observe
that in the case µ = 0, in view of estimates (15) and (17), we have that β ≥ 8L
when wh = sh if

β ≥ 8
(

2D0

(

(Md−1(u)M3(u))
1/2 +

(

N2(u, p)Nd(u, p)
)1/2

)

+D2
0

Md−2(u)M2(u) +N1(u, p)Nd−1(u, p)

4ν

)

, (106)

with D0 the constant in (15–16). In case µ 6= 0 from (20) and (21) we have that
β ≥ 8L when wh = smh if

β ≥ 16

(

D1 sup
τ≥0

‖∇u(τ)‖∞ +D2
1

Md−2(u)M2(u)

4µ

)

. (107)

In Theorem 3.12 we assume β ≥ 8L′/δ which leads to assumptions on β analo-
gous to those above with obvious changes.
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Lemma 3.14 Let u(n) and ũ(n) denote u(tn) and ũ(tn), where ũ is defined

in (81), and let w
(n)
h = sh(tn) when µ = 0 and w

(n)
h = smh (tn). Then, the

following bounds hold

sup
‖ϕ‖1=1

|bh(ũ(n),u(n),ϕ)− bh(w̃
(n)
h ,w

(n)
h ,ϕ)|

≤ K0(u, p, |Ω|)
(

‖ũ(n) − w̃
(n)
h ‖0 + ‖u(n) −w

(n)
h ‖0

)

, µ = 0, (108)

sup
‖ϕ‖0=0

|bh(ũ(n),u(n),ϕ)− bh(w̃
(n)
h ,w

(n)
h ,ϕ)|

≤ K1(u, |Ω|)
(

‖ũ(n) − w̃
(n)
h ‖1 + ‖u(n) −w

(n)
h ‖1

)

, µ > 0, (109)

K0(u, p, |Ω|) and K1(u, |Ω|) are the quantities defined in (50) and (51), respec-
tively.

Proof: For simplicity, we denote ε = u(n) −w
(n)
h and ε̃ = ũ(n) − w̃

(n)
h , and

drop the explicit dependence on n. Adding ±bh(wh,u,ϕ) we have

|bh(ũ,u,ϕ)− bh(w̃h,wh,ϕ)| ≤ |bh(w̃h, ε,ϕ)|+ |bh(ε̃,u,ϕ)|. (110)

For the first term on the right-hand side above, we use the skew-symmetry
property of bh to interchange the roles of ε and ϕ, so that arguing as in [15,
Lemma 5] we have

|bh(w̃h,ϕ, ε)| ≤ ‖w̃h‖∞‖ε‖0‖∇ϕ‖0 + C‖∇w̃h‖L2d/(d−1)‖ε‖0‖ϕ‖L2d , (111)

and, for the second term on the right-hand side of (110) we write

bh(ε̃,u,ϕ) =
1

2
((ε̃ · ∇u,ϕ)− (ε̃ · ∇ϕ,u)) ,

so that we have

|bh(ε̃,u,ϕ)| ≤
1

2
‖ε̃‖0‖∇u‖L2d/(d−1)‖ϕ‖L2d +

1

2
‖ε̃‖0‖u‖∞‖∇ϕ‖0.

To bound ‖∇u‖L2d/(d−1) and ‖u‖∞ we apply (4) and (5), respectively, and ap-
plying Sobolev’s inequality (3) we have ‖ϕ‖L2d ≤ c1|Ω|(3−d)/(2d)‖ϕ‖1. Thus,
the proof of (108) will be complete after bounding the factors ‖w̃h‖∞ and
‖∇w̃h‖L2d/(d−1) featuring in (111), but an upper bound of those factors follows
directly from (15) and (16).

To prove (109), we interchange the roles of ϕ and ε and ε̃ in the arguments
above, and using estimates (21) and (22) to bound ‖w̃h‖∞ and ‖∇w̃h‖L2d/(d−1) ,
respectively. �

Lemma 3.15 For C′
0 and C′

1 defined in (94) and (94), respectively, the follow-
ing bounds hold

C′
0 ≤C

ν

(

M2
−1(uttt) +K2

1 (u, |Ω|)M2
0 (utt)

)

(∆t)4

+ Ĉ2
0 (r, β, ν, |Ω|,u, p)h2r (112)

C′
1 ≤C

L

(

M2
0 (uttt) +K2

1 (u, |Ω|)M2
1 (utt)

)

(∆t)4

+ Ĉ2
1 (r, h, β, µ, |Ω|,u, p)h2r−2 (113)
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where Ĉ0 and Ĉ1 are the constants defined in (58), (59), respectively, and K1

is the constant defined in (51).

Proof: In view of how L̂ is defined in (30) and how L and L′ are defined
in (38–39) and (88–89), respectively, we have that

L/2 ≤ L′ ≤ L,

so that the factor 1/L′ in (95) can be bounded by 2/L.

The estimation of u
(n)
t − dtu

(n) is that of the fully implicit BDF2, so that
it gives rise to the terms involving time derivatives of u in the estimates in
Theorem 3.9. The rest of the terms in C′

0 and C′
1 have already been estimated

in Lemma 3.5, except the second term on the right-hand side of (93). To
estimate this term, with ũ defined in (81), we write

bh(u
(n),u(n),ϕh)− bh(w̃

(n)
h ,w

(n)
h ,ϕh) (114)

= bh(u
(n) − ũ(n),u(n),ϕh) + bh(ũ

(n),u(n),ϕh)− bh(w̃
(n)
h ,w

(n)
h ,ϕh).

The second term on the right-hand side above is estimated in Lemma 3.14. For
the first one, to obtain the corresponding estimate in H−1 we proceed as follows.
For ϕ ∈ H1

0 (Ω)
d, using the skew-symmetry property of bh we write

∣

∣

∣
bh(u

(n) − ũ(n),u(n),ϕ)
∣

∣

∣
=
∣

∣

∣
bh(u

(n) − ũ(n),ϕ,u(n))
∣

∣

∣

≤‖u(n) − ũ(n)‖0‖∇ϕ‖0‖‖u(n)‖∞
≤‖u(n) − ũ(n)‖0‖∇ϕ‖0cA(Md−2(u)M2(u))

1/2,

where in the last inequality we have applied (5). Now Taylor expansion easily

reveals that ‖u(n)− ũ(n)‖0 ≤ CM0(utt)(∆t)
2 and the proof of (112) is finished.

To obtain an L2-estimate corresponding to the first term on the right-hand side
of (114), for ϕ ∈ L2(Ω)d we write

∣

∣

∣
bh(u

(n) − ũ(n),u(n),ϕ)
∣

∣

∣
≤ ‖u(n) − ũ(n)‖L2d‖∇u‖L2d/(d−1)‖ϕ‖0.

To bound ‖∇u‖L2d/(d−1) we apply (4), and applying Sobolev’s inequality (3) we
have

‖u(n) − ũ(n)‖L2d ≤ c1|Ω|(3−d)/(2d)‖u(n) − ũ(n)‖1,
and the proof of (113) is finished.

�

3.4 The Lagrange interpolant

In this section we consider the case in which IHu = ILa
H u is the Lagrange

interpolant. The proof of the following lemmas can be found in [23, Lemma
310, Lemma 3.11]

Lemma 3.16 Let vh ∈ Xh,r then the following bound holds

‖vh − ILa
H vh‖0 ≤ cLaH‖∇vh‖0, (115)

where

cLa = C (H/h)
d(p−2)

2p , (116)

where C is a generic constant and p = 3 if d = 2 and p = 4 if d = 3.
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Lemma 3.17 Let wh be the Stokes projection defined in (10) in case µ = 0 or
the modified Stokes projection defined in (18) in case µ > 0. Then, the following
bounds hold

‖(I − ILa
H )(wh − u)‖0 ≤ CH2hr−2Nr(u, p), µ = 0

‖(I − ILa
H )(wh − u)‖0 ≤ CH2hr−2‖u‖r, µ > 0.

where C is a generic constant.

Assuming H/h remains bounded one can apply (115) instead of (25). Arguing
as in [23, Theorem 3.12] and applying Lemma 3.17 one can replace the term
β
2 c

2
0‖u(n)−w

(n)
h ‖20 in Lemmas 3.2 and 3.11 by β

2 (Ch
rN r(u, p)+‖u(n)−w

(n)
h ‖0)2

in case µ = 0 and by β
2 (Ch

rMr(u) + ‖u(n) − w
(n)
h ‖0)2 in case µ > 0. Then,

Theorems 3.6, 3.9 and 3.12 hold with obvious changes.

4 Numerical experiments

We present some numerical experiments to check the results of the previous
section. Following standard practice, we use an example with a known solution.
In particular, we consider the Navier-Stokes equations in Ω = [0, 1]2, with the
forcing term f chosen so that the solution u and p are given by

u(x, y, t) =
6 + 4 cos(4t)

10

[

8 sin2(πx)(2y(1 − y)(1− 2y)
−8π sin(2 ∗ πx)(y(1 − y))2

]

(117)

p(x, y, t) =
6 + 4 cos(4t)

10
sin(πx) cos(πy). (118)

In the results below, the spatial discretization was done with P2/P1 elements on
regular triangulations with SW-NE diagonals. For the coarse mesh interpolation
we take the Clément interpolant on piecewise constants. The time integration
was done with semi-implicit BDF2. In what follows the initial condition was set
to uh = 0 and p = 0, so that there is an O(1) error at time t = 0. The value of
the nudging parameter was set to β = 1.

For ν = 10−2, 10−4, 10−6 and 10−8, we computed approximations on tri-
angulations with mesh size h = 1/12, h = 1/24 and h = 1/48, and different
values of ∆t, while the coarse mesh size was set to H = 3h. In Fig. 1 we show
relative errors in velocity for ν = 10−6, µ = 0.05, corresponding to different
combinations of ∆t and h, plotted against t. Recall the error bound for µ > 0
in Theorem 3.12, where on the right-hand side we have the initial error times a
term decaying exponentially, an O((∆t)2) term and an O(hr−1) term (r = 3 in
the present case). In Fig. 1, it can be seen how the error at the initial time is
equal to 1, decays exponentially with time until reaching the asymptotic regime,
where, in this example, its value oscillates periodically. On the left plot, we show
the errors for h = 1/48 and decreasing values of ∆t. In the asymptotic regime,
the O((∆t)2) term dominates the error for the two largest values of ∆t. For
the two smallest values of ∆t, the errors are almost identical in the asymptotic
regime, meaning that it is the O(h2) term that dominates the error. On the
right plot in Fig. 1, on the contrary, we show the errors for different values
of h but with ∆t fixed to ∆t = 1/160, so that the O(h2) term in the error is
dominant in the asymptotic regime. Observe that, for h = 1/48, the asymptotic
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Figure 1: Velocity errors vs t for ν = 10−6.

regime is not reached until t = 35 approximately. We obtained similar figures
(not shown here) for the rest of the values of ν, and in all of them we observed
that the asymptotic regime is already reached by t = 35, except for ν = 10−8

and h = 1/48 (also shown in Fig 1), where it was not reached until t = 42. For
this reason, in the figures that follow, we computed the maximum value of the
L2 errors in velocity for values of tn in the interval [35, 40], except for ν = 10−8

and h = 1/48, which they were on the interval [42, 45].
In Fig. 2 we present velocity errors in L2 for the four values of ν. For every

mesh, the errors obtained with the different values of ∆t are plotted with crosses
for the results corresponding to µ = 0.05 and with circular bullets for those
corresponding to µ = 0, and, for each mesh, the results of the different values
of ∆t are joined by straight segments, with continuous lines for µ = 0.05 and
discontinuous lines for µ = 0. To check the order of convergence in time we show
the slope of a least squares fit to the results corresponding to h = 1/48, for the
values of ∆t between the points marked with black circles. It can be seen that all
slopes have values between 1.81 and 1.88, confirming the O((∆t)2) behaviour
of the error whenever the error arising from time integration dominates that
arising from spatial discretization. To check the order of convergence in space,
we show the error corresponding to µ = 0.05 obtained on every mesh with
the smallest value of ∆t used, which, as commented above, we make sure it
was sufficiently small so that the spatial error dominates. It can be seen that
the error for µ = 0.05 behaves as O(h3) for ν = 10−2 and 10−4, and O(h2)
for ν = 10−6 or smaller, confirming the second statement in Theorem 3.12 and
Remark 3.7. Furthermore, comparing the results for ν = 10−6 and ν = 10−8, we
see that the (spatial) errors are practically the same, confirming that the error
constants in the second statement in Theorem 3.12 are independent of ν−1. The
only difference that we have found, as shown in Fig. 1, is the slower rate of decay
in time of the error in the initial condition for ν = 10−8.

With respect to the results corresponding to µ = 0, we see a very different
behaviour depending on the size of ν. For ν = 10−2, they are practically the
same as those corresponding to µ = 0.05 and, hence, they show an O(h3 +
(∆t)2) behaviour, confirming the first statement in Theorem 3.12. For smaller
values of ν, however, the negative powers of ν in the error bounds prevent the
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Figure 2: Velocity errors vs ∆t.

method from exhibiting convergence for the values of h and ∆t shown in Fig. 2
(presumably, convergence will be achieved for much smaller values of h). Fig. 2
clearly shows the beneficial effect of the grad-div term when ν is small.

5 Conclusions

We have obtained error bounds for fully discrete approximations with inf-sup
stable mixed finite element methods in space of a continuous downscaling data
assimilation method for the two and three-dimensional Navier-Stokes equations.
In the data assimilation algorithm measurements on a coarse mesh are given rep-
resented by different types of interpolation operators IHu, where IH can be an
interpolant for non smooth functions or a standard Lagrange interpolant. To
our knowledge, only reference [23] and the present paper consider the last case,
since in previous references explicit use is made of bounds (24) and (25), which
are not valid for nodal (Lagrange) interpolation. In the method, a penalty
term is added with the aim of driving the approximation towards the solution
u for which the measurements are known. For the time discretization we con-
sider three different methods: the implicit Euler method and an implicit and
a semi-implicit second order backward differentiation formula.For the spatial
discretization we consider both the Galerkin method and the Galerkin method
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with grad-div stabilization.
Uniform error bounds in time have been obtained for the approximation to

the velocity field u for all the methods, extending the results in [23] where the
semi-discretization in space is considered. For the Galerkin method the spatial
bounds we prove are optimal, the rate of convergence of the method in L2 being r
when using piecewise polynomials of degree r−1 in the velocity approximation.
In the case where grad-div stabilization is added, the constants in the error
bounds do not depend on inverse powers of the viscosity parameter ν, which
is of importance in many applications where viscosity is orders of magnitude
smaller than the velocity. For the Galerkin method with grad-div stabilization
a rate of convergence r−1 is obtained in the L2 norm of the velocity. This bound
is sharp, as it is shown in the numerical experiments of the paper. Moreover,
it can be clearly observed in the experiments, that for values of the viscosity
smaller than ν = 10−4 the Galerkin method does not achieve convergence in the
range of values of the mesh size for which the Galerkin method with grad-div
stabilization converges clearly with the predicted rate of convergence. It is thus
to be remarked the dramatic effect of adding grad-div stabilization when the
viscosity is small.

In the present paper, as in [23], as opposed to previous references, we do not
demand any upper bound on the nudging parameter β. The authors of [34] had
observed (see [34, Remark 3.8]) that the upper bound on β they required in the
analysis does not hold in the numerical experiments, which is also corroborated
by the numerical experiments in [23].
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