Skip to main content
Log in

Robin-Robin domain decomposition methods for the dual-porosity-conduit system

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The recently developed dual-porosity-Stokes model describes a complicated dual-porosity-conduit system which uses a dual-porosity/permeability model to govern the flow in porous media coupled with free flow via four physical interface conditions. This system has important applications in unconventional reservoirs especially the multistage fractured horizontal wellbore problems. In this paper, we propose and analyze domain decomposition methods to decouple the large system arisen from the discretization of dual-porosity-Stokes model. Robin boundary conditions are used to decouple the coupling conditions on the interface. Then, Robin-Robin domain decomposition methods are constructed based on the two decoupled sub-problems. Convergence analysis is demonstrated and a geometric convergence order is obtained. Optimized Schwarz methods are proposed for the dual-porosity-Stokes model and optimized Robin parameters are obtained to improve the convergence of proposed algorithms. Three computational experiments are presented to illustrate and validate the accuracy and applicability of proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Ervin, V.J., Jenkins, E.W., Sun, S.: Coupled generalized nonlinear Stokes flow with flow through a porous medium. SIAM J. Numer Anal. 47(2), 929–952 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Fraunhofer, W., Winter, G.: The use of asymmetrical flow field-flow fractionation in pharmaceutics and biopharmaceutics. Eur. J. Pharm. Biopharm. 58 (2), 369–383 (2004)

    Article  Google Scholar 

  3. Cao, S., Pollastrini, J., Jiang, Y.: Separation and characterization of protein aggregates and particles by field flow fractionation. Curr. Pharm. Biotechnol. 10(4), 382–390 (2009)

    Article  Google Scholar 

  4. D’Angelo, C., Zunino, P.: Robust numerical approximation of coupled Stokes’ and Darcy’s flows applied to vascular hemodynamics and biochemical transport. ESAIM Math. Model. Numer. Anal. 45(3), 447–476 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, J., Sun, S., Wang, X.: A numerical method for a model of two-phase flow in a coupled free flow and porous media system. J. Comput. Phys. 268, 1–16 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arbogast, T., Gomez, M.: A discretization and multigrid solver for a Darcy-Stokes system of three dimensional vuggy porous media. Comput. Geosci. 13(3), 331–348 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Nassehi, V.: Modelling of combined Navier-Stokes and Darcy flows in crossflow membrane filtration. Chem. Eng. Sci. 53, 1253–1265 (1998)

    Article  Google Scholar 

  8. Hanspal, N., Waghode, A., Nassehi, V., Wakeman, R.: Numerical analysis of coupled Stokes/Darcy flow in industrial filtrations. Transp. Porous Media 64, 73–101 (2006)

    Article  MATH  Google Scholar 

  9. Hoppe, R., Porta, P., Vassilevski, Y.: Computational issues related to iterative coupling of subsurface and channel flows. Calcolo 44(1), 1–20 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Discacciati, M., Miglio, E., Quarteroni, A.: Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43(1–2), 57–74 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Çeşmelioğlu, A., Rivière, B.: Primal discontinuous Galerkin methods for time-dependent coupled surface and subsurface flow. J. Sci. Comput. 40(1–3), 115–140 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Babuška, I., Gatica, G.N.: A residual-based a posteriori error estimator for the Stokes-Darcy coupled problem. SIAM J. Numer. Anal. 48(2), 498–523 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gatica, G.N., Oyarzúa, R., Sayas, F.J.: A residual-based a posteriori error estimator for a fully-mixed formulation of the Stokes-Darcy coupled problem. Comput. Methods Appl. Mech. Eng. 200(21–22), 1877–1891 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Boubendir, Y., Tlupova, S.: Domain decomposition methods for solving Stokes-Darcy problems with boundary integrals. SIAM J. Sci. Comput. 35(1), B82–B106 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, W., Xu, C.: Spectral methods based on new formulations for coupled Stokes and Darcy equations. J. Comput. Phys. 257(part A), 126–142 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Vassilev, D., Yotov, I.: Coupling Stokes-Darcy with flow transport. SIAM J. Sci. Comput. 31(5), 3661–3684 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tlupova, S., Cortez, R.: Boundary integral solutions of coupled Stokes and Darcy flows. J. Comput. Phys. 228(1), 158–179 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rybak, I., Magiera, J.: A multiple-time-step technique for coupled free flow and porous medium systems. J. Comput. Phys. 272(272), 327–342 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rivière, B., Yotov, I.: Locally conservative coupling of Stokes and Darcy flows. SIAM J. Numer. Anal. 42(5), 1959–1977 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Münzenmaier, S., Starke, G.: First-order system least squares for coupled Stokes-Darcy flow. SIAM J. Numer. Anal. 49(1), 387–404 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mu, M., Zhu, X.: Decoupled schemes for a non-stationary mixed Stokes-Darcy model. Math. Comput. 79(270), 707–731 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mu, M., Xu, J.: A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 45 (5), 1801–1813 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Márquez, A., Meddahi, S., Sayas, F.J.: A decoupled preconditioning technique for a mixed Stokes-Darcy model. J. Sci. Comput. 57(1), 174–192 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Layton, W.J., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40(6), 2195–2218 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Girault, V., Vassilev, D., Yotov, I.: Mortar multiscale finite element methods for Stokes-Darcy flows. Numer. Math. 127(1), 93–165 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Girault, V., Rivière, B.: DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition. SIAM J. Numer. Anal. 47(3), 2052–2089 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Galvis, J., Sarkis, M.: FETI and BDD preconditioners for Stokes-Mortar-Darcy systems. Commun. Appl. Math. Comput. Sci. 5, 1–30 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ervin, V.J., Jenkins, E.W., Lee, H.: Approximation of the Stokes-Darcy system by optimization. J. Sci. Comput. 59(3), 775–794 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Discacciati, M., Quarteroni, A., Valli, A.: Robin-Robin domain decomposition methods for the Stokes-Darcy coupling. SIAM J. Numer Anal. 45(3), 1246–1268 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Chen, W., Gunzburger, M., Hua, F., Wang, X.: A parallel Robin-Robin domain decomposition method for the Stokes-Darcy system. SIAM J. Numer. Anal. 49(3), 1064–1084 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Cao, Y., Gunzburger, M., Hu, X., Hua, F., Wang, X., Zhao, W.: Finite element approximation for Stokes-Darcy flow with Beavers-Joseph interface conditions. SIAM J. Numer. Anal. 47(6), 4239–4256 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Badea, L., Discacciati, M., Quarteroni, A.: Numerical analysis of the Navier-Stokes/Darcy coupling. Numer. Math. 115(2), 195–227 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hou, J., Qiu, M., He, X., Guo, C., Wei, M., Bai, B.: A dual-porosity-stokes model and finite element method for coupling dual-porosity flow and free flow. SIAM J. Sci. Comput. 38(5), B710–B739 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Chen, W., Gunzburger, M., Sun, D., Wang, X.: An efficient and long-time accurate third-order algorithm for the Stokes-Darcy system. Numer. Math. 134(4), 857–879 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Layton, W., Tran, H., Trenchea, C.: Analysis of long time stability and errors of two partitioned methods for uncoupling evolutionary groundwater-surface water flows. SIAM J. Numer. Anal. 51(1), 248–272 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rivière, B.: Analysis of a discontinuous finite element method for the coupled Stokes and Darcy problems. J. Sci. Comput. 22(/23), 479–500 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kanschat, G., Riviére, B.: A strongly conservative finite element method for the coupling of Stokes and Darcy flow. J. Comput. Phys. 229, 5933–5943 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Chidyagwai, P., Rivière, B.: On the solution of the coupled Navier-Stokes and Darcy equations. Comput. Methods Appl. Mech. Eng. 198(47–48), 3806–3820 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Urquiza, J.M., N’Dri, D., Garon, A., Delfour, M.C.: Coupling Stokes and Darcy equations. Appl. Numer. Math. 58(5), 525–538 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rui, H., Zhang, R.: A unified stabilized mixed finite element method for coupling Stokes and Darcy flows. Comput. Methods Appl. Mech. Eng. 198(33–36), 2692–2699 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Karper, T., Mardal, K.A., Winther, R.: Unified finite element discretizations of coupled Darcy-Stokes flow. Numer. Methods Partial Differ. Equ. 25 (2), 311–326 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Feng, M., Qi, R., Zhu, R., Ju, B.: Stabilized Crouzeix-Raviart element for the coupled Stokes and Darcy problem. Appl. Math. Mech. (English Ed.) 31(3), 393–404 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Chen, W., Chen, P., Gunzburger, M., Yan, N.: Superconvergence analysis of FEMs for the Stokes-Darcy system. Math Methods Appl. Sci. 33(13), 1605–1617 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Çeşmelioğlu, A., Rivière, B.: Analysis of time-dependent Navier-Stokes flow coupled with Darcy flow. J. Numer. Math. 16(4), 249–280 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. Arbogast, T., Brunson, D.S.: A computational method for approximating a Darcy-Stokes system governing a vuggy porous medium. Comput. Geosci. 11(3), 207–218 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  46. He, X.-M., Li, J., Lin, Y., Ming, J.: A domain decomposition method for the steady-state Navier-Stokes-Darcy model with Beavers-Joseph interface condition. SIAM J. Sci. Comput. 37(5), S264–S290 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Shan, L., Zheng, H.: Partitioned time stepping method for fully evolutionary Stokes-Darcy flow with Beavers-Joseph interface conditions. SIAM J. Numer. Anal. 51(2), 813–839 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Shan, L., Zheng, H., Layton, W.: A decoupling method with different sub-domain time steps for the nonstationary Stokes-Darcy model. Numer. Methods Partial Differ. Equ. 29(2), 549–583 (2013)

    Article  MATH  Google Scholar 

  49. Galvis, J., Sarkis, M.: Balancing domain decomposition methods for mortar coupling Stokes-Darcy systems. In: Domain Decomposition Methods in Science and Engineering XVI. Lect. Notes Comput. Sci. Eng., vol. 55, pp. 373–380. Springer, Berlin (2007)

  50. Boubendir, Y., Tlupova, S.: Stokes-Darcy boundary integral solutions using preconditioners. J. Comput. Phys. 228(23), 8627–8641 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  51. Bernardi, C., Rebollo, T.C., Hecht, F., Mghazli, Z.: Mortar finite element discretization of a model coupling Darcy and Stokes equations. M2AN Math. Model. Numer. Anal. 42(3), 375–410 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  52. Gatica, G.N., Meddahi, S., Oyarzúa, R.: A conforming mixed finite-element method for the coupling of fluid flow with porous media flow. IMA J. Numer. Anal. 29(1), 86–108 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  53. Jiang, B.: A parallel domain decomposition method for coupling of surface and groundwater flows. Comput. Methods Appl. Mech. Eng. 198(9–12), 947–957 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  54. Discacciati, M., Quarteroni, A.: Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations. In: Numerical Mathematics and Advanced Applications, pp. 3–20. Springer Italia, Milan (2003)

  55. Discacciati, M., Quarteroni, A.: Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations. Comput. Vis. Sci. 6(2–3), 93–103 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  56. Discacciati, M.: Domain decomposition methods for the coupling of surface and groundwater flows. PhD thesis, Ecole Polytechnique Fédérale de Lausanne, Switzerland (2004)

  57. Cao, Y., Gunzburger, M., He, X.-M., Wang, X.: Parallel, non-iterative, multi-physics domain decomposition methods for time-dependent Stokes-Darcy systems. Math. Comput. 83(288), 1617–1644 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  58. Cao, Y., Gunzburger, M., He, X.-M., Wang, X.: Robin-Robin domain decomposition methods for the steady Stokes-Darcy model with Beaver-Joseph interface condition. Numer. Math. 117(4), 601–629 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  59. Cai, M., Mu, M., Xu, J.: Preconditioning techniques for a mixed Stokes/Darcy model in porous media applications. J. Comput. Appl. Math. 233(2), 346–355 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  60. Shan, L., Hou, J., Yan, W., Chen, J.: Partitioned time stepping method for a dual-porosity-Stokes model. J. Sci. Comput. 79(1), 389–413 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  61. Arbogast, T.: The existence of weak solutions to single porosity and simple dual-porosity models of two-phase incompressible flow. Nonlinear Anal. 19(11), 1009–1031 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  62. Douglas, J., Kischinhevsky, M., Paes Leme, P.J., Spagnuolo, A.M.: A multiple-porosity model for a single-phase flow through naturally-fractured porous media. Comput. Appl. Math. 17(1), 19–48 (1998)

    MathSciNet  MATH  Google Scholar 

  63. Barenblatt, G.E., Zheltov, I.P., Kochina, I.N.: Basic concepts in the theory of homogeneous liquids in fissured rocks. J. Appl. Math. Mech. 24, 1286–1303 (1960)

    Article  MATH  Google Scholar 

  64. Warren, J.E., Root, P.J.: The behavior of naturally fractured reservoirs. Soc. Petrol. Eng. J. 3(3), 245–255 (1963)

    Article  Google Scholar 

  65. Austria, J.J.C., O’Sullivan, M.J.: Dual porosity models of a two-phase geothermal reservoir. In: Proceedings World Geothermal Congress. Melbourne (2015)

  66. Aguilera, R: Naturally fractured reservoirs. In: Proceedings World Geothermal Congress. Pennwell Publishing Company, Tulsa (1995)

  67. Discacciati, M., Gerardo-Giorda, L.: Optimized Schwarz methods for the Stokes-Darcy coupling. IMA J. Numer. Anal. 38(4), 1959–1983 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  68. Gander, M.J., Vanzan, T.: On the derivation of optimized transmission conditions for the stokes-darcy coupling. In: Domain Decomposition Methods in Science and Engineering XXV. LNCSE. Springer (2019)

  69. Saffman, P.: On the boundary condition at the interface of a porous medium. Stud. Appl. Math. 1, 77–84 (1971)

    Google Scholar 

  70. Toselli, A., Widlund, O B: Domain Decomposition Methods—Algorithms and Theory. Springer, New York (2004)

    MATH  Google Scholar 

  71. Lions, P.-L.: On the Schwarz alternating method. III. A variant for nonoverlapping subdomains. In: Third International Symposium on Domain Decomposition Methods for Partial Differential Equations (Houston, TX, 1989), pp. 202–223. SIAM, Philadelphia (1990)

  72. Gander, M.J.: Optimized Schwarz methods. SIAM J. Numer. Anal. 44(4), 699–731 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  73. Brenner, S. C., Scott, L R: The Mathematical Theory of Finite Element Methods. Springer, New York (1994)

    Book  MATH  Google Scholar 

  74. Smolen, J.J.: Cased Hole and Production Log Evaluation. PennWell Books (1996)

  75. Seale, R. A., Donaldson, J., Athans, J.: Multistage fracturing system: improving operational efficiency and production. In: SPE Eastern Regional Meeting. Society of Petroleum Engineers (2006)

  76. Bello, R.O., Wattenbarger, R.A.: Multi-stage hydraulically fractured shale gas rate transient analysis. In: Paper SPE 126754 Presented at the SPE North Africa Technical Conference and Exhibition held in Cairo, pp. 14–17, Egypt (2010)

  77. Gigante, G., Pozzoli, M., Vergara, C.: Optimized Schwarz Methods for the diffusion-reaction problem with cylindrical interfaces. SIAM J. Numer. Anal. 51(6), 3402–3420 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work is partially supported by NSFC (Grant Nos. 11701451, 11971377, 11931013, and 12001421), NSF of Shaanxi Province (Nos. 2019JM-367 and 2018JQ1077), and Scientific Research Program funded by Shaanxi Provincial Education Department (20JK0782).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjing Yan.

Additional information

Communicated by: Francesca Rapetti

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 3.3

Adding (3.29) and (3.30), summing over k from k = 1 to N, then we can obtain:

$$ \begin{array}{@{}rcl@{}} \left\|\varepsilon_{d}^{N+1}\right\|_{L^{2}({\Gamma}_{cd})}^{2} + \left\|\varepsilon_{c}^{N+1}\right\|_{L^{2}({\Gamma}_{cd})}^{2} & =& \left\|{\varepsilon_{d}^{1}}\right\|_{L^{2}({\Gamma}_{cd})}^{2} + \left\|{\varepsilon_{c}^{1}}\right\|_{L^{2}({\Gamma}_{cd})}^{2}\\ &&- 4\gamma\sum\limits_{k=1}^{N}\left( {\vphantom{\frac{\alpha\nu \sqrt{{\mathbf{d}}}}{\sqrt{\text{trace}~\left( \prod\right)}}}}a_{S}\left( {\mathbf{e}}_{u}^{k}, {\mathbf{e}}_{u}^{k}\right) + \frac{1}{\rho} a_{m}\left( {e_{m}^{k}}, {e_{m}^{k}}\right)\right.\\&&+ \frac{1}{\rho} a_{f}\left( {e_{f}^{k}}, {e_{f}^{k}}\right) \\ && + { \frac{1}{\rho} \frac{\sigma k_{m}}{\mu}\left( {e}_{m}^{k}-{e}_{f}^{k},{e_{m}^{k}}-{e_{f}^{k}}\right)_{{\Omega}_{d}} } \\ &&\left.+ \frac{\alpha\nu \sqrt{{\mathbf{d}}}}{\sqrt{\text{trace}~\left( \prod\right)}} \left\| P_{\tau}\mathbf{e}_{u}^{k}\right\|^{2}_{L^{2}({\Gamma}_{cd})} \right). \end{array} $$
(5.1)

By the coercivity of the bilinear forms on the right-hand side of (5.1), we have:

$$ \begin{array}{@{}rcl@{}} 4\gamma C_{0}\sum\limits_{k=1}^{N}\left( \left\|{\mathbf{e}}_{u}^{k}\right\|_{1}^{2}+ { \left\|{e_{m}^{k}}\right\|_{1}^{2} } +\left\|{e_{f}^{k}}\right\|_{1}^{2}\right) &\leq & 4\gamma\sum\limits_{k=1}^{N} \bigg(a_{S}\left( {\mathbf{e}}_{u}^{k}, {\mathbf{e}}_{u}^{k}\right) + \frac{1}{\rho} a_{m}\left( {e_{m}^{k}}, {e_{m}^{k}}\right)\\&&+\frac{1}{\rho} a_{f}\left( {e_{f}^{k}}, {e_{f}^{k}}\right)\\ &&+\frac{1}{\rho} \frac{\sigma k_{m}}{\mu}\left( {e}_{m}^{k}-{e}_{f}^{k},{e_{m}^{k}}-{e_{f}^{k}}\right)_{{\Omega}_{d}} \\ &&+ \frac{\alpha\nu \sqrt{{\mathbf{d}}}}{\sqrt{\text{trace}~\left( \prod\right)}} \left\| P_{\tau}\mathbf{e}_{u}^{k}\right\|^{2}_{L^{2}({\Gamma}_{cd})} \bigg) \\ &\leq & \left\|{\varepsilon_{d}^{1}}\right\|_{L^{2}({\Gamma}_{cd})}^{2} + \left\|{\varepsilon_{c}^{1}}\right\|_{L^{2}({\Gamma}_{cd})}^{2}, \end{array} $$
(5.2)

where C0 is given in (2.22). Hence, \(\left \|{\mathbf {e}}_{u}^{k}\right \|_{1}\), \(\left \|{e_{m}^{k}}\right \|_{1}\), and \(\left \|{e_{f}^{k}}\right \|_{1}\) tend to zero, respectively. Passing k to the limit in the error (3.16) will result in:

$$ \begin{array}{@{}rcl@{}} \left\langle\varepsilon_{d}^{k}, \psi_{f}\right\rangle \rightarrow 0 ~~\text{as}~~k\rightarrow \infty, ~~ \forall \psi_{f}\in H^{\frac12}({\Gamma}_{cd}) \end{array} $$
(5.3)

which implies the convergence of \({\varepsilon _{d}^{k}}\) in \(H^{-\frac 12}({\Gamma }_{cd})\). Through the convergence of \({\varepsilon ^{k}_{d}}\) and \({e_{f}^{k}}\) together with the error (3.19), we deduce the convergence of \({\varepsilon _{c}^{k}}\) in \(H^{-\frac 12}({\Gamma }_{cd})\). The convergence of the pressure \({e_{p}^{k}}\) follows from the inf-sup condition (2.21) and (3.17). Then, the theorem is obtained. □

Proof of Theorem 3.4

It is easy to show the following coercivity properties:

$$ \begin{array}{@{}rcl@{}} &&a_{m}\left( {e_{m}^{k}}, {e_{m}^{k}}\right){+}a_{f}\left( {e_{f}^{k}}, {e_{f}^{k}}\right) {+}\frac{\sigma k_{m}}{\mu}\left( {e}_{m}^{k}{-}{e}_{f}^{k},{e_{m}^{k}}{-}{e_{f}^{k}}\right)_{{\Omega}_{d}} {\ge} C_{1} \frac{k_{f}}{\mu} \left\|{e_{f}^{k}}\right\|_{1}^{2}, \end{array} $$
(5.4)
$$ \begin{array}{@{}rcl@{}} && a_{S}\left( \mathbf{e}^{k}_{u},\mathbf{e}^{k}_{u}\right)\geq 2\nu C_{2}\left\|\mathbf{e}^{k}_{u}\right\|_{1}^{2}, \end{array} $$
(5.5)

where the constants C1 and C2, also the constants C3, C4, and C5 used below, are given in (2.13)–(2.16). Since (3.31) and (3.32) are satisfied, then from (5.4) and (5.5) and trace inequalities (2.15) and (2.16), we deduce:

$$ \begin{array}{@{}rcl@{}} &&\frac{1}{\rho^{2}} \left( 1-\left( \frac{\gamma_{c}}{\gamma_{d}}\right)^{2}\right) \left\|{e_{f}^{k}}\right\|_{L^{2}({\Gamma}_{cd})}^{2} - \frac{2\gamma_{c}}{\rho}\left( 1+\frac{\gamma_{c}}{\gamma_{d}}\right)\left( a_{m}\left( {e_{m}^{k}}, {e_{m}^{k}}\right)+a_{f}\left( {e_{f}^{k}}, {e_{f}^{k}}\right) \right.\\ &&\left.+\frac{\sigma k_{m}}{\mu}\left( {e}_{m}^{k}-{e}_{f}^{k},{e_{m}^{k}}-{e_{f}^{k}}\right)_{{\Omega}_{d}} \right) \\ &\leq & \left( \frac{1}{\rho^{2}}\left( 1-\left( \frac{\gamma_{c}}{\gamma_{d}}\right)^{2}\right)C_{4} - \frac{2\gamma_{c}}{\rho}\left( 1+\frac{\gamma_{c}}{\gamma_{d}}\right) C_{1}\frac{k_{f}}{\mu} \right)\left\|{e_{f}^{k}}\right\|_{1}^{2}\leq 0, \end{array} $$
(5.6)

and

$$ \begin{array}{@{}rcl@{}} &&\left( {\gamma_{d}^{2}} - {\gamma_{c}^{2}}\right) \left\|{\mathbf{e}}_{u}^{k}\cdot \mathbf{n}_{cd}\right\|_{L^{2}({\Gamma}_{cd})}^{2}-2(\gamma_{c}+\gamma_{d}) a_{S}\left( {\mathbf{e}}_{u}^{k}, {\mathbf{e}}_{u}^{k}\right)\leq \left( ({\gamma_{d}^{2}}-{\gamma_{c}^{2}})C_{5}-4\nu C_{2}(\gamma_{c}+\gamma_{d}) \right)\\ && \left\|{\mathbf{e}}_{u}^{k}\right\|^{2}_{1}\leq0, \end{array} $$
(5.7)

where \(\left \|{\mathbf {e}}_{u}^{k}\cdot \mathbf {n}_{cd}\right \|_{L^{2}({\Gamma }_{cd})}\) is bounded from above by \(\left \|{\mathbf {e}}_{u}^{k}\right \|_{L^{2}({\Gamma }_{cd})}\) and then by (2.16). Plugging (5.6) and (5.7) into (3.21) and (3.22), respectively, we can obtain:

$$ \begin{array}{@{}rcl@{}} \left\|\varepsilon_{c}^{k+1}\right\|_{L^{2}({\Gamma}_{cd})} \leq \frac{\gamma_{c}}{\gamma_{d}} \left\|\varepsilon_{c}^{k-1}\right\|_{L^{2}({\Gamma}_{cd})} ~~~\text{and}~~~ \left\|\varepsilon_{d}^{k+1}\right\|_{L^{2}({\Gamma}_{cd})} \leq \frac{\gamma_{c}}{\gamma_{d}} \left\|\varepsilon_{d}^{k-1}\right\|_{L^{2}({\Gamma}_{cd})}. \end{array} $$
(5.8)

Above recurrence formula implies the geometric convergence rate \(\sqrt { \gamma _{c}/\gamma _{d}}\) for \({\varepsilon _{c}^{k}}\) and \({\varepsilon _{d}^{k}}\), as follows:

$$ \begin{array}{@{}rcl@{}} \left\|{\varepsilon_{d}^{k}}\right\|_{L^{2}({\Gamma}_{cd})} \leq \max \left\{ \sqrt{\frac{\gamma_{d}}{\gamma_{c}}} \left\|{\varepsilon_{d}^{1}}\right\|_{L^{2}({\Gamma}_{cd})}, \left\|{\varepsilon_{d}^{0}}\right\|_{L^{2}({\Gamma}_{cd})} \right\} \left( \sqrt{\frac{\gamma_{c}}{\gamma_{d}}} \right)^{k}, \end{array} $$
(5.9)
$$ \begin{array}{@{}rcl@{}} \left\|{\varepsilon_{c}^{k}}\right\|_{L^{2}({\Gamma}_{cd})} \leq \max \left\{ \sqrt{\frac{\gamma_{d}}{\gamma_{c}}} \left\|{\varepsilon_{c}^{1}}\right\|_{L^{2}({\Gamma}_{cd})}, \left\|{\varepsilon_{c}^{0}}\right\|_{L^{2}({\Gamma}_{cd})} \right\} \left( \sqrt{\frac{\gamma_{c}}{\gamma_{d}}} \right)^{k}. \end{array} $$
(5.10)

Above two inequalities are true whether k is even or odd. For the sake of simplification, define:

$$\tilde{C}=\max \left\{ \sqrt{\frac{\gamma_{d}}{\gamma_{c}}} \left\|{\varepsilon_{c}^{1}}\right\|_{L^{2}({\Gamma}_{cd})}, \sqrt{\frac{\gamma_{d}}{\gamma_{c}}} \left\|{\varepsilon_{d}^{1}}\right\|_{L^{2}({\Gamma}_{cd})}, \left\|{\varepsilon_{c}^{0}}\right\|_{L^{2}({\Gamma}_{cd})}, \left\|{\varepsilon_{d}^{0}}\right\|_{L^{2}({\Gamma}_{cd})} \right\},$$

thus (5.9) and (5.10) become:

$$ \begin{array}{@{}rcl@{}} \left\|{\varepsilon_{d}^{k}}\right\|_{L^{2}({\Gamma}_{cd})} \leq \tilde{C} \left( \sqrt{\frac{\gamma_{c}}{\gamma_{d}}} \right)^{k} ~~\text{and}~~ \left\|{\varepsilon_{c}^{k}}\right\|_{L^{2}({\Gamma}_{cd})} \leq \tilde{C} \left( \sqrt{\frac{\gamma_{c}}{\gamma_{d}}} \right)^{k}. \end{array} $$
(5.11)

Next, we derive the convergence rate for \({e_{m}^{k}}\), \({e_{f}^{k}}\), \({\mathbf {e}}_{u}^{k}\) and \({e_{p}^{k}}\) via the error equations (3.16)–(3.18) and (5.11). Setting \(\psi _{m}={e_{m}^{k}} \) and \(\psi _{f}={e_{f}^{k}} \) in (3.16), we have:

$$ \begin{array}{@{}rcl@{}} \frac{1}{\gamma_{d} }\left\langle {\varepsilon_{d}^{k}}, {e_{f}^{k}}\right\rangle &= &a_{m}\left( {e_{m}^{k}}, {e_{m}^{k}}\right)+a_{f}\left( {e_{f}^{k}}, {e_{f}^{k}}\right) +\frac{\sigma k_{m}}{\mu}\left( {e}_{m}^{k}-{e}_{f}^{k},{e_{m}^{k}}-{e_{f}^{k}}\right)_{{\Omega}_{d}} \\&&+ \frac{1}{\gamma_{d}\rho}\left\langle {e_{f}^{k}}, {e_{f}^{k}}\right\rangle. \end{array} $$
(5.12)

By (5.12), Poincaré inequality (2.13), Cauchy-Schwarz inequality, and trace inequality (2.15), we deduce

$$ \begin{array}{@{}rcl@{}} &&\frac{k_{f}}{\mu} C_{1} \left\|{e^{k}_{f}}\right\|^{2}_{1} {\leq} a_{f}\left( {e^{k}_{f}},{e^{k}_{f}}\right) {\leq} \frac{1}{\gamma_{d}} \left\langle {\varepsilon^{k}_{d}},{e^{k}_{f}} \right\rangle {\leq} \frac{\sqrt{C_{4}}}{\gamma_{d}}\left\|{\varepsilon^{k}_{d}}\right\|_{L^{2}({\Gamma}_{cd})}\left\|{e^{k}_{f}}\right\|_{1} , \end{array} $$
(5.13)
$$ \begin{array}{@{}rcl@{}} &&\frac{k_{m}}{\mu} C_{1} \left\|{e^{k}_{m}}\right\|^{2}_{1} {\leq} a_{m}\left( {e^{k}_{m}},{e^{k}_{m}}\right) {\leq} \frac{1}{\gamma_{d}} \left\langle {\varepsilon^{k}_{d}},{e^{k}_{f}} \right\rangle {\leq} \frac{\sqrt{C_{4}}}{\gamma_{d}}\left\|{\varepsilon^{k}_{d}}\right\|_{L^{2}({\Gamma}_{cd})}\left\|{e^{k}_{f}}\right\|_{1}, \end{array} $$
(5.14)

where the middle inequality follows from (5.12). Substituting the first estimate in (5.11) into (5.13), then we can obtain the convergence rate of \({p^{k}_{f}}\):

$$ \begin{array}{@{}rcl@{}} &&\left\|{e^{k}_{f}}\right\|_{1} \leq \frac{\mu \sqrt{C_{4}}\tilde{C}}{\gamma_{d} k_{f} C_{1}} \left( \sqrt{\frac{\gamma_{c}}{\gamma_{d}}} \right)^{k}. \end{array} $$
(5.15)

Using (5.11), (5.14), and (5.15), we can obtain the convergence rate of \({p^{k}_{m}}\):

$$ \begin{array}{@{}rcl@{}} && \left\|{e^{k}_{m}}\right\|_{1} \leq \frac{\mu\sqrt{C_{4}} \tilde{C}}{\gamma_{d} \sqrt{k_{m}k_{f}}C_{1}} \left( \sqrt{\frac{\gamma_{c}}{\gamma_{d}}} \right)^{k}. \end{array} $$
(5.16)

From (3.17) and the trace inequality (2.16), we have:

$$ \begin{array}{@{}rcl@{}} &&2\nu C_{2} \left\|\mathbf{e}^{k}_{u}\right\|_{1}^{2} \leq a_{S}\left( \mathbf{e}^{k}_{u},\mathbf{e}^{k}_{u}\right) \leq \left\langle {\varepsilon^{k}_{c}},\mathbf{e}^{k}_{u}\cdot \mathbf{n}_{cd} \right\rangle \leq \left\|{\varepsilon_{c}^{k}}\right\|_{L^{2}({\Gamma}_{cd})} \left\|\mathbf{e}^{k}_{u}\right\|_{{L}^{2}({\Gamma}_{cd})}\\ &&\qquad \leq C_{5}\left\|{\varepsilon_{c}^{k}}\right\|_{L^{2}({\Gamma}_{cd})} \left\|\mathbf{e}^{k}_{u}\right\|_{1} \end{array} $$
(5.17)

and the convergence rate of uk is

$$ \begin{array}{@{}rcl@{}} \left\|\mathbf{e}^{k}_{u}\right\|_{1} \leq \frac{C_{5}\tilde{C}}{{2}\nu C_{2}} \left( \sqrt{\frac{\gamma_{c}}{\gamma_{d}}} \right)^{k}. \end{array} $$
(5.18)

Furthermore, rewriting (3.17) and estimating the upper bound of the bilinear form bS(⋅,⋅), as follows:

$$ \begin{array}{@{}rcl@{}} b_{S}\left( \mathbf{v},{e_{p}^{k}}\right) &=& \left\langle {\varepsilon_{c}^{k}},\mathbf{v}\cdot \mathbf{n}_{cd}\right\rangle -a_{S}\left( {\mathbf{e}}_{u}^{k}, \mathbf{v}\right) - \gamma_{c}\left\langle {\mathbf{e}}_{u}^{k}\cdot \mathbf{n}_{cd}, \mathbf{v}\cdot \mathbf{n}_{cd}\right\rangle -\frac{\alpha\nu \sqrt{{\mathbf{d}}}}{\sqrt{\text{trace}~\left( \prod\right)}}\left\langle P_{\tau}{\mathbf{e}}_{u}^{k},P_{\tau}\mathbf{v}\right\rangle \\ &\leq& \left( \sqrt{C}_{5} \left\| {\varepsilon_{c}^{k}} \right\| +\left( 2\nu C_{3}+\gamma_{c}C_{5}+\frac{\alpha \nu }{\sqrt{k_{f}}}C_{5}\right)\left\|\mathbf{e}_{u}^{k} \right\|_{1} \right) \left\|\mathbf{v}\right\|_{1} \end{array} $$
(5.19)

for all vV0. Due to the inf-sup condition (2.21) combined with the upper bound (5.19), we deduce:

$$ \begin{array}{@{}rcl@{}} \left\|{e_{p}^{k}}\right\|_{0}\leq \frac{\tilde{C}}{\beta}\left( \sqrt{C_{5}} +\frac{C_{3}C_{5}}{C_{2}} +\frac{\gamma_{c} {C_{5}^{2}}}{{2}\nu C_{2}} +\frac{\alpha {C_{5}^{2}}}{2\sqrt{k_{f}}C_{2}} \right) \left( \sqrt{\frac{\gamma_{c}}{\gamma_{d}}}\right)^{k}. \end{array} $$
(5.20)

Hence, we have proved the convergence theorem for Case 2. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, J., Yan, W., Hu, D. et al. Robin-Robin domain decomposition methods for the dual-porosity-conduit system. Adv Comput Math 47, 7 (2021). https://doi.org/10.1007/s10444-020-09828-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-020-09828-5

Keywords

Navigation