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Abstract We consider a primal-dual algorithm for minimizing f(x)+h�l(Ax)
with Fréchet differentiable f and l∗. This primal-dual algorithm has two names
in literature: Primal-Dual Fixed-Point algorithm based on the Proximity Op-
erator (PDFP2O) and Proximal Alternating Predictor-Corrector (PAPC). In
this paper, we prove its convergence under a weaker condition on the step-
sizes than existing ones. With additional assumptions, we show its linear con-
vergence. In addition, we show that this condition (the upper bound of the
stepsize) is tight and can not be weakened. This result also recovers a recently
proposed positive-indefinite linearized augmented Lagrangian method. In ad-
dition, we apply this result to a decentralized consensus algorithm PG-EXTRA
and derive the weakest convergence condition.

Keywords linearized augmented Lagrangian · primal-dual · decentralized
consensus
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1 Introduction

Minimizing the sum of two functions has applications in various areas includ-
ing image processing, machine learning, and decentralized consensus optimiza-
tion [4,5,17,26]. In this paper, we aim to minimize the sum of two functions
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in the following form:

minimize
x∈X

f(x) + h�l(Ax), (1)

where X and S are two real Hilbert spaces; f(x) : X 7→ (−∞,+∞], h(s) :
S 7→ (−∞,+∞], and l(s) : S 7→ (−∞,+∞] are proper lower semi-continuous
(lsc) convex functions; h�l is the infimal convolution of h and l that is defined
as h�l(s) = inft∈S h(t) + l(s− t); the linear operator A : X 7→ S is bounded.
In addition, we assume that f(x) is Fréchet differentiable with a Lipschitz
continuous gradient, l is strongly convex in dom(l)1, and the proximal operator
of h, which is defined as

proxλh(t) = (I+ λ∂h)−1(t) := argmin
s∈S

h(s) +
1

2λ
‖s− t‖2,

has a closed-form solution or can be easily computed. Here ∂h is the subdif-
ferential of the convex function h.

Many existing papers considered a special case of (1) with l(s) being the
indicator function ι{0}(s) that returns 0 if s = 0 and +∞ otherwise. In this
special case, the infimal convolution h�l degenerates to h, and the problem (1)
becomes

minimize
x∈X

f(x) + h(Ax). (2)

The corresponding saddle-point problem is

min
x∈X

max
s∈S

f(x) + 〈Ax, s〉 − h∗(s). (3)

If a saddle point (x⋆, s⋆) exists for (3), then x⋆ is an optimal solution for (2).
In order to solve (2) (or (3)), a primal-dual algorithm was proposed in dif-

ferent fields under different names [7,12,23]. Loris and Verhoeven [23] focused
on a particular smooth function f(x) = 1

2‖Kx − y‖2, where K is a linear
operator and y is given. Chen, Huang, and Zhang [7] considered the general
problem (2) and proposed a Primal-Dual Fixed-Point algorithm based on the
Proximity Operator (PDFP2O). Then the same algorithm was rediscovered
under the name Proximal Alternating Predictor-Corrector (PAPC) in [12] to
solve (2) and its extension to a finite sum of composite functions when h is
separable. One iteration of the algorithm is

sk+1 = (I+ σ∂h∗)
−1 (

(I− τσAA⊤)sk + σA
(
xk − τ∇f(xk)

))
, (4a)

xk+1 = xk − τ∇f(xk)− τA⊤sk+1. (4b)

Here τ and σ are the primal and dual stepsizes, respectively, and the con-
vergence of this algorithm is shown when τσ‖AA⊤‖ ≤ 1 and 2τ/L < 1 [7].
Here L is the Lipschitz constant of ∇f(x) and ‖AA⊤‖ is the operator norm
of AA⊤. When A is a matrix, ‖AA⊤‖ is the largest eigenvalue of AA⊤.

1 It means that l∗(s) (the Legendre-Fenchel conjugate of l(s)) is Fréchet differentiable
with a Lipschitz continuous gradient.



a primal-dual algorithm with large stepsizes 3

There are many other algorithms for solving (2) and its extensions. For
example, Condat-Vu [6,10,27] solves a more general problem than (2) with an
additional non-differential function. However, the corresponding parameters τ
and σ have to satisfy τσ‖AA⊤‖+2τ/L ≤ 1 [18]. When f(x) = 0, Condat-Vu
reduces to Chambolle-Pock [4]. There are several other primal-dual algorithms
for minimizing the sum of three functions, one of which differentiable [8,31,
3,2,9,20,11]. Interested readers are referred to [19,31] for the comparison of
different primal-dual algorithms for minimizing the sum of three functions. All
the algorithms mentioned above solve bilinear saddle-point problems in the
form of (3) or its variants. Recently, many algorithms have been developed to
solve more general saddle-point problems with non-bilinear terms [14,13,16,
29,30]. A review for primal-dual algorithms is beyond the scope of this paper,
and we focus on the specific primal-dual algorithm PAPC here.

When there is only one function f(x), i.e., h(s) = 0, we let A = 0, and
the primal-dual algorithm reduces to the gradient descent with stepsize τ .
Therefore, the condition τ < 2/L can not be relaxed. The remaining question
is can the condition τσ ≤ 1/‖AA⊤‖ be relaxed? In [7, Section 5.1], the authors
numerically showed that a larger stepsize (e.g., τσ = 4/(3‖AA⊤‖)) gives a
better performance than stepsizes satisfying the condition τσ ≤ 1/‖AA⊤‖.
The convergence for τσ < 4/(3‖AA⊤‖) was an open problem, and this work
resolves it.

For linearized Augmented Lagrangian Method (ALM) [32]–a special case of
the primal-dual algorithm (4)–the condition τσ ≤ 1/‖AA⊤‖ is relaxed in [15].
Consider the constrained optimization problem

minimize
s

h∗(s),

subject to −A⊤s = b.

Its dual problem is

minimize
x

b⊤x+ h(Ax),

which is the problem (2) with f(x) = b⊤x. The linearized ALM is

sk+1 = argmin
s

h∗(s) +
β

2

∥∥∥∥s− sk −
1

β
A(xk − τ(A⊤sk + b))

∥∥∥∥
2

, (6a)

xk+1 = xk − τ(A⊤sk+1 + b). (6b)

It is exactly the primal-dual algorithm (4) with β = 1/σ. Note that the step
in (6a) can be rewritten as

argmin
s

h∗(s)− 〈xk,A⊤s+ b〉+
τ

2
‖A⊤s + b‖22 +

1

2σ
‖s− sk‖2I−τσAA⊤ .

In [32], positive-definiteness of I − τσAA⊤ is required for showing the con-
vergence. Then the authors in [15] relaxed the condition and showed that
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(4/3)I− τσAA⊤ being positive definite is the necessary and sufficient condi-
tion for the convergence of linearized ALM. That is, this relaxed condition is
sufficient for the convergence of linearized ALM, and if the condition is not
satisfied, there exists a function h∗(s), a linear operator A, and an initial-
ization such that the algorithm does not converge. This result motivates us
to show the convergence of (4) under a weaker condition. In this paper, we
provide the necessary and sufficient condition on τσ for the convergence of
algorithm (4). This extension from [15] is nontrivial because the function f(x)
from linearized ALM is linear, i.e., f(x) = b⊤x, and the Lipschitz constant of
∇f is 0.

Furthermore, we consider the more general problem (1) with infimal con-
volution, which was not considered in [7,12], because it provides a tight upper
bound for the stepsize of Proximal Gradient EXact firsT-ordeR Algorithm
(PG-EXTRA) in decentralized consensus optimization. More details are in
Section 3.

In this paper, we relax the parameters for the primal-dual algorithm (4)
and provide a tight bound for the primal and dual stepsizes. This result re-
covers one special case of the positive-indefinite ALM in [15]. Instead of using
positive semidefinite operators for primal-dual variables in standard analysis,
we allow the operator to be indefinite, see the operator in (8). Note that the
analysis in this paper with indefinite operators is nontrivial because the stan-
dard techniques can not be applied. In addition, the linear convergence result
is better than existing ones. Finally we apply this result to a decentralized
consensus algorithm and obtain its weakest convergence condition.

The rest of this paper is organized as follows. In Section 2, we present
the algorithm to solve (1). We show its convergence for the general case in
Section 2.3 and linear convergence rates under additional assumptions in Sec-
tion 2.4. In Section 2.5, we provide one example to show that the upper bound
for its stepsize is tight. The application to a decentralized consensus algorithm
is provided in Section 3. Then we end this paper with a short conclusion.

2 New convergence results with weaker conditions

2.1 A primal-dual algorithm

In this paper, we extend an existing primal-dual algorithm (4) to solve (1)
with an infimal convolution and show its convergence results with weaker
conditions. Firstly, we explain this algorithm via operator splitting, which is
different from those in the literature. Instead of considering problem (1), we
consider the corresponding saddle-point problem

min
x

max
s

f(x) + 〈Ax, s〉 − h∗(s)− l∗(s), (7)

whose optimality condition for a saddle point (x⋆, s⋆) is
[
0
0

]
∈

[
0 A⊤

−A ∂h∗

] [
x⋆

s⋆

]
+

[
∇f(x⋆)
∇l∗(s⋆)

]
.
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We apply the following forward-backward operator splitting with self-adjoint
positive definite operators P and D − τσAP−1A⊤ defined on X and S, re-
spectively:

[
P 0
0 D− τσAP−1A⊤

] [
xk

sk

]
−

[
τ∇f(xk)
σ∇l∗(sk)

]

∈

[
P 0
0 D− τσAP−1A⊤

] [
xk+1

sk+1

]
+

[
0 τA⊤

−σA σ∂h∗

] [
xk+1

sk+1

]
. (8)

Here τ and σ are two positive parameters. When P and D are the identity
operators in X and Y, respectively, τ and σ are the primal and dual stepsizes,
respectively. Different operators P and D may be chosen in different scenarios.
For example, we can choose P (or D) to be a diagonal matrix such that the
stepsize is different for different coordinates of x (or s) when X (or S) is finite
dimensional. Define M = τ

σ (D− τσAP−1A⊤). Then, we apply the Gaussian
elimination and obtain[

P 0
σA σ

τM

] [
xk

sk

]
−

[
τ∇f(xk)

στAP−1∇f(xk) + σ∇l∗(sk)

]
∈

[
P τA⊤

0 D+ σ∂h∗

] [
xk+1

sk+1

]
.

Given (xk, sk), one iteration of the primal-dual algorithm is

sk+1 = (D+ σ∂h∗)
−1
(σ
τ
Msk + σA

(
xk − τP−1∇f(xk)

)
− σ∇l∗(sk)

)
,

(9a)

xk+1 = xk − τP−1∇f(xk)− τP−1A⊤sk+1. (9b)

From this analysis, we can easily see that a point (x⋆, s⋆) is a saddle point
of (7) if and only if it is a fixed point of (9). Therefore, we only need to show
the convergence to a fixed point of (9). Note that we could store A⊤s in the
implementation, and the iteration is equivalent to

sk+1 = (D+ σ∂h∗)−1 (Dsk + σA
(
xk − τP−1(∇f(xk) +A⊤sk)

)
− σ∇l∗(sk)

)
,

xk+1 = xk − τP−1∇f(xk)− τP−1A⊤sk+1.

Therefore, only one application of A and one application of A⊤ are needed in
each iteration.

Let I be the identity operator defined on a Hilbert space. For simplicity, we
do not specify the space on which it is defined when it is clear from the context.
When l is the indicator of a singleton2, P = I, and D = I, the iteration of (9)
reduces to (4), the existing primal-dual algorithm proposed in [7,12,23]. Its
convergence is shown if I− τσAA⊤ is positive semidefinite and τ < 2/L with
L being the Lipschitz constant of ∇f .

If the operators P and D − τσAP−1A⊤ are positive definite, the con-
vergence of (9) with an additional condition for τ can be shown easily from
nonexpansive operators with metric [31,1,25]. To the best of our knowledge,
this paper is the first one to show the convergence of a primal-dual algorithm
when D − τσAP−1A⊤ is not positive definite, and the analysis is different
from positive definite cases.

2 It means that ∇l∗(s) ≡ 0.
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2.2 Assumptions for new analysis

An extension of this existing primal-dual algorithm (4) to (9) is derived to
solve the problem (1) with an infimal convolution. In addition, we show the
convergence of (4) with a larger τσ. Specifically, we can choose τσ such that
(4/3)D− τσAP−1A⊤ is positive semidefinite, i.e., the upper bound for τσ is
increased by 1/3. It means that we can choose a larger stepsize σ when the
primal stepsize τ is fixed.

For convenience, we introduce two operators as

M1 :=
τ

σ
(D− θτσAP−1A⊤), M2 := τ2(1− θ)AP−1A⊤.

Here θ ∈ (3/4, 1] is chosen such that M1 is positive definite and M2 is positive
semidefinite. We can find such θ ∈ (3/4, 1] whenever (4/3)D− τσAP−1A⊤ is
positive semidefinite. We would like to emphasize here that θ > 3/4 is crucial
in the proof of the convergence because we need 4θ− 3 to be positive. On the
other side, θ ≤ 1 is required for M2 being positive semidefinite. With these two
operators, we have M = M1 −M2. In addition, we define a positive definite
operator as follows

M̃ := M1 +M2.

Given a self-adjoint operator M, we let 〈s, t〉M := 〈s,Mt〉 and ‖s‖2
M

=

〈s,Ms〉. Note that ‖s‖2
M

can be negative if M is not positive semidefinite.

When M is positive definite, we further define the induced norm as ‖s‖M =√
〈s, s〉M. Let λmin(M) be the smallest eigenvalue of M. For (x, s) ∈ X × S,

we define ‖(x, s)‖2
P,M

= ‖x‖2P + ‖s‖2
M
.

Assumption 1 Functions f , h, and l are proper lsc convex. In addition, f is
Frechet differentiable and l is strictly convex (i.e., l∗ is Frechet differentiable).
Operators P and M1 are positive definite. The iteration (9) has at least one
fixed point. Let (x⋆, s⋆) be any fixed point of (9). For any x ∈ X and s ∈ S,
we have

〈x− x⋆,∇f(x)−∇f(x⋆)〉 ≥β‖∇f(x)−∇f(x⋆)‖2P−1 , (11)

〈s − s⋆,∇l∗(s)−∇l∗(s⋆)〉 ≥β‖∇l∗(s)−∇l∗(s⋆)‖2
M−1

1

, (12)

for some β > 0.

Lemma 1 When f and l∗ have Lipschitz continuous gradients with parame-
ters Lf and Ll∗ , respectively, we can choose

β = min
(
λmin(P)L−1

f ,
τ

σ
λmin(D− θτσAP−1A⊤)L−1

l∗

)

such that Assumption 1 is satisfied. When D and P are identity matrices, we
can simplify it as

β = min
(
L−1
f ,

τ

σ
(1− θτσλmax(AA⊤))L−1

l∗

)
.
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The proof for this lemma is simple and omitted.

Remark 1 We choose norms that are different from standard norms for sim-
plicity. They come from the operators P and M in (8).

– The condition (11) usually comes from the cocoerciveness of ∇f . It is sat-

isfied with β =
min

x:‖x‖=1 ‖Px‖

Lf
if f(x) has a Lipschitz continuous gradient

with constant Lf [1, Theorem 18.15]. One example of P is the diagonal
matrix when f is separable and the Lipschtiz continuous constants are dif-
ferent for different blocks. By choosing a diagonal matrix P we can have a
fast algorithm. For example, in [22], we let different agent choose different
stepsizes to improve the convergence speed.

– Note that the condition (12) depends on θ, which does not exist in the
algorithm. We choose to have the same β in (11) and (12) for simplicity.
From the definition of M1, we can see that the condition (12) depends on
function l∗, P, D, A, β, θ, τ , and σ. But it is not as complicated as it
looks like. Let’s assume that D = I and P = I, f and l∗ have Lipschitz
continuous gradients with Lf and Ll∗ , respectively. The condition (12)
requires

β ≤ λmin(M1)/Ll∗ = τ(1 − θτσ‖AA⊤‖)/(σLl∗).

Therefore, we can also choose a small θ ∈ (3/4, 1] to make it valid if a larger
β works. By making θ small, we can have a large dual stepsize σ for a given
primal stepsize τ . In fact, we do not need to know β explicitly to determine
both stepsizes. When we consider both conditions ((11) and (12)) and the
condition τ < 2β in Theorem 1, we have

τLf < 2, σLl∗ < 2(1− θτσλmax(AA⊤)). (13)

For comparison, the condition in [27] is max(τ, σ)max(Lf , Ll∗) < 2(1 −√
τσ‖AA⊤‖). Our condition has two benefits. One is that we consider τ

and σ differently and can obtain a large stepsize even when the Lipschitz
constants Lf and Ll∗ have different scales. The other is the introduction
of θ ∈ (3/4, 1], which may increase the upper bounds for the stepsizes. The
best result in this paper comes from choosing a θ that is close to 3/4 even
when θ = 1 is enough for M1 being positive definite. See the example in
Section 2.5.

– (Special cases:) The positiveness of M1 gives an upper bound for τσ that
depends on P, D and A. The convergence of (9) requires an upper bound
for τ that is τ < 2β, see Theorem 1. If∇l∗ is fixed for all s, e.g., problem (2),
then (12) is satisfied with any β > 0, and the upper bound of τ depends
on P and Lf only, i.e., τ < 2λmin(P)L−1

f . The condition is strictly weaker
than that in [27] and [2] because of the introduction of θ. If ∇f is fixed
for all x, e.g., the linear f in linearized ALM, then (11) is satisfied with
any β > 0, and the upper bound for τ depends on σ, A, D, P, and the
Lipschitz constant of ∇l∗ because of M1 in (12), i.e., σ < 2λmin(D −
(3/4)τσAP−1A⊤)L−1

l∗ .
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Assumption 2 Let (x⋆, s⋆) be any fixed point of (9). There exist µf ≥ 0,
µh ≥ 0, and µl ≥ 0, such that, for any x ∈ X and s ∈ S,

〈x− x⋆,∇f(x)−∇f(x⋆)〉 ≥µf‖x− x⋆‖2P, (14)

〈s − s⋆,ph(s)− ph(s
⋆)〉 ≥µh‖s− s⋆‖2M1

, (15)

〈s− s⋆,∇l∗(s)−∇l∗(s⋆)〉 ≥µl‖s− s⋆‖2M1
, (16)

where ph(s) ∈ ∂h∗(s) and ph(s
⋆) ∈ ∂h∗(s⋆).

The assumption is satisfied if functions f(x), h(s), and l(s) are convex, and in
this case, µf = µh = µl = 0. We choose the norms ‖ · ‖P and ‖ · ‖M1

for the
two spaces for simplicity. All the results in this paper also hold for standard
norms, but the formulas are complicated. We will need this assumption with
positive values to show the linear convergence for strongly convex functions. In
this case, because P and M1 are positive definite, µf > 0 (or µh > 0, µl > 0)
is implied from the strong convexity of the function f(x) (or g∗(s), l∗(s)).

2.3 Convergence for general convex functions

First of all, we find a subgradient of h∗ at sk+1:

qh(s
k+1) :=

1

τ
Msk −

1

τ
Msk+1 +Axk+1 −∇l∗(sk) ∈ ∂h∗(sk+1). (17)

It can be easily obtained from (9), and its proof is omitted here. Let (x⋆, s⋆)
be any fixed point of (9), and we have a subgradient of h∗ at s⋆:

qh(s
⋆) :=Ax⋆ −∇l∗(s⋆) ∈ ∂h∗(s⋆). (18)

Lemma 2 (fundamental inequality) Let (x⋆, s⋆) be any fixed point of (9),
and {(xk, sk)} a sequence generated by (9). Then we have

‖(xk+1, sk+1)− (x⋆, s⋆)‖2
P,M̃

≤‖(xk, sk)− (x⋆, s⋆)‖2
P,M̃

− ‖sk − sk+1‖2M1

− 2τ〈sk+1 − s⋆,qh(s
k+1)− qh(s

⋆) +∇l∗(sk)−∇l∗(s⋆)〉

+ 2τ〈∇f(xk)−∇f(x⋆),x⋆ − xk + (4θ − 3)(xk − xk+1)〉

− (4θ − 3)‖xk − xk+1‖
2

P + 4(1− θ)τ2‖∇f(xk)−∇f(x⋆)‖2P−1 . (19)
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Proof The definitions of qh(s
k+1) and qh(s

⋆) in (17) and (18), respectively,
and the update of xk+1 in (9b) show

2τ〈sk+1 − s⋆,qh(s
k+1)− qh(s

⋆) +∇l∗(sk)−∇l∗(s⋆)〉

(17),(18)
= 2τ〈sk+1 − s⋆,

1

τ
Msk −

1

τ
Msk+1 +Axk+1 −Ax⋆〉

=2〈sk+1 − s⋆, sk − sk+1〉M + 2τ〈sk+1 − s⋆,Axk+1 −Ax⋆〉

=2〈sk+1 − s⋆, sk − sk+1〉M + 2τ〈A⊤sk+1 −A⊤s⋆,xk+1 − x⋆〉

(9b)
= 2〈sk+1 − s⋆, sk − sk+1〉M + 2〈xk − xk+1,xk+1 − x⋆〉P

− 2τ〈∇f(xk)−∇f(x⋆),xk+1 − x⋆〉 (20)

=‖sk − s⋆‖2M − ‖sk+1 − s⋆‖2M − ‖sk − sk+1‖2M

+ ‖xk − x⋆‖2P − ‖xk+1 − x⋆‖2P − ‖xk − xk+1‖2P

+ 2τ〈∇f(xk)−∇f(x⋆),x⋆ − xk+1〉,

where we expanded the first two terms in (20) using 2〈a, b〉 = ‖a+b‖2−‖a‖2−
‖b‖2 to obtain the last equality. Therefore, we have

‖(xk+1, sk+1)− (x⋆, s⋆)‖2P,M

=2τ〈∇f(xk)−∇f(x⋆),x⋆ − xk+1〉

− 2τ〈sk+1 − s⋆,qh(s
k+1)− qh(s

⋆) +∇l∗(sk)−∇l∗(s⋆)〉

+ ‖(xk, sk)− (x⋆, s⋆)‖2P,M − ‖xk − xk+1‖2P − ‖sk − sk+1‖2M. (21)

The fact that M = M1−M2 gives us an upper bound for the last term of (21).

−‖sk − sk+1‖2M =− ‖sk − sk+1‖2M1
+ ‖sk − sk+1‖2M2

=− ‖sk − sk+1‖2M1
+ ‖sk − s⋆ + s⋆ − sk+1‖2M2

≤− ‖sk − sk+1‖2M1
+ 2‖sk − s⋆‖2M2

+ 2‖sk+1 − s⋆‖2M2
. (22)

Adding 2‖sk+1−s⋆‖2M2
onto both sides of (21), recalling that M̃ = M1+M2 =

M+ 2M2, and combining (22) and (21), we have

‖(xk+1, sk+1)− (x⋆, s⋆)‖2
P,M̃

≤2τ〈∇f(xk)−∇f(x⋆),x⋆ − xk+1〉

− 2τ〈sk+1 − s⋆,qh(s
k+1)− qh(s

⋆) +∇l∗(sk)−∇l∗(s⋆)〉

+ ‖(xk, sk)− (x⋆, s⋆)‖2
P,M̃

− ‖xk − xk+1‖2P − ‖sk − sk+1‖2M1

+ 4‖sk+1 − s⋆‖2M2
. (23)
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With the definition of M2, the last term in (23) can be written as

4‖sk+1 − s⋆‖2M2
=4(1− θ)‖τP−1A⊤sk+1 − τP−1A⊤s⋆‖

2

P

=4(1− θ)‖xk − τP−1∇f(xk)− xk+1 + τP−1∇f(x⋆)‖
2

P

=4(1− θ)‖xk − xk+1‖
2

P + 4(1− θ)τ2‖∇f(xk)−∇f(x⋆)‖2P−1

− 8(1− θ)τ〈xk − xk+1,∇f(xk)−∇f(x⋆)〉, (24)

where the second equality comes from (9b). Then, we plug (24) into (23) and
obtain

‖(xk+1, sk+1)− (x⋆, s⋆)‖2
P,M̃

≤2τ〈∇f(xk)−∇f(x⋆),x⋆ − xk + (4θ − 3)(xk − xk+1)〉

− 2τ〈sk+1 − s⋆,qh(s
k+1)− qh(s

⋆) +∇l∗(sk)−∇l∗(s⋆)〉

+ ‖(xk, sk)− (x⋆, s⋆)‖2
P,M̃

− ‖sk − sk+1‖2M1

− (4θ − 3)‖xk − xk+1‖
2

P + 4(1− θ)τ2‖∇f(xk)−∇f(x⋆)‖2P−1 .

The result is proved. ⊓⊔

Lemma 3 Let (12) be satisfied, then

− ‖sk − sk+1‖2M1
− 2τ〈sk+1 − s⋆,∇l∗(sk)−∇l∗(s⋆)〉

≤ − (1− τ/(2β)) ‖sk − sk+1‖2M1
.

Proof Because M1 is positive definite, we have

− ‖sk − sk+1‖2M1
− 2τ〈sk+1 − s⋆,∇l∗(sk)−∇l∗(s⋆)〉

=− ‖sk − sk+1‖2M1
− 2τ〈sk+1 − sk,∇l∗(sk)−∇l∗(s⋆)〉

− 2τ〈sk − s⋆,∇l∗(sk)−∇l∗(s⋆)〉

≤ − ‖sk − sk+1‖2M1
+

τ

2β
‖sk − sk+1‖2M1

+ 2τβ‖∇l∗(sk)−∇l∗(s⋆)‖2
M

−1

1

− 2τβ‖∇l∗(sk)−∇l∗(s⋆)‖2
M−1

1

=− ‖sk − sk+1‖2M1
+

τ

2β
‖sk − sk+1‖2M1

,

where the inequality comes from the Cauchy-Schwarz inequality and (12). ⊓⊔

Theorem 1 Let Assumption 1 hold, θ ∈ (3/4, 1], and τ ∈ (0, 2β). The se-
quence {(xk, sk)} is generated by (9). For any fixed point (x⋆, s⋆) of (9), we
have

‖(xk+1, sk+1)− (x⋆, s⋆)‖2
P,M̃

− ‖(xk, sk)− (x⋆, s⋆)‖2
P,M̃

≤−

(
1−

τ

2β

)
‖sk − sk+1‖2M1

−
(4θ − 3)(2β − τ)

2β − 4(1− θ)τ
‖xk − xk+1‖2P. (25)
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Proof Applying Lemma 3 and h being convex to the inequality (19) in Lemma 2
gives

‖(xk+1, sk+1)− (x⋆, s⋆)‖2
P,M̃

≤‖(xk, sk)− (x⋆, s⋆)‖2
P,M̃

− (1− τ/(2β)) ‖sk − sk+1‖2M1

+ 2τ〈∇f(xk)−∇f(x⋆),x⋆ − xk〉︸ ︷︷ ︸
A

+4(1− θ)τ2‖∇f(xk)−∇f(x⋆)‖2P−1

− (4θ − 3)‖xk − xk+1‖
2

P + 2τ(4θ − 3)〈∇f(xk)−∇f(x⋆),xk − xk+1〉︸ ︷︷ ︸
B

.

(26)

Next we bound terms A and B. For term A, the assumption (11) implies

2τ〈∇f(xk)−∇f(x⋆),x⋆ − xk〉 ≤ −2τβ‖∇f(xk)−∇f(x⋆)‖2P−1 , (27)

and the Cauchy-Schwarz inequality applied to term B implies

2τ(4θ − 3)〈∇f(xk)−∇f(x⋆),xk − xk+1〉

≤(2τβ − 4(1− θ)τ2)‖∇f(xk)−∇f(x⋆)‖2P−1

+
τ(4θ − 3)2

2β − 4(1− θ)τ
‖xk − xk+1‖2P, (28)

when θ ∈ (3/4, 1] and τ ∈ (0, 2β). The inequality holds because 2β−4(1−θ)τ >
0, owing to the bounds on τ and θ. Plugging (27) and (28) into (26), we have

‖(xk+1, sk+1)− (x⋆, s⋆)‖2
P,M̃

≤‖(xk, sk)− (x⋆, s⋆)‖2
P,M̃

− (1− τ/(2β)) ‖sk − sk+1‖2M1

− (4θ − 3)‖xk − xk+1‖
2

P +
τ(4θ − 3)2

2β − 4(1− θ)τ
‖xk − xk+1‖2P

=‖(xk, sk)− (x⋆, s⋆)‖2
P,M̃

− (1− τ/(2β)) ‖sk − sk+1‖2M1

−
(4θ − 3)(2β − τ)

2β − 4(1− θ)τ
‖xk − xk+1‖2P.

The inequality (25) is proved. ⊓⊔

Remark 2 When β = +∞, i.e., the Lipschitz constant of ∇f(x) and ∇l∗(s) is
0, then (25) becomes

‖(xk+1, sk+1)− (x⋆, s⋆)‖2
P,M̃

− ‖(xk, sk)− (x⋆, s⋆)‖2
P,M̃

≤− ‖sk − sk+1‖2M1
− (4θ − 3)‖xk − xk+1‖2P.

This is the key result in [15, Theorem 3.1] for linearized ALM. In [15], the
authors also considered the case with a general dual stepsize.
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Remark 3 (Large stepsizes) We let P = I and D = I for simplicity. Consider
the problem (2) without function l. We have β = 1/L, where L is the Lipschitz
constant of ∇f . Then we can choose τ < 2/L, and τσ ≤ 4/(3‖AA⊤‖).

However, for the problem (1) with function l, the choice of the primal
stepsize τ also depends on σ because of the operator M1 in the assump-
tion (12). For this case, how to choose τ and σ is complicated. From Re-
mark 1, if f and l∗ have Lipschitz continuous gradients with constants Lf

and Ll∗ , respectively, a sufficient condition for convergence is τLf < 2 and
σLl∗ < 2(1− (3/4)τσ‖AA⊤‖). Except the same conditions τ < 2/L and τσ ≤
4/(3‖AA⊤‖), there is an additional condition σ < 2(1−(3/4)τσ‖AA⊤‖)/Ll∗ .

Theorem 2 Under the assumptions in Theorem 1, the sequence {(xk, sk)}
converges weakly to a fixed point of (9). If the iteration (9) is demicompact at
0 [24]3, the sequence converges strongly.

Proof Theorem 1 shows that the sequence {(xk, sk)} is bounded, so weakly
convergent subsequences of {(xk, sk)} exist. For any weakly convergent sub-
sequence such that (xki , ski) ⇀ (x, s), the inequality (25) gives (xki−1 −
xki , ski−1 − ski) → 0. Then based on the iteration (9), we obtain [1, Fact
1.37]

∇f(xki) +A⊤ski =
1

τ
P(xki−1 − xki) +∇f(xki)−∇f(xki−1) → 0,

−Axki + qh(s
ki) +∇l∗(ski) =

1

τ
M(ski−1 − ski)−∇l∗(ski−1) +∇l∗(ski) → 0.

Because f , h∗, and l∗ are convex, the operator
[
∇f A⊤

−A ∂h∗ +∇l∗

]

is maximal monotone. Thus, (x, s) is a fixed point of (9) because of [1, Propo-
sition 20.33(ii)].

The inequality (25) also shows that the sequence {(xk, sk)} is Fejér mono-
tone with respect to the set of fixed points of (9). Then [1, Theorem 5.5] shows
that {(xk, sk)} converges weakly to a fixed point of (9).

The inequality (25) shows that {(xk, sk)} is a bounded sequence and (xk+1−
xk, sk+1 − sk) → 0. Then the demicompactness of the iteration in (9) at 0
shows that there is a strongly convergent subsequence (xkn , skn) → (x̄⋆, s̄⋆),
and (x̄⋆, s̄⋆) is a fixed point of (9) because this subsequence is also weakly
convergent. Then the inequality (25) shows that the whole sequence {(xk, sk)}
converges to the fixed point (x̄⋆, s̄⋆). ⊓⊔

Remark 4 When X and S are finite dimensional, the sequence {(xk, sk)} con-
verges strongly to a fixed point of (9).

In Theorem 2, we showed the convergence of this primal-dual algorithm
without providing the convergence rate. The ergodic sublinear convergence
rate is showed for primal-dual algorithms for more general problems [6,31].

3 An operator T is demicompact at x ∈ H if for every bounded sequence {xk}k≥0 in H

such that Txk − xk → x, there exists a strongly convergent subsequence.
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2.4 Linear convergence

In this subsection, we prove the linear convergence of the sequence {(xk, sk)}
in Theorem 3 under the additional Assumption 2.

Before showing the linear convergence, we prove the following lemma, which
provides a different upper bound for the same object in Lemma 3.

Lemma 4 Let (12) and (16) be satisfied, then

− ‖sk − sk+1‖2M1
− 2τ〈sk+1 − s⋆,∇l∗(sk)−∇l∗(s⋆)〉

≤ − ‖M2(s
k+1 − sk) + τAxk+1 − τAx⋆ − τqh(s

k+1) + τqh(s
⋆)‖2

M
−1

1

(29)

−
(
2τ − τ2/β

)
µl‖s

k − s∗‖2M1
.

Proof Because M1 is positive definite, we have

− ‖sk − sk+1‖2M1
− 2τ〈sk+1 − s⋆,∇l∗(sk)−∇l∗(s⋆)〉

=− ‖sk − sk+1‖2M1
− 2τ〈M

1/2
1 (sk+1 − sk),M

−1/2
1 (∇l∗(sk)−∇l∗(s⋆))〉

− 2τ〈sk − s⋆,∇l∗(sk)−∇l∗(s⋆)〉

=− ‖M
1/2
1 (sk+1 − sk) +M

−1/2
1 τ(∇l∗(sk)−∇l∗(s⋆))‖2

+ τ2‖∇l∗(sk)−∇l∗(s⋆)‖2
M

−1

1

− 2τ〈sk − s⋆,∇l∗(sk)−∇l∗(s⋆)〉. (30)

The first term on the right-hand side of (30) becomes

− ‖M
1/2
1 (sk+1 − sk) +M

−1/2
1 τ(∇l∗(sk)−∇l∗(s⋆))‖2

=− ‖M1(s
k+1 − sk) + τ(∇l∗(sk)−∇l∗(s⋆))‖2

M
−1

1

=− ‖M2(s
k+1 − sk) +M(sk+1 − sk) + τ(∇l∗(sk)−∇l∗(s⋆))‖2

M
−1

1

(17),(18)
= − ‖M2(s

k+1 − sk) + τAxk+1 − τAx⋆ − τqh(s
k+1) + τqh(s

⋆)‖2
M

−1

1

,

where the second equality comes from M = M1 −M2.
For the other two terms on the right-hand side of (30), we have

τ2‖∇l∗(sk)−∇l∗(s⋆)‖2
M

−1

1

− 2τ〈sk − s⋆,∇l∗(sk)−∇l∗(s⋆)〉

(12),(16)

≤ − (2τ − τ2/β)µl‖s
k − s⋆‖2M1

.

Combining both inequalities together with (30) gives (29). ⊓⊔

Theorem 3 Let (x⋆, s⋆) be a fixed point of (9) and Assumptions 1 and 2 hold.

Define M̂ := (1 + 2τµh)M1 +M2, and we have

‖(xk+1, sk+1)− (x⋆, s⋆)‖2
P,M̂

≤ ρ1‖(x
k, sk)− (x⋆, s⋆)‖2

P,M̂
, (31)

where

ρ1 = max

(
1− (2τ − τ2/β)µl + C1

1 + 2τµh + C1
, 1− (2τ − τ2/β)µf

)
.
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Here C1 ≡ ‖M
−1/2
1 M2M

−1/2
1 ‖ ≥ 0. The sequence {(xk, sk)} converges linearly

to the fixed point (x⋆, s⋆) with rate ρ1 < 1 if τ ∈ (0, 2β), µh + µl > 0, and
µf > 0.

Proof Applying Lemma 4 to (19) in Lemma 2 gives

‖(xk+1, sk+1)− (x⋆, s⋆)‖2
P,M̃

≤‖(xk, sk)− (x⋆, s⋆)‖2
P,M̃

−
(
2τ − τ2/β

)
µl‖s

k − s∗‖2M1

− 2τ〈sk+1 − s⋆,qh(s
k+1)− qh(s

⋆)〉

+ 2τ〈∇f(xk)−∇f(x⋆),x⋆ − xk + (4θ − 3)(xk − xk+1)〉

− (4θ − 3)‖xk − xk+1‖
2

P + 4(1− θ)τ2‖∇f(xk)−∇f(x⋆)‖2P−1

=‖(xk, sk)− (x⋆, s⋆)‖2
P,M̃

−
(
2τ − τ2/β

)
µl‖s

k − s∗‖2M1

− 2τ〈sk+1 − s⋆,qh(s
k+1)− qh(s

⋆)〉

− 2τ〈∇f(xk)−∇f(x⋆),xk − x∗〉+ τ2‖∇f(xk)−∇f(x⋆)‖2P−1

− (4θ − 3)‖xk − xk+1 − τP−1(∇f(xk)−∇f(x⋆))‖2P.

Note that

− 2τ〈∇f(xk)−∇f(x⋆),xk − x∗〉+ τ2‖∇f(xk)−∇f(x⋆)‖2P−1

(11)

≤ − (2τ − τ2/β)〈∇f(xk)−∇f(x⋆),xk − x∗〉

(14)

≤ − (2τ − τ2/β)µf‖x
k − x∗‖2P.

Then we have, together with (15),

‖(xk+1, sk+1)− (x⋆, s⋆)‖2
P,M̃

≤‖(xk, sk)− (x⋆, s⋆)‖2
P,M̃

−
(
2τ − τ2/β

)
µl‖s

k − s∗‖2M1

− 2τµh‖s
k+1 − s⋆‖2M1

− (2τ − τ2/β)µf‖x
k − x∗‖2P.

That is

‖xk+1 − x⋆‖2P + ‖sk+1 − s⋆‖2(1+2τµh)M1+M2

≤(1− (2τ − τ2/β)µf )‖x
k − x⋆‖2P + ‖sk − s⋆‖2(1−(2τ−τ2/β)µl)M1+M2

. (32)

For the last term on the right hand of (32), we have

‖sk − s⋆‖2(1−(2τ−τ2/β)µl)M1+M2

=‖M
1/2
1 (sk − s⋆)‖2

(1−(2τ−τ2/β)µl)I+M
−1/2
1

M2M
−1/2
1

≤
1− (2τ − τ2/β)µl + C1

1 + 2τµh + C1
‖M

1/2
1 (sk − s⋆)‖2

(1+2τµh)I+M
−1/2
1

M2M
−1/2
1

=
1− (2τ − τ2/β)µl + C1

1 + 2τµh + C1
‖sk − s⋆‖2(1+2τµh)M1+M2

.

Therefore, the inequality (31) is proved. ⊓⊔
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Note that paper [7] proves the linear convergence rate for the case with
l∗(s) ≡ 0 and M2 = 0 as

max

(
1−

minx:‖x‖=1 ‖AA⊤x‖

‖AA⊤‖
, 1− (2τ − τ2/β)µf

)

under the additional assumption that AA⊤ is surjective. However, µh > 0 is
not required.

Next, we compare this result with the linear convergence rate of Condat-
Vu in [2] by letting h∗(s) ≡ 0 and M2 = 0, P = I, D = I. For simplicity,
we assume that f and l∗ are both µ-strongly convex and have L-Lipschitz
continuous gradients. The linear convergence rate of Condat-Vu is

4

4 + min
(

µ2

L2 ,
√

µ2

‖AA⊤‖

) ,

with the primal and dual stepsizes in the order of µ/L2. However, if we let
τ = σ in (9), then we have µl ≥ µ = µf and β = (1 − τ2‖AA⊤‖)/L in
Assumptions 1 and 2. In addition, we let τ = β, then the linear convergence
rate in Theorem 3 becomes

1− τµ = 1−
2µ√

L2 + 4‖AA⊤‖+ L
.

We can see that the linear convergence rate of (9) is much better than that of
Condata-Vu in [2].

2.5 Tight upper bound for the stepsizes

A very simple example was provided in [15] to show the upper bound’s tight-
ness for a case without infimal convolution. In this subsection, we provide
another example to show the tightness for a case with infimal convolution.
This result will be applied to decentralized consensus optimization in the next
section. Given a self-adjoint positive definite operator D, we consider the fol-
lowing optimization problem:

minimize
x

a⊤x+
x⊤A⊤D−1Ax

2
.

It is a special case of (1) with f(x) = a⊤x, h∗(y) = 0, and l∗(y) = y⊤Dy/2.
The primal-dual iteration (9) after a change of order is

xk+1 = xk − τP−1a− τP−1A⊤sk,

sk+1 = (I− τσD−1AP−1A⊤ − σI)sk + σD−1Axk+1 − τσD−1AP−1a.
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Denote D̃ = D−1/2AP−1A⊤D−1/2. Then the iteration is equivalent to

[
D−1/2Axk+1

D1/2sk+1

]
=

[
I −τD̃

σI (1 − σ)I− 2τσD̃

][
D−1/2Axk

D1/2sk

]

−

[
τD−1/2AP−1a

2τσD−1/2AP−1a

]
.

The convergence of this iteration for any given initial (s0,x0) requires the
magnitudes of the eigenvalues of the operator

[
I −τD̃

σI (1− σ)I− 2τσD̃

]

being less than 1. Since D̃ is self-adjoint, we need the magnitudes of the
eigenvalues of

M̃ :=

[
1 −τλ
σ 1− σ − 2τσλ

]

being less than 1 for all λ being the eigenvalues of D̃. We calculate the deter-

minant of M̃− dI for any d below:

det(M̃− dI) = d2 − (2 − σ − 2τσλ)d + (1− σ − τσλ).

Particularly, the convergence requires det(M̃+ I) > 0, that is

1 + (2− σ − 2τσλ) + (1− σ − τσλ) = 4− 3τσλ− 2σ > 0.

It is equivalent to

σ < 2

(
1−

3

4
τσ‖D̃‖

)
.

On the other hand, we proved the convergence of the primal-dual algorithm
under the condition

τ < 2β = 2λmin(D
−1/2M1D

−1/2) =
2τ

σ
(1− θτσ‖D̃‖)

for some θ ∈ (3/4, 1]. It shows that the upper bounds for the stepsizes in this
paper are optimal.

3 Application in decentralized consensus optimization

In this section, we first show that algorithm (9) recovers PG-EXTRA [26] for
decentralized consensus optimization. Then we provide its convergence result
under a weaker condition than that in [26] and a tight upper bound for the
stepsize. Note that PG-EXTRA was shown to be equivalent to Condat-Vu
for a problem without infimal convolution [28], but this equivalence can not
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give the weaker condition for convergence and the tight upper bound for the
stepsize.

We use the same notation as [26]. The decentralized consensus problem is

minimize
x∈Rp

n∑

i=1

si(x) + ri(x),

where si : Rp → R and ri : Rp → (−∞,+∞] are proper lsc convex func-
tions held privately by the node i to encode the node’s objective function. The
objective of decentralized consensus is minimizing the sum of all private objec-
tive functions while using information exchange between neighboring nodes in
a network. Here si has a Lipschitz continuous gradient with parameter L > 0
and the proximal mapping of ri is simple. We let xi be one copy of x kept
at node i. These {xi}

n
i=1 are not the same in general, and we say that it is

consensual if they are the same. Stacking all the copies together, we define

x :=




− x⊤
1 −

− x⊤
2 −
...

− x⊤
n −


 ∈ Rn×p,

and

s(x) =
n∑

i=1

si(xi), r(x) =
n∑

i=1

ri(xi).

Then the decentralized consensus problem becomes

minimize
x

s(x) + r(x), subject to x1 = x2 = · · · = xn.

The gradient of s at x is written in the following matrix form:

∇s(x) :=




− (∇s1(x1))
⊤

−

− (∇s2(x2))
⊤

−
...

− (∇sn(xn))
⊤
−




∈ Rn×p,

and ‖ · ‖F is the Frobenius norm for a matrix in Rn×p. One iteration of PG-
EXTRA reads as

zk+1 = zk − xk +
I+W

2
(2xk − xk−1)− α∇s(xk) + α∇s(xk−1), (33a)

xk+1 = argmin
x

r(x) +
1

2α
‖x− zk+1‖2F , (33b)

where α is the stepsize and W is a symmetric matrix that represents infor-
mation exchange between neighboring nodes. We have I −W being positive
semidefinite, so we can findA such that I−W = AA⊤. In addition, we assume
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that Null(A⊤) = Null(I −W) = span(1n×1), which means that A⊤x = 0
is equivalent to x1 = x2 = · · · = xn. Therefore, the decentralized consensus
problem becomes

minimize
x

s(x) + r(x) subject to A⊤x = 0.

The equivalence between PG-EXTRA and Condat-Vu can be obtained via con-
sidering the primal problem with an indicator function for the constraint [28].
Here, we consider its dual problem in the following form:

minimize
y

r∗�s∗(Ay), (34)

where r∗ and s∗ are convex conjugate functions of r and s, respectively. We
apply (9) to (34) (h ⇒ r∗, l ⇒ s∗, x ⇒ y, s ⇒ t) and arrive at

zk+1 = (I− τσAA⊤)tk + σAyk − σ∇s(tk), (35a)

tk+1 = argmin
t

{r(t) +
1

2σ
‖t− zk+1‖2F }, (35b)

yk+1 = yk − τA⊤tk+1. (35c)

Combining (35a) and (35c), we get

zk+1 = zk − tk + (I− τσAA⊤)(2tk − tk−1)− σ∇s(tk) + σ∇s(tk−1). (36)

We let τσ = 1
2 and σ = α, then (36) is exactly (33a) with t ⇒ x. Because

M = 2τ2(I − (1/2)AA⊤) = τ2(I +W) is positive definite, we can let M1 =
M. If {∇si(x)}

n
i=1 are Lipschitz continuous with constant L > 0, the other

condition for convergence is

τ < 2β ≤
2

L
λmin(M1) =

2τ2

L
λmin(I+W),

where the second inequality comes from

〈∇s(x̃)−∇s(x̄), x̃− x̄〉 ≥
1

L
‖x̃− x̄‖2 ≥

1

L
λmin(M1)‖x̃− x̄‖2

M−1

1

.

Therefore, we obtain the condition on the stepsize

α =
1

2τ
< λmin(I+W)/L.

This is exactly the upper bound in [26].
The previous upper bound is obtained with θ = 1. As we mentioned before,

we can choose θ to be close to 3/4 to obtain large stepsizes. By letting θ = 3/4+
ǫ with an arbitrary small ǫ > 0, we have M1 = 2τ2(I − (3/4 + ǫ)(1/2)AA⊤)
and M2 = (1/4− ǫ)τ2AA⊤. Then a larger upper bound for the stepsize

α =
1

2τ
≤λmin(2I− (3/4 + ǫ)AA⊤)/L

<λmin(2I− (3/4)AA⊤)/L = ((3/4)λmin(I+W) + 1/2)/L,
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is derived.
The new relaxed condition for W is M1 = τ2(2I − (3/4 + ǫ)AA⊤) =

τ2((5/4− ǫ)I+(3/4+ ǫ)W) being positive definite. That is 5I+3W is positive
definite. Also, the special example in Subsection 2.5 shows that the condition
for the stepsize of PG-EXTRA can not be weakened. Its linear convergence
without {ri} is discussed in [21] under the relaxed condition for W and step-
size.

4 Conclusion

In this paper, we consider the primal-dual algorithm in [7,12,23] to solve the
problem f(x) + h�l(x) and show its convergence under a weaker condition.
We provide an example to show that this condition can not be weakened for
a general problem. This result recovers and is more general than the positive-
indefinite linear ALM proposed in [15]. Then we apply this result to decentral-
ized consensus optimization and obtain the tight upper bound for the stepsize
in PG-EXTRA.
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