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Abstract
We present the convergence analysis of convex combination of the alternating pro-
jection and Douglas–Rachford operators for solving the phase retrieval problem.
New convergence criteria for iterations generated by the algorithm are established
by applying various schemes of numerical analysis and exploring both physical
and mathematical characteristics of the phase retrieval problem. Numerical results
demonstrate the advantages of the algorithm over the other widely known projection
methods in practically relevant simulations.
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1 Introduction

Phase retrieval is an inverse problem of recovering the phase of a complex signal
from its measured amplitude. It appears in various modifications in many scientific
and engineering fields, including astronomy imaging [10, 21], X-ray crystallography
[22, 43], microscopy [2, 26], and adaptive optics [1, 11, 12, 45]. An important appli-
cation of phase retrieval in optics is to quantify the properties of an imaging system
via its generalized pupil function [5, 13, 25, 47]. The fundamental advantage of this
approach compared to those using intensity point spread functions (PSFs) or intensity
optical transfer functions is that it is modifiable and automatically takes the specific
characteristics of the imaging system under investigation into account. In adaptive
optics, one needs to know the phase of the optical field in the system aperture to be
able to compensate for an optical aberration, and the phase retrieval is a basis for a
wide class of focal-plane based wavefront sensors.

Since the fundamental work [50] of Sayre in 1952, which reveals that the phase of
a scattered wave can be recovered from the recorded images at and between Bragg
peaks of a diffracted wavefront, a wide variety of solution methods for phase retrieval
has been proposed and developed. For an overview of phase retrieval algorithms,
we refer the reader to the papers [16, 38, 40, 51]. Direct methods usually require
insights about the crystallographic structure to recover the missing phase [23]. Such
a structural information is not only costly in terms of computational complexity but
also sensitive to noise and approximation, for example, due to physical limitation or
model deviation. As a consequence, this approach lacks practicability and becomes
less popular in practice. The second class of solution algorithms relies on the fact that
phase retrieval problems can be reformulated as linear equations with rank and pos-
itive semidefinite constraints in higher dimensional spaces. Well-known examples
of this algorithm class are MaxCut [18], PhaseCut [54], and PhaseLift [6, 7]. This
convex relaxation approach requires the matrix lifting step which is computationally
demanding and hence not suitable for large-scale problems. The most popular class
of phase retrieval methods is based on projections and pioneered by the work of Ger-
chberg and Saxton [17], which deals with phase retrieval given a single PSF image
and the amplitude of the complex signal, which in the sequel will be referred to as the
amplitude constraint in order to clearly differentiate it from the intensity constraints
determined by data images. The need to deal with more and more phase retrieval
models, for example, incorporating various types of a priori constraint [15], being
given multiple images and involving regularization schemes, has given rise to a wide
range of solution methods in this class. It was recently observed by Luke et al. [40]
that this class of methods actually outperforms the other classes of phase retrieval
algorithms.

In light of [3, 32, 39], phase retrieval can be interpreted as mathematical feasibil-
ity problems and, as a consequence, all algorithmic schemes for set feasibility can be
adapted for phase retrieval. The current research is devoted to that topic. The alternat-
ing projection (AP) and the Douglas–Rachford (DR) algorithms are perhaps the most
widely known solution methods for set feasibility and have served as a basis for a
wide range of modifications and regularizations, see, for example, [4, 29]. It has been
observed that AP is stable, always convergent and to some extent able to suppress

33   Page 2 of 25 Adv Comput Math (2021) 47: 33



noise but it may get stuck at undesired local minima and the convergence speed can
be very slow [15]. In contrast, DR can be faster in convergence and better in escap-
ing from bad local minima but less robust against noise and model deviation [36]. As
a result, this algorithm can not be naively applied to practical problems which intrin-
sically involve noise and model approximation. This fact has motivated a number of
its efficient relaxation schemes such as the usage of the Krasnoselski–Mann relax-
ation, the Fienup’s hybrid input-output (HIO) algorithm [15], the relaxed averaged
alternating reflections (RAAR) algorithm [35, 36], and the DRAP algorithm [52].

In this paper, we analyze the DRAP algorithm for solving the phase retrieval prob-
lem for the first time after having observed that it appears to be the most efficient
algorithm for the problem setting under consideration, see Section 5. Interestingly,
DRAP mathematically coincides with the convex combination of the AP and DR
operators in the phase retrieval setting. As a result, DRAP admits two mathematically
equivalent descriptions (see (19) and (20) in Section 3). The first one ensures that its
computational complexity is only approximate to that of each of the constituent oper-
ators and thus it is used for numerical implementation. The second description as a
convex combination of the AP and the DR operators exhibits a concrete connection
to the fundamental projection algorithms and hence it is intuitively better situated on
the map of projection methods (see Remark 7).

The main contribution of this paper is the convergence analysis of the DRAP
algorithm for solving the phase retrieval problem. First, using the analysis approach
initiated by Chen and Fannjiang [8], we establish a convergence criterion for DRAP
(Theorem 1), which extends the convergence result of the DR algorithm formulated
in that paper. It is worth mentioning here that extending a convergence criterion
for DR to a corresponding one for its relaxations such as HIO, RAAR and DRAP
algorithms is not trivial.1 Proposition 2 extends the applicable scope of this type
of convergence results2 to cover also phase retrieval problems with amplitude con-
straint. Second, applying the analysis scheme developed by Luke et al. [42], we
establish another convergence criterion for the DRAP algorithm (Theorem 2) by inte-
grating the physical properties of the phase retrieval problem [36] into the earlier
known results for DRAP [52]. Recall that the analysis of the latter article involves
only abstract mathematical notions in the general setting of set feasibility. As a com-
parison, we make an attempt on connecting the two convergence criteria by linking
their key mathematical assumptions to a single physical condition on the phase diver-
sities which are the almost only adjustable figures of the phase retrieval problem (see
Remark 16).

The paper is organized as follows. In the last part of this introductory section, we
introduce the mathematical notation used in the paper. Section 2 is devoted to formu-
lating the phase retrieval problem and addressing in details the key steps towards its
solutions using projection algorithms. A discussion on projection methods for phase
retrieval is presented in Section 3. In Section 4, convergence results of the DRAP
algorithm are established using two different analysis approaches: (1) spectral anal-

1For example, similar criterion for RAAR was proved in [34] while the one for HIO remains unknown.
2Including the criteria for DR and RAAR algorithms formulated in [8] and [34], respectively.
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ysis in Section 4.1 and (2) variational analysis in Section 4.2. Numerical simulation
is presented in Section 5.

Mathematical notation The underlying space in this paper is a finite dimensional
Hilbert space denoted by H. The element-wise multiplication is denoted by �. The
element-wise division ·

· , absolute value | · |, square ( · )2, and square root
√· oper-

ations are also frequently used but without need for extra notation. Re(·) and Im(·)
denote the real and the imaginary parts of a complex object in the brackets, respec-
tively. The imaginary unit is j = √−1. Id denotes the identity mapping while In

denotes the identity matrix of size n. The distance to a set Ω ⊂ H is defined by

dist(·, Ω) : H → R+ : x �→ inf
w∈Ω

‖x − w‖
and the set-valued mapping

PΩ : H ⇒ Ω : x �→ {w ∈ Ω | ‖x − w‖ = dist(x, Ω) } (1)

is the projector on Ω . A selection w ∈ PΩ(x) is called a projection of x on Ω . The
reflection operator associated with Ω is accordingly defined by RΩ := 2PΩ − Id.
Given a subset Ω ⊂ H, the Fréchet and limiting normal cones to Ω at a point x̂ ∈ Ω

are defined, respectively, as follows:

̂NΩ(x̂) :=
⎧

⎨

⎩

v ∈ H | lim sup
x

Ω→x̂, x 	=x̂

〈v, x − x̂〉
‖x − x̂‖ ≤ 0

⎫

⎬

⎭

,

NΩ(x̂) := Lim sup
x

Ω→x̂

̂NΩ(x) :=
{

v = lim
k→∞ vk | vk ∈ ̂NΩ(xk), xk

Ω→ x̂

}

,

where x
Ω→ x̂ means that x → x̂ and x ∈ Ω . The set of fixed points of an operator

T : H ⇒ H is defined by Fix T := {x ∈ H | x ∈ T (x)}. Our other basic notation is
standard; cf. [44, 49]. Bδ(x) stands for the open ball with radius δ > 0 and center x.
For a linear subspace V of H,

V ⊥ := {u ∈ H | 〈u, v〉 = 0 for all v ∈ V }
is the orthogonal complement subspace of V .

2 Problem formulation

2.1 Phase retrieval

Phase diversities and the Fourier transform are key ingredients of the phase retrieval
problem studied in this paper. Recall that adding a phase diversity to the phase of
a complex signal is a unitary transform and the (discrete) Fourier transform is also
a unitary operator. Since unitary transforms are one-to-one represented as unitary
matrices, the phase retrieval problem can be formulated in the form of matrix-vector-
multiplication as follows. For an unknown complex object x̂ ∈ C

n, let M ∈ C
N×n

be the given propagation matrix which is normalized to be isometric, and r ∈ R
N+ be
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the measured data of |Mx̂|2. The phase retrieval problem is to find an (approximate)
solution to the equation:

r = |Mx|2 + w, x ∈ C
n, (2)

where w ∈ R
N represents the (unknown) discrepancy between the data predicted

according to the propagation model M and the actually measured data.3

Remark 1 To formulate the phase retrieval problem in the matrix-vector-
multiplication form (2) or any feasibility model in Section 2.2, we need to vectorize
all array objects in a consistent manner and rewrite all linear mappings as matrix
multiplication operations in higher dimensional spaces, see, for example, [13, section
2A]. This one-to-one conversion allows us to do the theoretical analysis in the simple
matrix-vector-multiplication formulation without loss of generality.

In this paper, we study the phase retrieval setting with several phase diversities,
and the propagation matrix M takes the following form:

M = 1√
m

⎛

⎜

⎜

⎝

FD1
FD2
· · ·

FDm

⎞

⎟

⎟

⎠

∈ C
N×n, (3)

where m ≥ 2 is the number of data images, F ∈ C
n×n is the unitary matrix represent-

ing the discrete Fourier transform, and Dd ∈ C
n×n are unitary matrices representing

the phase diversities which will be denoted by φd in the sequel (d = 1, 2, . . . , m).
Note that N = mn.

Remark 2 (ill-posedness of classical phase retrieval) The classical phase retrieval
problem (e.g., [17]) is typically ill-posed, especially in the presence of noise and
model deviations. An effective solution to that issue is to make use of additional data
which is, in this paper, assumed in the form of phase diversities (equivalently, out-of-
focus images). The propagation matrix M in the form of (3) covers both the classical
phase retrieval problem (when m = 2) and the problem with additional data (m ≥ 3).
The latter case also known as the wavefront reconstruction problem [39] is the main
concern of this paper.

Remark 3 (phase modulators versus out-of-focus measurements) There are two
widely used techniques of acquiring the PSF images for the phase-diversity phase
retrieval problem under consideration. First, a phase modulator is used for intro-
ducing phase diversities in the pupil plane corresponding to which the images are
measured in the focal plane. Second, the images are registered in out-of-focus planes
along the optical axis (i.e., parallel to the focal plane at some known distances)
without the use of phase modulator. It is well known that the two techniques are
mathematically equivalent [19]. However, in practice, each approach to data acqui-

3Dimension n corresponds to the pixel totality of one image.
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sition has (dis)advantages compared to the other. For example, the first one requires
additional optical instruments (e.g., deformable mirrors) and suffers approximation
errors in generating the phase diversity patterns while the second one may suffer
inaccuracies in shifting the image detector (e.g., a CCD array) and differences in
signal-to-noise ratio of the acquired images as the distance between the pupil and
the image planes varies. In many practical settings of phase retrieval, the second
approach is more preferable than the first one.

When a priori knowledge of the solutions is available, that is, x̂ ∈ χ for some
known subset χ ⊂ C

n, one can expect more accurate phase retrieval. The formulation
(2) is naturally modified as follows:

r = |Mx|2 + w, x ∈ χ . (4)

Following the background developed in [3, 15, 17, 39], we are going to address
the problem (4) using projection algorithms. The main steps for this solution process
will be detailed next.

2.2 Feasibility models

Several feasibility models of phase retrieval have been formulated in either the phys-
ical domain4 [32, 39] or the Fourier domain5 [8]. Viewing the Fourier transform and
phase-diversity addition as unitary transforms, we clarify the relationship between
various feasibility models of the phase retrieval problem.

In the physical domain, for each d = 1, 2, . . . , m, let us denote rd the measure-
ment of the PSF image |FDd(x̂)|2. Define the intensity constraint sets as follows [3,
39]:

Ωd :=
{

x ∈ C
n | (1/m)|FDd(x)|2 = rd

}

(1 ≤ d ≤ m). (5)

Then, the problem (4) can be approached via the following feasibility problem
involving multiple sets:

find x ∈
m
⋂

d=0

Ωd, (6)

where Ω0 := χ captures a priori knowledge of the solutions.

Remark 4 (nonconvexity feasibility) All the problem models appearing in this paper
are nonconvex due to the nonconvexity of the intensity constraints Ωd defined in (5).

When addressing the phase retrieval problem with noise and model deviation, an
appropriate averaging process is essential for suppressing noise. For this, we consider
the following feasibility model in the product space:

find u ∈ D ∩ Ω, (7)

4The unknown variable is the signal in the pupil plane.
5The unknown variable relates to the signal in the pupil plane via the Fourier transform.
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where

D := {

(x, x, . . . , x) ∈ C
nm | x ∈ χ

}

and Ω := Ω1 × Ω2 × · · · × Ωm. (8)

The equivalence between (6) and (7) in the general setting of set feasibility finds its
root in [46]. Without a priori constraint, i.e., χ = C

n, the set D is the (n-dimensional
subspace) diagonal of the product space C

nm. The counterpart of (7) in the Fourier
domain is as follows:

find y ∈ A ∩ B, (9)

where
A := M(χ) and B := {y ∈ C

N | |y|2 = r}. (10)

The 2-set feasibility models (7) and (9) allow us to adapt various algorithmic
schemes including flexible relaxation and regularization for the phase retrieval prob-
lem. The relationships between models (6), (7), and (9) in the noiseless setting are as
follows.

Proposition 1 (equivalences of feasibility models) Let x̂ ∈ C
n and ŷ = Mx̂. The

following statements are equivalent:

(i) x̂ is a solution to (6);
(ii) [x]m := (x̂, x̂, . . . , x̂)

︸ ︷︷ ︸

m times

is a solution to (7);

(iii) ŷ is a solution to (9).

Proof The equivalence between (i) and (ii) is widely known [46], while the equiva-
lence between (i) and (iii) follows from the unitarity property of the matrix M given
in (3), that is, M∗M = In.

In view of Proposition 1, each of the feasibility models formulated in this section
can equally be used to approach the phase retrieval problem under consideration.
However, the theoretical analysis of the solution algorithms associated with one
model can be more convenient than another. The analysis and results obtained in the
remainder of this paper are associated with the feasibility model (9). Note that an
algorithm applied to (9) is technically different from its original variant in the litera-
ture of phase retrieval (for example, the Fienup’s HIO method in [15]). In this paper,
the same name is adopted in both contexts because from the mathematical point of
view the algorithm just does the same operations.

Remark 5 (inconsistent feasibility) In practical circumstances, for example, due to
the presence of noise and model deviation, the intersection in (6), (7), and (9) is likely
to be empty. There are natural interpretations of inconsistent feasibility in terms of
minimization involving indicator and distance functions. For example, let us inter-
pret the AP method for solving the (possibly inconsistent) feasibility (9) in terms
of classical algorithms for minimization. The worrisome issue regarding the empti-
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ness of the intersection would be eased when one associates (9) with the following
minimization problem:

min
y∈B

f (y) := 1

2
dist2(y, A). (11)

In view of Proposition 2 (which is proved later in Section 4.1), the set A defined
in (10) can be assumed to be convex, and hence the objective function f in (11) is
differentiable with the gradient given by ∇f (y) = y − PA(y) for every point y [48].
Then, alternating projection for solving (9) is precisely the projected gradient method
for solving (11).

2.3 Projectors

The decisive step of solving the feasibility problem (9) by projection algorithms is to
calculate the two projectors on the sets A and B defined in (10). Since B is geomet-
rically the product of a number of circles of the complex number plane, an explicit
form of the projector PB , which is in general a set-valued mapping, is available [3,
39]:

PB(y) = √
r � y

|y| , ∀y ∈ C
N, (12)

with the convention that yi

|yi | = S whenever yi = 0, where S denotes the complex unit

circle.6 In numerical computation, the (single-valued) selection of PB corresponding
yi

|yi | = 1 whenever yi = 0 is sufficient.

Remark 6 (projector on regularized sets) In view of Remark 5, the set B can have no
common point with the set A. For ways of handling such a feasibility gap, one can
think of regularizing or approximating the set B. For example, Luke [37] proposed
to enlarge the set B to

Bε :=
{

y ∈ C
N | distφ(y, b) ≤ ε, ∀b ∈ B

}

,

where ε ≥ 0 can be viewed as the radius of enlargement, distφ is the Bregman dis-
tance, associated with a strictly convex function φ : R

N → (−∞, ∞] which is
differentiable on the interior of its domain, given by

distφ(y, z) := φ(|y|) − φ(|z|) − 〈∇φ(|z|), |y| − |z|〉 , ∀y, z ∈ C
N .

The function φ should be chosen in accordance with the statistical model of the
noise w in (4). More specifically, let us consider the Gaussian and Poisson models
of noise, which are perhaps the most relevant to phase retrieval. The Bregman dis-
tance associated with the half energy kernel operator φ = 1

2‖ · ‖2 corresponds to the

6The subscript i indicates the ith entry of the object.
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Euclidean norm, and it is appropriate for Gaussian noise. Let us define the function
φ : RN → (−∞, ∞] by

φ(v) :=
N
∑

i=1

f (vi), ∀v ∈ R
N where f (t) :=

⎧

⎪

⎨

⎪

⎩

t log t − t if t > 0,

0 if t = 0,

∞ if t < 0.

(13)

The Bregman distance associated with the function φ given by (13) is the Kullback-
Leibler divergence, and it is appropriate for Poisson noise. The projector on the
regularized set Bε can be viewed as an approximation of the projector on B, and
hence it can be used in the framework of projection methods. The cyclic projection
algorithm using approximate projectors of this type has been analyzed by Luke [37],
and in fact his idea can also be extended to other projection methods. However, since
the projector on a regularized set is often much more complicated to be computed
than the one on the original set, we can instead treat the latter one as an approxima-
tion of the former one [40, page 22]. This insight about approximate projectors for
inconsistent feasibility allows us to simply use the formula (12) for both analytical
and numerical purposes without any worrisome issue.

The projector on the set A can also be explicitly described.7 We make use of the
following notation:

[χ ]m := {[x]m | x ∈ χ} where [x]m := (x, x, . . . , x)
︸ ︷︷ ︸

m times

.

Lemma 1 For the propagation matrix M given in (3), it holds that

PA(y) = MPχ

(

M∗y
)

, ∀y ∈ C
N . (14)

Proof Let us first define the unitary matrix based on the matrix M as follows:

U :=

⎛

⎜

⎜

⎝

FD1 0 · · · 0
0 FD2 · · · 0

· · · · · · · · · · · ·
0 0 0 FDm

⎞

⎟

⎟

⎠

∈ C
N×N . (15)

This block diagonal matrix is unitary since all of its constituent blocks are so. By the
structure of M and U , we have that

A = M(χ) = 1√
m

U ([χ ]m) .

Since U is unitary, it holds that

PA(y) = P 1√
m

U([χ ]m)
(y) = P

U
(

1√
m

[χ ]m
)(y) = U

(

P 1√
m

[χ ]m(U∗y)

)

. (16)

7Note that convexity of A is not required in Lemma 1.
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Since
[

C
n
]

m
is a subspace containing 1√

m
[χ ]m, by the properties of the metric

projection, we have that

P 1√
m

[χ ]m = P 1√
m

[χ ]m ◦ P[Cn]m . (17)

We next calculate U∗y. Note that U∗ is also a block diagonal matrix whose blocks
are the conjugate transpose of the corresponding blocks of U . Let us denote ck the
column vector whose entries taken from y corresponding to the block (FDk)

∗ of U∗,
(1 ≤ k ≤ m). We have that

U∗y =

⎛

⎜

⎜

⎝

(FD1)
∗c1

(FD2)
∗c2

. . .

(FDm)∗cm

⎞

⎟

⎟

⎠

.

Since
[

C
n
]

m
is the n-dimensional diagonal of the product space C

nm, we obtain by
solving the minimizing problem (1) that

P[Cn]m(U∗y) = 1

m

[

m
∑

k=1

(FDk)
∗ck

]

m

= 1√
m

[

M∗y
]

m
. (18)

Plugging (18) and (17) into (16) yields that

PA(y) = U

(

P 1√
m

[χ ]m
1√
m

[

M∗y
]

m

)

= U

(

1√
m

P[χ ]m
[

M∗y
]

m

)

= 1√
m

U
(

P[χ ]m
[

M∗y
]

m

) = 1√
m

U
([

Pχ

(

M∗y
)]

m

) = MPχ

(

M∗y
)

.

The proof is complete.

The formula (14) shows that the complexity of PA heavily depends on that of Pχ .

3 Projection algorithms

Projection algorithms for phase retrieval can be considered as descendants of the well
known Gerchberg–Saxton (GS) algorithm [17] which deals with phase retrieval given
the amplitude constraint and a single PSF image. Their introduction has been moti-
vated by the rapidly growing application of phase retrieval originated from a wide
variety of physical settings. For example, the famous input-output, output-output,
and hybrid-input-output algorithms [15] arose up when dealing with the support and
the real and nonnegative constraints instead of the amplitude constraint as the GS
method. Extensions for solving problems given multiple images and for obtaining
better restoration have been among the main objectives of this class of phase retrieval
algorithms. In light of the groundwork [3], in Section 2.2 we have interpreted the
phase retrieval problem (4) as a feasibility problem in one of the equivalent forms (6),
(7), and (9). Having calculated the projectors PA and PB in Section 2.3, we are now
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ready to discuss algorithmic schemes for the solutions. From now on, we analyze the
feasibility model (9).

AP and DR are perhaps the most widely known solution methods for feasibil-
ity and have been the basis for a wide variety of modification and regularization
schemes. We refer the reader to, for example, [4, 29] for an overview of these basic
methods in the setting of set feasibility. For an early discussion in the context of phase
retrieval, we refer the reader to the surveys [3, 39]. It has been observed that AP is
stable, always convergent and to some extent able to suppress noise, but the conver-
gence speed can be very slow [15]. In contrast, DR can be fast in convergence, but
sensitive to noise and model deviation [36]. Indeed, only relaxations of DR can be
used for problems in the presence of noise and model mismatch.

The use of the Krasnoselski–Mann relaxation is perhaps the most widely
known. Mathematically, it is the convex combination of the DR operator TDR :=
1
2 (RARB + Id) and the identity mapping:

TKMDR := βTDR + (1 − β) Id,

where β ∈ (0, 1] is the relaxation parameter. The Fienup’s hybrid-input-output (HIO)
method [15] can be viewed as a relaxation of DR:

THIO := PA ((1 + β)PB − Id) − (βPB − Id) ,

where β ∈ (0, 1] is the relaxation parameter. Another relaxation of DR known as the
relaxed averaged alternating reflections (RAAR) algorithm was proposed and ana-
lyzed in [35, 36] for phase retrieval. It is the convex combination of the DR operator
and one of the projectors:

TRAAR := βTDR + (1 − β)PB,

where β ∈ (0, 1] is the relaxation parameter. Inexact versions of RAAR were also
proposed and analyzed in [36]. The DRAP algorithm [52] is another relaxation of DR:

TDRAP := PA ((1 + λ)PB − λ Id) − λ (PB − Id) , (19)

where λ ∈ [0, 1] is the relaxation parameter.8

Interestingly, in the phase retrieval setting (9), TDRAP coincides with the convex
combination of the AP and DR operators provided that χ is an affine set. The latter
condition implies that the set A = M(χ) given by (10) is affine. Hence, the projector
PA is linear and we obtain the the following expression:

TDRAP = PA ((1 − λ)PB + λ(2PB − Id)) − λ (PB − Id)

= λ (Id +PA(2PB − Id) − PB) + (1 − λ)PAPB

= λTDR + (1 − λ)TAP, (20)

where TAP := PAPB is the AP operator.

Remark 7 The two expressions (19) and (20) play their own roles in explaining inter-
esting features of DRAP.9 On the one hand, only two projections are required for

8Relaxation parameter zero is not allowed for KMDR, HIO, and RAAR.
9They do differ in general settings.

Page 11 of 25    33Adv Comput Math (2021) 47: 33



computing an iteration of (19) (PB once and PA once) compared to three projections
for (20) (PB once and PA twice). This means that the computational complexity of
DRAP is at the same level as that of the other projection methods if (19) is used in
numerical implementation. On the other hand, the expression (20) as a convex com-
bination of TAP and TDR explains better the idea leading to the introduction of DRAP
as a relaxation of DR compared to the less intuitive form (19).

Plugging the two projectors (12) and (14) into (19), we come up with the following
explicit form of DRAP for addressing the feasibility problem (9):

y+ ∈ TDRAP(y)

= MPχ

(

M∗((1 + λ)
√

r � y

|y| − λy
))

− λ
(√

r � y

|y| − y
)

,
(21)

where y and y+ stand for the two consecutive iterations generated by DRAP. In the
case χ = C

n, (21) further reduces to

TDRAP(y) = MM∗((1 + λ)
√

r � y

|y| − λy
)

− λ
(√

r � y

|y| − y
)

= λ
(

IN − MM∗) (y) + (

(1 + λ)MM∗ − λIN

)

(√
r � y

|y|
)

.
(22)

In the remainder of this paper, we analyze the DRAP algorithm in the phase
retrieval setting (9) and demonstrate its advantages over the other algorithms.

4 Convergence analysis

In this section, we study convergence properties of DRAP using two different
analysis schemes. Since the problem (9) is nonconvex, we can only obtain local con-
vergence criteria though it is observed from numerical results that the quality of phase
retrieval is not affected by the starting point for the algorithm.

4.1 A result from spectral analysis

The analysis in this section is based on the observation that the projector PA given by
(14) is linear, and the projector PB given by (12) also has a good first order approxi-
mation around any solution of (9). We follow the analysis approach initiated by Chen
and Fannjiang [8] where they established a local linear convergence result for the DR
algorithm. The mentioned result of [8] was later extended for the RAAR algorithm in
[34]. We will show that DRAP also enjoys that kind of convergence result.10 In this
section, we assume that the lowest intensity of the images is strictly positive:

min
1≤i≤N

ri > 0. (23)

10Similar results for the HIO algorithm are unknown.
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Remark 8 When the phase diversities φd are assumed to be continuous random
variables, condition (23) is satisfied almost surely [8].

We first analyze DRAP in the form (22) for solving (9) with χ = C
n. Let us denote

Y := diag

(

ŷ

|ŷ|
)

∈ C
N×N, L := Y ∗M ∈ C

N×n,

where ŷ is a solution to (9) and diag(·) denotes the diagonal matrix with elements on
its diagonal taken from the vector in the brackets. Since r = |ŷ|2 vanishes nowhere11

by (23), for all y sufficiently close to ŷ, |y| also vanishes nowhere. In particular,
for a fixed vector v ∈ C

N , the vector |ŷ + εv| vanishes nowhere provided that ε is
sufficiently small. The next lemma establishes the first order approximation of TDRAP
as a complex vector valued function around ŷ in a given direction.

Lemma 2 (first order approximation of TDRAP) For a vector v ∈ C
N and a

sufficiently small number ε > 0, we have

TDRAP(ŷ + εv) − TDRAP(ŷ) = ε Y ∇(μ) + o(ε), (24)

where μ := Y ∗v and ∇(μ) := λ(IN − LL∗)μ + j((1 + λ)LL∗ − λIN)Im(μ).

Proof Let us first denote

wε := ŷ + εv

|ŷ + εv| and Yε := diag(wε).

In view of (22), we have that

TDRAP(ŷ) = ŷ = (

(1 + λ)MM∗ − λIN

)

Yr,

TDRAP(ŷ + εv) = λ
(

IN − MM∗) (ŷ + εv) + (

(1 + λ)MM∗ − λIN

)

Yεr

= ελ
(

IN − MM∗) (v) + (

(1 + λ)MM∗ − λIN

)

Yεr .

Then,

TDRAP(ŷ + εv) − TDRAP(ŷ) = ελ
(

IN − MM∗) v
+ (

(1 + λ)MM∗ − λIN

)

(Yε − Y )r .
(25)

The following formula for the first order approximation of (Yε−Y )r can be calculated
directly:

(Yε − Y )r = εjY Im
(

Y ∗v
)+ o(ε). (26)

Substituting (26) into (25) yields

TDRAP(ŷ + εv) − TDRAP(ŷ)

= ελ
(

IN − MM∗) v + εj
(

(1 + λ)MM∗ − λIN

)

Y Im
(

Y ∗v
)+ o(ε)

= ελY
(

IN − LL∗)μ + εjY
(

(1 + λ)LL∗ − λIN

)

Im (μ) + o(ε).

The proof is complete.

11Recall that the square amplitude is element-wise.

Page 13 of 25    33Adv Comput Math (2021) 47: 33



The next step is to analyze the spectrum of the real decomposition of the complex
matrix L as follows:

L := (

Re(L) −Im(L)
) ∈ R

N×2n.

Note that L is isometric since L is so. Define also the real decomposition of a
complex vector by

G(x) :=
(

Re(x)

Im(x)

)

∈ R
2n, ∀x ∈ C

n.

Let 1 ≥ σ1 ≥ σ2 · · · ≥ σ2n ≥ σ2n+1 = · · · = σN = 0 be the singular values
of L with the corresponding right singular vectors

{

vk ∈ R
2n : k = 1, . . . , 2n

}

and
the left singular vectors

{

uk ∈ R
N : k = 1, . . . , N

}

. We have by the definition of the
singular value decomposition (SVD) that

Re
(

LG−1(vk)
)

= Lvk = σkuk,

σkG
−1(vk) = G−1(σkvk) = G−1

(

LT uk

)

= G−1
(

Re
(

LT
)

uk

−Im
(

LT
)

uk

)

= L∗uk .

The next technical result regarding the spectrum of L is crucial.

Lemma 3 [8, Proposition 5.6] There holds that v1 = G(x̂), v2n = G(−jx̂), σ1 = 1,
σ2n = 0 and u1 = |ŷ|.

Thanks to Lemma 3 and the definition of the SVD, one has the following
expression of the second largest singular value of L:

σ2 = max
{∥

∥

∥LT u

∥

∥

∥ : u ∈ R
N, u ⊥ u1, ‖u‖ = 1

}

= max
{

‖Lv‖ : v ∈ R
2n, v ⊥ v1, ‖v‖ = 1

}

= max
{‖Im(Lx)‖ : x ∈ C

n, x ⊥ jx̂, ‖x‖ = 1
}

.

(27)

The following theorem establishes linear convergence of the DRAP algorithm for
solving (9). Since phase retrieval is ambiguous (at least) up to a global phase shift,12

the following distance between two complex vectors is of interest:

distopt(x, u) := min
α∈C,|α|=1

‖αx − u‖, ∀x, u ∈ H. (28)

Theorem 1 (linear convergence of DRAP) In the setting of (9) with χ = C
n,

suppose that

σ2 := max
{‖Im(Lx)‖ : x ∈ C

n, ‖x‖ = 1, x ⊥ jx̂
}

< 1. (29)

12That is the first element of the orthogonal basis of Zernike polynomials.
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Let y(k+1) ∈ TDRAP
(

y(k)
)

be a sequence generated by TDRAP in the form of (22) with
y(0) = Mx(0) for some x(0) ∈ C

n. If x(0) is sufficiently close to x̂, then there exists a
number c ∈ (σ2, 1) such that

distopt(x
(k), x̂) ≤ ck distopt(x

(0), x̂), (∀k ∈ N)

where x(k) := M∗y(k) (k = 1, 2, . . .).

Proof First, the optimal global phase shift defined by (28) is given by [34]:

α(k) = argmin α

{

‖αx(k) − x̂‖ : |α| = 1, α ∈ C

}

= x(k)∗x̂/

∣

∣

∣x
(k)∗x̂

∣

∣

∣ = y(k)∗ŷ/

∣

∣

∣y
(k)∗ŷ

∣

∣

∣ . (30)

Let us denote η(k) := Y ∗(α(k)y(k) − ŷ). Thanks to Lemma 2, we have that

Y ∗ (α(k)y(k+1) − ŷ
)

= Y ∗ (α(k)TDRAP

(

y(k)
)

− TDRAP
(

ŷ
)

)

= Y ∗ (TDRAP
(

α(k)y(k)
)

− TDRAP
(

ŷ
)

)

= Y ∗ (Y∇
(

Y ∗(α(k)y(k) − ŷ)
))

+ o(‖α(k)y(k) − ŷ‖)
= ∇(η(k)) + o(‖η(k)‖).

Multiplying both sides of the above equality by L∗ = M∗Y and taking the isometry
property of L into account, we obtain that

α(k)x(k+1) − x̂ = L∗Y ∗ (α(k)y(k+1) − ŷ
)

= L∗∇(η(k)) + o(‖η(k)‖)
= λL∗(IN − LL∗)η(k) + jL∗ ((1 + λ)LL∗ − λIN

)

Im(η(k)) + o(‖η(k)‖)
= jL∗Im(η(k)) + o(‖η(k)‖).

(31)

Due to (30) and the fact that
〈|ŷ|, j|ŷ|〉 = 0 we have

〈

η(k), j|ŷ|
〉

=
〈

ŷ∗

|ŷ| � (α(k)y(k) − ŷ), j|ŷ|
〉

=
〈

ŷ∗

|ŷ| � α(k)y(k), j|ŷ|
〉

+ 〈|ŷ|, j|ŷ|〉

=
〈

α(k) ŷ∗

|ŷ| � y(k), j|ŷ|
〉

=
〈

y(k)∗ŷ
∣

∣y(k)∗ŷ
∣

∣

(

ŷ∗

|ŷ| � y(k)

)

, j|ŷ|
〉

=
〈

∣

∣

∣y
(k)∗ŷ

∣

∣

∣

1

|ŷ| , j|ŷ|
〉

= 0.

In other words, η(k) ⊥ j|ŷ|. By basic properties of the Hermitian inner product, one
has Re

(

η(k)
) ⊥ j|ŷ|. As a result, Im(η(k)) ⊥ |ŷ|. Taking Lemma 3 into account, we
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have just shown that Im(η(k)) is orthogonal to u1 = |ŷ| which is the first left singular
vector of L. This together with the expression (27) of σ2 implies that

∥

∥

∥LT Im(η(k))

∥

∥

∥ ≤ σ2

∥

∥

∥Im(η(k))

∥

∥

∥ . (32)

Combining (28), (31), and (32) yields that

distopt(x
(k+1), x̂) = min

α∈C,|α|=1

∥

∥

∥αx(k+1) − x̂

∥

∥

∥

≤
∥

∥

∥α
(k)x(k+1) − x̂

∥

∥

∥

=
∥

∥

∥L
∗Im(η(k))

∥

∥

∥+ o(‖η(k)‖)
=
∥

∥

∥LT Im(η(k))

∥

∥

∥+ o(‖η(k)‖)
≤ σ2

∥

∥

∥Im(η(k))

∥

∥

∥+ o(‖η(k)‖)
≤ σ2

∥

∥

∥η
(k)
∥

∥

∥+ o(‖η(k)‖).

(33)

Since σ2 < 1 by assumption (29), there exists a number c ∈ (σ2, 1) such that for all
η(k) with ‖η(k)‖ sufficiently small, it holds that

σ2

∥

∥

∥η
(k)
∥

∥

∥+ o(‖η(k)‖) ≤ c

∥

∥

∥η
(k)
∥

∥

∥ . (34)

Combining (33), (34), and the definition of η(k) yields

distopt(x
(k+1), x̂) ≤ c

∥

∥

∥η
(k)
∥

∥

∥ = c distopt(x
(k), x̂), (k = 1, 2, . . .).

The proof is complete.

Remark 9 In view of [8, Proposition 6.2], the assumption (29) of Theorem 1 is
satisfied almost surely.

Remark 10 (region of convergence) Since the algorithm operates in the underlying
space C

N , for the sake of brevity, let us speak of region around ŷ = M(x̂) instead of
x̂. In view of Theorem 1, such a convergence region, if exists, is mutually dependent
on the constant c. More specifically, given a number c ∈ (σ2, 1), it is the region in
which the first order approximation (24) of TDRAP around ŷ is valid and condition
(34) is satisfied for all k ∈ N. Note that the latter involves not only σ2 and c but also
the sequence y(k) itself. The intersection of the regions over all possible sequences
complied with TDRAP can be taken as the region of convergence. Obviously, such
a statement is not informative and hence it has not ever been an objective of local
convergence analysis.
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Remark 11 (influence of λ on convergence) In view of Theorem 1, the relaxation
parameter λ obviously has influence on the region in which the first order approx-
imation of TDRAP (Lemma 2) is valid and condition (34) is satisfied; however, its
influences on the convergence speed of DRAP are unclear.13

We have analyzed the DRAP algorithm in the phase retrieval setting (9) with
χ = C

n. The latter condition limits the effectiveness of Theorem 1 to phase retrieval
without a priori constraint. In the remainder of this section, we will show that the
convergence criterion can also be applicable to phase retrieval problems with an
amplitude constraint, which is a helpful prior information and often available in
practice.14

The amplitude constraint is described by

χ = {

x ∈ C
n | |x| = a

}

, (35)

where a ∈ R
n+ is the known amplitude of the complex signal. The next result shows

that the problem (9) with an amplitude constraint can equivalently be reformulated
as a problem without a priori constraint in a higher dimensional space.

Proposition 2 The problem (9) with the amplitude constraint (35) can equivalently
be reformulated as:

find y ∈ A ∩ B, (36)

where A := M(Cn), B := {y ∈ C
N+n | |y|2 = r} ⊂ C

N+n with

M := 1√
m + 1

(√
mM

In

)

∈ C
(N+n)×n and r := 1

m + 1

(

mr

a2

)

∈ R
N+n+ . (37)

Proof For convenience, let us recall that N = nm according to (3). We first observe
that M is isometric if and only if M is isometric since

M∗M = m

m + 1
M∗M + 1

m + 1
In.

Let ŷ ∈ C
N be a solution to (9). That is, ŷ = Mx̂ with |x̂| = a and |ŷ|2 = r .

Define ŷ := 1√
m+1

(√
mŷ

x̂

)

∈ C
N+n. Then, ŷ = Mx̂ ∈ A and |ŷ|2 = r. This means

that ŷ is a solution to (36).
Conversely, let ŷ ∈ C

N+n be a solution to (36). That is, ŷ = Mx̂ with x̂ ∈ C
n

and |ŷ|2 = r. By the definition of M and r in (37), we have |x̂| = a, or equivalently,
x̂ ∈ χ . Define ŷ = Mx̂ ∈ C

N . Then ŷ ∈ M(χ) = A. We have also from (37) that
|ŷ|2 = r . This means that ŷ is a solution to (9).

The proof is complete.

13Of course, the influence is clearly observed from numerical computation.
14This is because the light distribution in the pupil plane is often known, for example, it can be uniform or
truncated Gaussian.
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Remark 12 Proposition 2 shows that the convergence criterion formulated in The-
orem 1 is indeed applicable to not only phase retrieval problems without a priori
constraint but also those involving an amplitude constraint. Compared to the earlier
convergence results for the DR algorithm in [8, Theorem 5.1] and the RAAR algo-
rithm [34, Theorem 3], this new observation widens the applicability scope of this
type of convergence results.

4.2 A result from variational analysis

We recall a number of mathematical notions needed for formulating a local linear
convergence criterion for the DRAP algorithm using the analysis scheme of [42] and
discuss the validity of the imposed assumptions in the setting of phase retrieval.

Definition 1 (prox-regularity of sets) [48] A set Ω is called prox-regular at a point
ŷ ∈ Ω if the projector PΩ is single-valued around ŷ.

Prominent example of prox-regularity is that a closed and convex set is prox-
regular at every of its points. In particular, the set A = M(χ) in (10) has this
property whenever χ is convex. The next statement finds its root in the original work
[36, Section 3.1].

Lemma 4 (prox-regularity of B) [53, Lemma 6.2(i)] The set B defined in (10) is
prox-regular at every of its points.

Definition 2 (pointwise almost averaged operators) [42, Definition 2.2 and Propo-
sition 2.1] A (not necessarily nonexpansive) fixed point operator T : H ⇒ H is
called pointwise almost averaged on a set Ω at a point y ∈ Ω with violation ε and
averaging constant α > 0 if for all z ∈ U , z+ ∈ T (z) and y+ ∈ T (y),

∥

∥z+ − y+∥
∥

2 ≤ (1 + ε) ‖z − y‖2 − 1 − α

α

∥

∥(z+ − z) − (y+ − y)
∥

∥

2
.

T is called almost averaged on Ω with violation ε and averaging constant α if it
is pointwise almost averaged on Ω at every point y ∈ Ω with that violation and
averaging constant. When the violation ε is zero, the quantifier “almost” is dropped.

For the meaning of the quantifiers “pointwise” and “almost” appearing in Defi-
nition 2 as well as the motivation of the property, we refer the reader to the original
work on pointwise almost averaged operators [42]. The following statement claims
this property for TDRAP as a fixed point operator.

Lemma 5 (almost averagedness of TDRAP) Let ŷ ∈ C
N be a solution to (9). Then,

for any ε > 0 arbitrarily small, there exist numbers δ > 0 and α ∈ (0, 1) dependent
on ε such that TDRAP is almost averaged on Bδ(ŷ) with violation ε and averaging
constant α.
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Proof Let ε > 0 be a positive number, which can be arbitrarily small. Since the
set B is prox-regular at ŷ by Lemma 4, thanks to [24, Theorem 2.14] there exists a
neighborhood of ŷ on which PB is almost averaged with violation ε and averaging
constant 1/2. Also, PA is averaged since A is convex. The statement then follows
from [52, Proposition 2].

Definition 3 (metric subregularity) [14] A set-valued mapping Ψ : H ⇒ H′ is
called metrically subregular at ŷ ∈ H for ẑ ∈ Ψ (ŷ) if there exist numbers δ > 0 and
κ > 0 such that

κ dist(y, Ψ −1(ẑ)) ≤ dist(ẑ, Ψ (y)), ∀y ∈ Bδ(ŷ).

Metric subregularity is one of the cornerstones of variational analysis and optimiza-
tion theory with many important applications, particularly as constraint qualifications
for establishing calculus rules for generalized subdifferentials and coderivatives [44,
49] and for analyzing stability and convergence of numerical algorithms [14, 27, 42].

We are now ready to formulate another local linear convergence criterion for
DRAP in the setting of phase retrieval.

Theorem 2 (linear convergence of DRAP) Let ŷ ∈ C
N be a solution to (9) and

suppose that the set-valued mapping Ψ := TDRAP − Id is metrically subregular at ŷ

for 0. Then every sequence generated by TDRAP converges linearly to a fixed point of
TDRAP provided that the initial point is sufficiently close to ŷ.

Compared to [52, Theorem 2], Theorem 2 additionally takes the prox-regularity
of the sets A and B into account. The proof is omitted for brevity.

Remark 13 (necessity of metric subregularity) There are two types of regularity con-
ditions often required to obtain a convergence result in the nonconvex optimization
literature. The geometry of the phase retrieval problem yields one type of regularity,
that is, the prox-regularity of the sets. The second type of regularity, termed as metric
subregularity, is difficult to verify, but as been recently shown in [41] this condition
is not only sufficient but also necessary for local linear convergence.

Remark 14 (analysis for inconsistent feasibility) To analyze convergence proper-
ties of DRAP in the more challenging setting of inconsistent feasibility (i.e., phase
retrieval with noise and model deviation), more technical details are required. This
task can be done by following the lines of [42]; however, the technical assumption
of metric subregularity again remains unverifiable in the setting of phase retrieval.
Hence, we chose to formulate the result in the simpler consistent setting.

Our goals in the remainder of this section are (1) to link the abstract metric sub-
regularity condition imposed in Theorem 2 to the physical figures of phase retrieval,
and (2) to connect the two convergence criteria formulated in Theorems 1 and 2 by
showing that their key assumptions to some extent can be traced back to a common
condition on the phase diversities which are the almost only adjustable figures of
phase retrieval.
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The subsequent analysis is valid only for the phase retrieval setting with two
images, that is, we consider m = 2 in (3). We first recall the concept of transversality.

Definition 4 (transversality) [9, page 99] A pair of sets {A, B} is transversal at a
point ŷ in their intersection if

NA(ŷ) ∩ (−NB(ŷ)) = {0}.

The origin of this concept can be traced back to at least the nineteenth century in
differential geometry which deals with smooth manifolds [20]. We refer the reader
to, for example, [28–31] for various characterizations of transversality and its appli-
cation in feasibility problem. The following result shows that the metric subregularity
condition in Theorem 2 can be deduced from the transversality property.

Proposition 3 (transversality implies metric subregularity) Let ŷ ∈ C
N be a solution

to (9) and suppose that the pair of sets {A, B} defined in (10) is transversal at ŷ.
Then, the set-valued mapping Ψ := TDRAP − Id is metrically subregular at ŷ for 0.

Proof By [52, Lemma 3], there exist numbers δ > 0 and κ > 0 such that

κ dist(y, A ∩ B) ≤ ∥

∥y − y+∥
∥ , ∀y ∈ Bδ(ŷ), y+ ∈ TDRAP(y). (38)

Taking the infimum over all y+ ∈ TDRAP(y) in the right-hand side of (38) and noting
that

A ∩ B ⊂ Fix TDRAP = Ψ −1(0),

we obtain that

κ dist(y, Ψ −1(0)) ≤ κ dist(y, A ∩ B)

≤ dist(y, TDRAP(y)) = dist(0, Ψ (y)), ∀y ∈ Bδ(ŷ).

This yields metric subregularity of Ψ at ŷ for 0 as claimed.

Remark 15 The restriction m = 2 involves in Proposition 3 only in an implicit man-
ner. A further analysis15 reveals that m = 2 is a necessary condition for having the
transversality assumption fulfilled.

Proposition 4 Let ŷ = Mx̂ ∈ C
N be a solution to (9). Then, the pair of sets {A, B}

defined in (10) is transversal at ŷ if and only if the pair of sets {Ω1, Ω2} defined in
(5) is transversal at x̂.

Proof Since the sets A and B are respectively the images of the sets D and Ω defined
in (8) via the unitary mapping U given by (15) followed by the scaling of factor
1/

√
2, the pair of sets {A, B} is transversal at ŷ if and only if the pair of sets {D, Ω} is

transversal at (x̂, x̂). The latter is in turn equivalent to the transversality of {Ω1, Ω2}
at x̂ in view of [33, page 505].

15It is not presented here for the sake of brevity.
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Table 1 Physical parameters of the simulated imaging system

Aperture Numerical aperture Wavelength Pixel size Image size

Circular 0.25 0.633 μm 0.44 μm 256 × 256

In view of Propositions 3 and 4, the metric subregularity condition in Theorem
2 is guaranteed by the transversality of {Ω1, Ω2} at x̂. In view of (5), the latter sets
are tied to the phase diversities {φ1, φ2} which are represented as unitary matrices
{D1, D2} in (5). Unfortunately, the question of choosing {φ1, φ2} such that {Ω1, Ω2}
satisfies the transversality at x̂ or some weaker property but sufficient for the metric
subregularity condition in Theorem 2 is not trivial and open. We conclude this section
with an overall remark on the obtained convergence results.

Remark 16 Convergence criteria for the DRAP algorithm in Theorems 1 and 2 are
derived from two different analysis approaches;16 however, their key assumptions to
some extent can be related to the choice of phase diversities.

5 Numerical simulation

Let us first mention that for simulation data with high signal-to-noise ratio (SNR)
the performance of DRAP for the phase retrieval problem (also in comparison with
the other projection methods) is similar to the one for the sparse optimization prob-
lem reported in [52]. Keeping in mind that the theoretical analysis of DRAP for
phase retrieval is the main contribution of the paper, we chose to make this numerical
section concise and not overlap with the observations in [52]. This section presents
numerical results of a practically relevant phase retrieval example with low SNR data
and the related technical details.

We simulate an imaging system with physical parameters as summarized in
Table 1. The simulation phase � is shown in Fig. 1 (right). For the forward model,
the amplitude χ is constant over the pixels in the aperture.17 Five PSF images
corresponding to the five phase diversities

φd = π · zd · Z0
2, (zd = −2, −1, 0, 1, 2)

are respectively calculated by

pd =
∣

∣

∣F
(

χ · ej(�+φd)
)∣

∣

∣

2
, (d = 1, . . . , 5). (39)

We consider a practically relevant case where the images are corrupted with both
Poisson and Gaussian noise. After normalizing the five images generated by (39)
such that their highest intensities are unity, the normalized images are corrupted with
Poisson noise using the MATLAB function imnoise. Then, after scaling these noisy

16We are not aware of any other analysis scheme relevant to the phase retrieval problem.
17The amplitude is presumed unknown when solving the inverse problem.

Page 21 of 25    33Adv Comput Math (2021) 47: 33



Fig. 1 Phase retrieval by DRAP algorithm (left) and its smoothed version using Zernike polynomials
(middle) compared to the data phase (right)

images to have the highest intensities of the original ones, we introduce additive white
Gaussian noise with signal-to-noise ratio (SNR) 10 dB (decibel) using the MATLAB
function awgn. The input data images, which are denoted by rd (d = 1, 2, . . . , 5),
are finally obtained by replacing all the negative entries of the corrupted images by
zeros.

We formulate the phase retrieval problem in the form (9) and restore the phase Φ

given the five noisy PSF images rd and the physical parameters specified above using
DRAP. The quality of phase retrieval is measured by the relative root mean square
(RMS) error of the estimated phase relative to the true phase. The phase retrieved
using 100 iterations of DRAP and 20 iterations of AP18 is shown in Fig. 1 (left). The
restored phase is then smoothed using the first 37 Zernike polynomials (in Fringe
order convention) and the obtained phase ̂Φ is shown in the middle figure compared
to the data Φ on the right.19 The relative RMS error is ‖̂Φ − Φ‖/ ‖Φ‖ = 0.1108.
Since phase retrieval is ambiguous up to (at least) a piston term (global phase shift),
the piston terms of the phases are removed before calculating the norms.

We compare the performance of DRAP with the other projection algorithms for
solving (9) including AP, KMDR, HIO, and RAAR. The overall results are summa-
rized in Fig. 2. For brevity, we do not show the results for KMDR and HIO since their
performance is far worse than that of RAAR and DRAP in both accuracy and stabil-
ity. As shown in Fig. 2, phase retrieval by RAAR and DRAP is at almost the same
level of accuracy as well as convergence speed; however, DRAP (the blue curve) is
more stable than RAAR (the red curve). The relaxation parameters used for RAAR

18Additional averaging process using alternating projection is essential since DRAP as well as KMDR,
HIO and RAAR does not find an approximate solution to (9) in a direct manner like the AP method.
19The post-processing step using the Zernike polynomials forming a convenient orthogonal basis of all
the sufficiently smooth real-valued functions on the unit disk (or alternatively another set of modes such
as the Lukosz-Braat polynomials, the actuator responses, modes analytically acquired via singular value
decomposition, etc.) is typically needed for practical use of phase retrieval because the restored phase
aberration can be corrected or compensated (e.g., in adaptive optics) only if it can be identified by the cor-
rection device (e.g., a deformable mirror) as a combination of certain a priori known modes. In particular,
it is meaningful to the algorithms discussed in this paper since they are all zonal-based (pixel-wise recov-
ery) in contrast to modal-based solution methods which (implicitly) decompose the temporally estimated
phase into the desired modes in each iteration. The post-processing step also helps suppress noise, espe-
cially for phase retrieval with low SNR data as the example shown in this section. In our comparison the
Zernike polynomial interpolation is fairly applied to all the algorithms under discussion.
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Fig. 2 Performance of DRAP (the blue curve) compared to that of AP (the black curve) and RAAR (the
red curve) algorithms

and DRAP are 0.8 and 0.45, respectively20. For completeness, AP (the black curve)
is more stable than the other algorithms as expected; however, it is incomparable to
RAAR and DRAP in both accuracy and convergence speed.
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