Skip to main content
Log in

Second-order energy stable schemes for the new model of the Cahn-Hilliard-MHD equations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

To simulate the two-phase flow of conducting fluids, we propose a coupled model of the Cahn-Hilliard equations and the inductionless and incompressible magnetohydrodynamic (MHD) equations. The model describes the dynamic behavior of conducting fluid under the influence of magnetic field. Based on the “invariant energy quadratization” method, we propose two fully discrete time-marching schemes which are linear, decoupled, unconditionally energy stable, and of second order. The well-posedness and energy stability of the discrete problems are proven. By extensive numerical experiments, we verify the second-order convergence of the numerical methods and demonstrate the capability of the coupled model for simulating two-phase flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdou, M.A., et al.: On the exploration of innovative concepts for fusion chamber technology fusion. Fusion Eng. Des. 54, 181–247 (2001)

    Google Scholar 

  2. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    MATH  Google Scholar 

  3. Chen, R., Ji, G., Yang, X., Zhang, H.: Decoupled energy stable schemes for phase field vesicle membrane model. J. Comput. Phys. 302, 509–523 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Chen, R., Yang, X., Zhang, H.: Second order, linear, and unconditionally energy stable schemes for a hydrodynamic model of smectic-A liquid crystals. SIAM J. Sci. Comput. 39, A2808–A2833 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Chen, R., Yang, X., Zhang, H.: Decoupled, energy stable scheme for hydrodynamic Allen-Cahn phase field moving contact line model. J. Comput. Math. 36, 661–681 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Chen, W., Feng, W., Liu, Y., Wang, C., Wise, S.M.: A second order energy stable scheme for the Cahn-Hilliard-Hele-Shaw equations. Discrete Cont. Dyn. Sys. B 24. https://doi.org/10.3934/dcdsb.2018090 (2016)

  7. Cyr, E.C., Shadid, J.N., Tuminaro, R.S., Pawlowski, R.P., Chacón, L.: A new approximate block fractorization preconditioner for two-dimensional incompressible (reduced) resistive MHD. SIAM J. Sci. Comput. 35, B701–B730 (2013)

    MATH  Google Scholar 

  8. Feng, X.: Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows. SIAM J. Numer. Anal. 44, 1049–1072 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Grün, G.: On convergent schemes for diffuse interface models for two-phase flow of incompressible fluids with general mass densities. SIAM J. Numer. Anal. 51, 3036–3061 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Guo, Z., Lin, P., Lowengrub, J.S.: A numerical method for the quasi-incompressible Cahn-Hilliard-Navier-Stokes equations for variable density flows with a discrete energy law. J. Comput. Phys. 276, 486–507 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Gerbeau, J.F., Le Bris, C., Leliévre, T.: Mathematical Methods for the Magnetohydrodynamics of Liquid Metals. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  12. Gunzburger, M.D., Meir, A.J., Peterson, J.S.: On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary incompressible magnetohydrodynamics. Math. Comp. 56, 523–563 (1991)

    MathSciNet  MATH  Google Scholar 

  13. Han, D., Wang, X.: A second order in time, decoupled, unconditionally stable numerical scheme for the Cahn-Hilliard-Darcy system. J. Sci. Comput. 77, 1210–1233 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Hiptmair, R., Li, L., Mao, S., Zheng, W.: A fully divergence-free finite element method for magneto-hydrodynamic equations. Math. Mod. Meth. Appl. Sci. 24, 659–695 (2018)

    MATH  Google Scholar 

  15. Ingram, R.: A new linearly extrapolated Crank-Nicolson time-stepping scheme for the Navier-Stokes equations. Math. Comp. 82, 1953–1973 (2013)

    MathSciNet  MATH  Google Scholar 

  16. van Kan, J.: A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J. Sci. Statist. Comput. 7, 870–891 (1986)

    MathSciNet  MATH  Google Scholar 

  17. Lee, H., Lowengrub, J.S., Goodman, J.: Modeling pinchoff and reconnection in a Hele-Shaw cell. II. Analysis and simulation in the nonlinear regime. Phys. Fluids. 14, 514–545 (2002)

    MathSciNet  MATH  Google Scholar 

  18. Li, L., Zheng, W.: A robust solver for the finite element approximation of stationary incompressible MHD equations in 3D. J. Comput. Phys. 351, 254–270 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Li, X., Qiao, Z.H., Zhang, H.: An unconditionally energy stable finite difference scheme for a stochastic Cahn-Hilliard equation. Sci. China Math. 59, 1815–1834 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Li, X., Qiao, Z.H., Zhang, H.: A second-order convex-splitting scheme for the Cahn-Hilliard equation with variable interfacial parameters. J. Comput. Math. 35, 693–710 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Liu, C., Shen, J., Yang, X.: Decoupled energy stable schemes for a phase-field model of two-phase incompressible flows with variable density. J. Sci. Comput. 62, 601–622 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Ma, Y., Hu, K., Hu, X., Xu, J.: Robust preconditioners for incompressible MHD models. J. Comput. Phys. 316, 721–746 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Moreau, R.: Magnetohydrodynamics. Kluwer Academic Publishers, Dordrecht, Boston (1990)

    MATH  Google Scholar 

  24. Ni, M.-J., Munipalli, R., Huang, P., Morley, N.B., Abdou, M.A.: A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part I. On a rectangular collocated grid system. J. Comp. Phys. 227, 174–204 (2007)

    MATH  Google Scholar 

  25. Ni, M.-J., Munipalli, R., Huang, P., Morley, N.B., Abdou, M.A.: A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part II: on an arbitrary collocated mesh. J. Comp. Phys. 227, 205–228 (2007)

    MATH  Google Scholar 

  26. Phillips, E.G., Elman, H.C., Cyr, E.C., Shadid, J.N., Pawlowski, R.P.: A block preconditioner for an exact penalty formulation for stationary MHD. SIAM J. Sci Comput. 36, B930–B951 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Phillips, E.G., Shadid, J.N., Cyr, E.C., Elman, H.C., Pawlowski, R.P.: Block preconditioners for stable mixed nodal and edge finite element representations of incompressible resistive MHD. SIAM J. Sci. Comput. 38, B1009–B1031 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Planas, R., Badia, S., Codina, R.: Approximation of the inductionless MHD problem using a stabilized finite element method. J. Comput. Phys. 230, 2977–2996 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Prohl, A.: Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system. ESAIM Math. Model Num. Anal. 42, 1065–1087 (2008)

    MathSciNet  MATH  Google Scholar 

  30. Qiao, Z.H., Tang, T., Xie, H.: Error analysis of a mixed finite element method for molecular beam epitaxy model. SIAM J. Numer. Anal. 53, 184–205 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Schötzau, D.: Mixed finite element methods for stationary incompressible magneto Chydrodynamics. Numer. Math. 96, 771–800 (2004)

    MathSciNet  MATH  Google Scholar 

  32. Shen, J.: On error estimates of the projection methods for the Navier-Stokes equations: second-order schemes. Math. Comp. 65, 1039–1065 (1996)

    MathSciNet  MATH  Google Scholar 

  33. Shen, J., Yang, X.: Decoupled energy stable schemes for phase-field models of two-phase complex fluids. SIAM J. Sci. Comput. 36, 122–145 (2014)

    MathSciNet  MATH  Google Scholar 

  34. Shen, J., Yang, X.: Decoupled energy stable schemes for phase-field models of two-phase incompressible flows. SIAM J. Numer. Anal. 53, 279–296 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Shen, J., Yang, X., Yu, H.: Efficient energy stable numerical schemes for a phase field moving contact line model. J. Comput. Phys. 284, 617–630 (2015)

    MathSciNet  MATH  Google Scholar 

  36. Shen, J., Yang, X.F.: Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discete Cont. Dyn. Sys.-A 28, 1669–1691 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    MathSciNet  MATH  Google Scholar 

  38. Shen, J., Xu, J.: Convergence and error analysis for the scalar auxiliary variable (SAV) scheme to gradient flows. SIAM J. Num. Anal. 56, 2895–2912 (2018)

    MathSciNet  MATH  Google Scholar 

  39. Xu, Z., Zhang, H.: Stabilized semi-implicit numerical scheme for the Cahn-Hilliard with variable interfacial parameters. J. Comput. Appl. Math. 346, 307–322 (2019)

    MathSciNet  MATH  Google Scholar 

  40. Xu, Z., Yang, X.F., Zhang, H., Xie, Z.Q.: Efficient and Linear Schemes for Anisotropic Cahn-Hilliard Equations Using the Stabilized Invariant Energy Quadratization (S-IEQ) Approach, Comm. Comput. Phys. Online Publishing. https://doi.org/10.1016/j.cpc.2018.12.019 (2019)

  41. Yang, X.: Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Yang, X., Zhao, J., Wang, Q., Shen, J.: Numerical approximations for a three components Cahn-Hilliard phase-field model based on the invariant energy quadratization method. Math. Mod. Meth. Appl. Sci. 27, 1993–2030 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Zhang, J., Han, T.Y., Yang, J.C., Ni, M.J.: On the spreading of impacting drops under the influence of a vertical magnetic field. J. Fluid Mech. 809. https://doi.org/10.1017/jfm.2016.725 (2016)

  44. Zhang, J., Ni, M.J.: What happens to the vortex structures when the rising bubble transits from zigzag to spiral. J. Fluid Mech. 828, 353–373 (2017)

    MathSciNet  MATH  Google Scholar 

  45. Zhang, J., Ni, M.J.: Direct numerical simulations of incompressible multiphase magnetohydrodynamics with phase change. J. Comput. Phys. 375, 717–746 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

R. Chen is supported in part from the National Natural Science Foundation of China (NSFC), grants 12001055 and 11971072. H. Zhang is supported in part by the grants NSFC-11471046 and 11571045.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Chen.

Additional information

Communicated by: Aihui Zhou

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Zhang, H. Second-order energy stable schemes for the new model of the Cahn-Hilliard-MHD equations. Adv Comput Math 46, 79 (2020). https://doi.org/10.1007/s10444-020-09822-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-020-09822-x

Keywords

Mathematics Subject Classification (2010)

Navigation