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Abstract

Since its introduction, the Virtual Element Method (VEM) was shown to be able to deal with a large variety of polygons, while
achieving good convergence rates. The regularity assumptions proposed in the VEM literature to guarantee the convergence on a
theoretical basis are therefore quite general. They have been deduced in analogy to the similar conditions developed in the Finite
Element Methods (FEMs) analysis. In this work, we experimentally show that the VEM still converges with almost optimal rates
and low errors in the L2 and H1 norms even if we significantly break the regularity assumptions that are used in the literature.
These results suggest that the regularity assumptions proposed so far might be overestimated. We also exhibit examples on which
the VEM sub-optimally converges or diverges. Finally, we introduce a mesh quality indicator that experimentally correlates the
entity of the violation of the regularity assumptions and the performance of the VEM solution, thus predicting if a dataset is
potentially critical for VEM.
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1. Introduction

Finite element methods are very successful in the numerical treatment of partial differential equations (PDEs), but
their formulation requires an explicit knowledge of the basis functions. Consequently, they are mostly restricted to
meshes with elements having a simple geometrical shape, such as triangles or quadrilaterals. This restriction is over-
come by polytopal element methods such as the VEM, which are designed to provide arbitrary order of accuracy on
more generally shaped elements. In the VEM setting, we partition the computational domain into polytopal elements
and the explicit knowledge of the basis functions is not required, since the VEM formulation and its practical imple-
mentation is based on suitable polynomial projections that are always computable from a careful choice of the degrees
of freedom.

The VEM was originally formulated in [6] as a conforming FEM for the Poisson problem by rewriting in a vari-
ational setting the nodal mimetic finite difference (MFD) method [11, 15, 23, 36] for solving diffusion problems on
unstructured polygonal meshes. A survey on the MFD method can be found in the review paper [34] and the research
monograph [12]. The VEM scheme inherits the flexibility of the MFD method with respect to the admissible meshes
and this feature is well reflected in the many significant applications that have been developed so far, see, for ex-
ample, [3, 4, 8–10, 13, 14, 18–20, 25, 28, 29, 32, 39–41, 44]. Because of its origins, the VEM is intimately connected
with other finite element approaches. The connection between the VEM and finite elements on polygonal/polyhedral
meshes is thoroughly investigated in [27, 33, 37], between VEM and discontinuous skeletal gradient discretizations
in [33], and between the VEM and the BEM-based FEM method in [26]. The VEM has been extended to convection-
reaction-diffusion problems with variable coefficients in [9].

Optimal convergence rates for the virtual element approximations of the Poisson equation were proved in H1 and
L2 norms, see for instance [2,6,16,17,21,22,30]. The theoretical results behind the VEM convergence rate involve an
estimate of the approximation error, which is due to both analytical assumptions (interpolation and polynomial pro-
jections of the virtual element functions) and geometrical assumptions (the geometrical shape of the mesh elements).
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There is a general concordance in the literature about the analytical assumptions, but the understanding of which geo-
metrical features of the mesh elements influence the most on the approximation error and the convergence rate, is still
an open issue. Various geometrical (or regularity) assumptions have been proposed to ensure that all elements of any
mesh of a given mesh family in the refinement process are sufficiently regular. These assumptions guarantee the VEM
convergence and optimal estimates of the approximation error with respect to different norms. However, as already
observed from the very first papers, cf. [2], the VEM seems to maintain its optimal convergence rates also when we
use mesh families that do not satisfy the usual geometrical assumptions.

As a first contribution of this paper, we overview the geometrical assumptions introduced in the VEM literature to
guarantee the convergence. Then, we define a mesh generation framework that allows us to build sequences of meshes
(datasets) gradually introducing several pathologies. The so-generated datasets systematically violate the geometrical
assumptions, and enhance a correlation analysis between such assumptions and the VEM performance. We experi-
mentally show how the VEM presents a good convergence rate on most examples and only fails in very few situations.
We also provide an indicator of the violation of the geometrical assumptions, which depends uniquely on the geometry
of the mesh elements. We show a correspondence between this indicator and the performance of the VEM on a given
mesh, or mesh family, in terms of approximation error and convergence rate. Our work is focused on developing a
strategy to evaluate if a given sequence of meshes is suited to the virtual element discretization, and possibly to predict
the behaviour of the numerical discretization before applying the method. In this sense, we can consider the approach
that we present in this work as more in an a priori than an a posteriori setting.

The paper is organized as follows. In Section 2, we present the VEM and the convergence results for the Poisson
equation with Dirichlet boundary conditions. In Section 3, we detail the geometrical assumptions on the mesh ele-
ments that are used in the literature to guarantee the convergence of the VEM. In Section 4, we present a number
of datasets which do not satisfy these assumptions, and experimentally investigate the convergence of the VEM over
them. In Section 5, we propose a mesh quality indicator to predict the behaviour of the VEM over a given dataset. In
Section 6, we offer our concluding remarks and discuss future developments and work. In Appendices A and B, we
review the major theoretical results on the error analysis that are available in the virtual element literature, reporting
the geometrical conditions assumed in each result, and present the algorithmic procedures that we used to build the
datasets.

1.1. Notation and technicalities

We use the standard definition and notation of Sobolev spaces, norms and seminorms, cf. [1]. Let k be a nonnegative
integer number. The Sobolev space Hk(ω) consists of all square integrable functions with all square integrable weak
derivatives up to order k that are defined on the open, bounded, connected subset ω of Rd, d = 1, 2. As usual, if
k = 0, we prefer the notation L2(ω). Norm and seminorm in Hk(ω) are denoted by || · ||k,ω and | · |k,ω , while for
the inner product in L2(ω) we prefer the integral notation. We denote the space of polynomials of degree less than or
equal to k ≥ 0 on ω by Pk(ω) and conventionally assume that P−1(ω) = {0}. In our implementation, we consider
the orthogonal basis on every mesh edge through the univariate Legendre polynomials and inside every mesh cell
provided by the Gram-Schmidt algorithm applied to the standard monomial basis.

Finally, throughout the paper we use the letter C in the error inequalities to denote a real, positive constant that
can have a different value at any occurrence. This constant may depend on the model and on some discretization
parameters, such as the coercivity and stability constants of the bilinear form and of the linear functional used in
the variational formulation, the mesh regularity constants used when defining the properties of the mesh families to
which the numerical method is suitable, and the polynomial order of the method. Nevertheless, this constant is always
assumed to be independent of the mesh size parameter h that characterizes the mesh and will be introduced in the next
section.

2. The virtual element method

We investigate the performance of the VEM on the elliptic model problem provided by the Poisson equation with
Dirichlet boundary conditions. In this section, we briefly review the model equations in strong and weak form and the
formulation of the virtual element approximation.

The Poisson equation and the virtual element approximation. Let Ω be an open, bounded, connected subset ofR2

with polygonal boundary Γ. Consider the Poisson equation with homogeneous Dirichlet boundary conditions in strong
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from:

−∆u = f in Ω, (1)

u = 0 on Γ. (2)

The variational formulation of problem (1)-(2) reads as: Find u ∈ H1
0 (Ω) such that

a(u, v) = F (v) ∀v ∈ H1
0 (Ω), (3)

where the bilinear form a(·, ·) : H1(Ω)×H1(Ω)→ R is given by

a(u, v) =

∫
Ω

∇u · ∇v dx (4)

and the right-hand side linear functional F : L2(Ω)→ R is given by

F (v) =

∫
Ω

fv dx, (5)

with the (implicit) assumption that f ∈ L2(Ω). The well-posedness of the discrete formulation (3) stems from the
coercivity and continuity of the bilinear form a(·, ·), the continuity of the right-hand side linear functional F (·), and
the application of the Lax-Milgram theorem [42, Section 2.7].

The numerical method that we consider in this paper is mainly based on References [2, 6], and provides an optimal
approximation on polygonal meshes when the diffusion coefficient is variable in space. To ease the presentation, we
consider the case of homogeneous Dirichlet boundary conditions, the extension to the non-homogeneous case being
deemed as straightforward. Such a case is also considered in the numerical experiments carried out in this paper.

The virtual element approximation of equation (3) reads as: Find uh ∈ V hk such that

ah(uh, vh) = Fh(vh) vh ∈ V hk , (6)

where uh, V hk , ah(·, ·), Fh(·) are the virtual element approximations of u, H1
0 (Ω), a(·, ·), and F (·). We review the

construction of these mathematical objects in the rest of this section.

Mesh notation. Let T = {Ωh}h∈H be a set of decompositions Ωh of the computational domain Ω into a finite set
of nonoverlapping polygonal elements E. We refer to T as the mesh family and to each one of its members Ωh as
the mesh. The subindex label h, indicating the mesh size, is the maximum of the diameters of the mesh elements,
defined by hE = supx,y∈E |x− y|. We assume that the mesh sizes of the mesh family T are in a countable subsetH
of the real line (0,+∞) having 0 as its unique accumulation point. Each element E has a nonintersecting polygonal
boundary ∂E formed by straight edges e, center of gravity xE = (xE , yE) and area |E|. We denote the edge mid-
point xe = (xe, ye) and its lenght |e|, and with a small abuse of notation, we write e ∈ ∂E to indicate that edge e is
running throughout the set of edges forming the elemental boundary ∂E. The convergence analysis of the VEM and
the derivation of the error estimates in the L2 and H1 norms require a few suitable assumptions on the mesh family T .
Such assumptions are discussed in detail in the next section. On every mesh Ωh, given an integer k ≥ 0, we define the
space of piecewise discontinuous polynomials of degree k,Pk(Ωh), containing the functions q such that q|E ∈ Pk(E)
for every E ∈ Ωh.

The virtual element spaces. Let k ≥ 1 be an integer number and E ∈ Ωh a generic mesh element. The conforming
virtual element space V hk of order k built on mesh Ωh is obtained by gluing together the elemental approximation
spaces denoted by V hk (E), so that

V hk :=
{
vh ∈ H1

0 (Ω) : vh|E ∈ V hk (E) ∀E ∈ Ωh

}
. (7)

The local virtual element space V hk (E) is defined in accordance with the enhancement strategy introduced in [2]:

V hk (E) =

{
vh ∈ H1(E) : vh|∂E ∈ C0(∂E), vh|e ∈ Pk(e)∀e ∈ ∂E, ∆vh ∈ Pk(E), and∫

E

(vh −Π∇,Ek vh) q dV = 0 ∀q ∈ Pk(E)\Pk−2(E)

}
, (8)

where Π∇,Ek is the elliptic projection that will be discussed in the next section;Pk(E) andPk(e) are the linear spaces
of the polynomials of degree at most k, which are respectively defined over an elementE or an edge e according to our
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notation; and Pk(E)\Pk−2(E) is the space of polynomials of degree equal to k − 1 and k. By definition, the space
V hk (E) contains Pk(E) and the global space V hk is a conforming subspace of H1(Ω).

The elliptic projection operators. The definition in (8) requires the elliptic projection operator Π∇,Ek : H1(E) →
Pk(E), which, for any vh ∈ V hk (E), is given by:∫

E

∇Π∇,Ek vh · ∇q dV =

∫
E

∇vh · ∇q dV ∀q ∈ Pk(E), (9)∫
∂E

(
Π∇,Ek vh − vh

)
dS = 0. (10)

Equation (10) allows us to remove the kernel of the gradient operator from the definition of Π∇,Ek , so that the k-degree
polynomial Π∇,Ek vh is uniquely defined for every virtual element function vh ∈ V hk (E). Moreover, projector Π∇,Ek

is a polynomial-preserving operator, i.e., Π∇,Ek q = q for every q ∈ Pk(E). We can also define a global projection
operator Π∇k : H1(Ω) → Pk(Ωh), which is such that Π∇k vh|E = Π∇,Ek (vh|E) ∀E ∈ Ωh. A major property of the

elliptic projection operator is that every projection Π∇,Ek vh of a virtual element function vh ∈ V hk (E) is computable
from the degrees of freedom of vh associated with element E that are defined as follows.

The degrees of freedom. The degrees of freedom of a virtual element function vh ∈ V hk (E) are given by the following
set of values [6]:

(D1) for k ≥ 1, the values of vh at the vertices of E;

(D2) for k ≥ 2, the values of vh at the k − 1 internal points of the (k + 1)-point Gauss-Lobatto quadrature rule on
every edge e ∈ ∂E.

(D3) for k ≥ 2, the cell moments of vh of order up to k − 2 on element E:

1

|E|

∫
E

vh q dV ∀q ∈ Pk−2(E). (11)

These set of values are unisolvent in V hk (E), cf. [6]; hence, every virtual element function is uniquely identified by
them. The degrees of freedom of a virtual element function in the global space V hk are given by collecting the elemental
degrees of freedom (D1)-(D3). Their unisolvence in V hk is an immediate consequence of their unisolvence in every
elemental space V hk (E).

Orthogonal projections. From the degrees of freedom of a virtual element function vh ∈ V hk (E) we can also compute
the orthogonal projections Π0,E

k vh ∈ Pk(E), cf. [2]. In fact, the orthogonal projection Π0,E
k vh of a function vh ∈

V hk (E) is the solution of the variational problem:∫
E

Π0
kvh q dV =

∫
E

vh q dV ∀q ∈ Pk(E). (12)

The right-hand side is the integral of vh against the polynomial q, and is computable from the degrees of freedom (D3)
of vh when q is a polynomial of degree up to k−2, and from the moments of Π∇,Ek vh when q is a polynomial of degree
k − 1 and k, cf. (8). Clearly, the orthogonal projection Π0,E

k−1vh is also computable. As we have done for the elliptic
projection, we can also define a global projection operator Π0

k : L2(Ω) → P(Ωh), which projects the virtual element
functions on the space of discontinuous polynomials of degree at most k built on mesh Ωh. This operator is given by
taking the elemental L2-orthogonal projection Π0,E

k vh in every mesh element E, so that
(
Π0
kvh
)
|E = Π0,E

k (vh|E),
which is computable from the degrees of freedom of vh associated with element E.

Approximation properties in the virtual element space. Under a suitable regularity assumption on the mesh family
used in the formulation of the VEM (assumption G1 that will be the topic of the next section), we can prove the
following estimates on the projection and interpolation operators:

(i) for every s with 1 ≤ s ≤ k + 1 and for every w ∈ Hs(E) there exists a wπ ∈ Pk(E) such that

|w − wπ|0,E + hE |w − wπ|1,E ≤ Ch
s
E |w|s,E ; (13)

(ii) for every swith 2 ≤ s ≤ k+1, for every h, for allE ∈ Ωh and for everyw ∈ Hs(E) there exists awI ∈ V hk (E)
such that

|w − wI |0,E + hE |w − wI |1,E ≤ Ch
s
E |w|s,E . (14)
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In these inequalities, C is a real positive constant depending only on the polynomial degree k and on some mesh
regularity constants that we will introduce and discuss in the next section.

The virtual element bilinear forms. The elliptic and orthogonal projections are needed to define the virtual element
bilinear form ah(·, ·) : V hk × V hk → R, and the forcing term Fh : V hk → R. Following the “VEM gospel”, we write
the discrete bilinear form ah(·, ·) as the sum of elemental contributions

ah(uh, vh) =
∑
E∈Ωh

aEh (uh, vh), (15)

where every elemental contribution is a bilinear form aEh (·, ·) : V hk (E) × V hk (E) → R designed to approximate the
corresponding elemental bilinear form aE(·, ·) : H1(E)×H1(E)→ R,

aE(v, w) =

∫
E

∇v · ∇w dV, ∀v, w ∈ H1(E).

The bilinear form aEh (·, ·) on each element E is given by

aEh (uh, vh) =

∫
E

∇Π∇,Ek uh · ∇Π∇,Ek vh dV + SEh

((
I −Π∇,Ek

)
uh,
(
I −Π∇,Ek

)
vh

)
. (16)

The bilinear form SEh (·, ·) in the definition of aEh (·, ·) provides the stability term and can be any computable, sym-
metric, positive definite bilinear form defined on V hk (E) for which there exist two positive constants c∗ and c∗ such
that

c∗a
E(vh, vh) ≤ SEh (vh, vh) ≤ c∗aE(vh, vh) ∀vh ∈ V hk (E) ∩ ker

(
Π∇,Ek

)
. (17)

The inequalities in (17) implies that SEh (·, ·) scales like aE(·, ·) with respect to hE . Also, the stabilization term in the
definition of aEh (·, ·) is zero if at least one of its two entries is a polynomial of degree (at most) k, since Π∇,Ek is a
polynomial preserving operator.

In our implementation of the VEM, we consider the stabilization proposed in [38]:

SEh (vh, wh) =

N dofs∑
i=1

AEiiDOFi(vh)DOFi(wh), (18)

where AE =
(
AEij
)

is the matrix resulting from the implementation of the first term in the bilinear form aEh (·, ·). Let
φi be the i-th “canonical” basis functions generating the virtual element space, which is the function in V hk (E) whose
i-th degree of freedom for i = 1, . . . , N dofs (according to a suitable renumbering of the degrees of freedom in (D1),
(D2), and (D3)), has value equal to 1 and all other degrees of freedom are zero. These basis function are unknown in
the virtual element framework, but their projections Π0,E

k−1∇φi (and Π0,E
k−1∇φj) are computable from their degrees of

freedom. With this notation, the i, j-th entry of matrix AE is given by

AEij := aE
(
Π∇,Ek φi,Π

∇,E
k φj

)
. (19)

The stabilization in (18) is sometimes called the “D-recipe stabilization” in the virtual element literature, and contains
the so called “dofi-dofi (dd) stabilization” originally proposed in [6] as the special case with Aii = 1:

SE,dd
h (vh, wh) =

N dofs∑
i=1

DOFi(vh)DOFi(wh). (20)

We explicitly mention the stabilization (20) because many convergence results available from the literature, which we
briefly review in Appendix A, are obtained by using it.

The stabilization term, and, in particular, condition (17), is designed so that aEh (·, ·) satisfies the two fundamental
properties:
- k-consistency: for all vh ∈ V hk (E) and for all q ∈ Pk(E) it holds that

aEh (vh, q) = aE(vh, q); (21)

- stability: there exist two positive constants α∗, α∗, independent of h and E, such that

α∗a
E(vh, vh) ≤ aEh (vh, vh) ≤ α∗aE(vh, vh) ∀vh ∈ V hk (E). (22)
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The virtual element forcing term. To approximate the right-hand side of (6), we split it into the sum of elemental
contributions and every local linear functional is approximated by using the orthogonal projection Π0,E

k vh:

F (vh) =
∑
E∈Ωh

(
f,Π0,E

k vh
)
E
. where

(
f,Π0,E

k vh
)
E

=

∫
E

f Π0,E
k vh dV. (23)

Main convergence properties. The well-posedness of the discrete formulation (6) stems from the coercivity of the
bilinear form ah(·, ·), the continuity of the right-hand side linear functional

(
f,Π0

k ·
)

and the application of the Lax-
Milgram theorem [42, Section 2.7].

In this work, we are interested in checking whether the VEM mantains optimal convergence rates on different
mesh families that may display some pathological situations. From a theoretical viewpoint, the convergence estimates
hold under some constraints on the shapes of the elements forming the mesh, called mesh geometrical (or regularity)
assumptions. We summarize the major findings from the literature in Appendix A and in the next sections we will
investigate how breaking such constraints may affect these results.

Let u ∈ Hk+1(Ω) be the solution to the variational problem (3) on a convex domain Ω with f ∈ Hk(Ω). Let
uh ∈ V hk be the solution of the virtual element method (6) on every mesh of a mesh family T = {Ωh} satisfying a
suitable set of mesh geometrical assumptions. Then, a strictly positive constant C exists such that
– the H1-error estimate holds:

||u− uh||1,Ω ≤ Chk (||u||k+1,Ω + |f |k,Ω) ; (24)

– the L2-error estimate holds:

||u− uh||0,Ω ≤ Chk+1 (||u||k+1,Ω + |f |k,Ω) . (25)

Constant C may depend on the stability constants α∗ and α∗, on mesh regularity constants which we will introduce
in the next section, on the size of the computational domain |Ω|, and on the approximation degree k. Constant C
is normally independent of h, but for the most extreme meshes it may depend on the ratio between the longest and
shortest edge lenghts, cf. Appendix A.

Finally, we note that the approximate solution uh is not explicitly known inside the elements. Consequently, in the
numerical experiments of Section 4.2, we approximate the error in the L2-norm as follows:

||u− uh||0,Ω ≈ ||u−Π0
kuh||0,Ω,

where Π0
kuh is the global L2-orthogonal projection of the virtual element approximation uh to u. On its turn, we

approximate the error in the energy norm as follows:

|u− uh|1,Ω ≈ ah(uI − uh, uI − uh)

where uI is the virtual element interpolant of the exact solution u.

3. Geometrical Assumptions

In this section, we review the geometrical assumptions appeared in the VEM literature since their definition in [6].
All the assumptions are defined for a single mesh Ωh, but the conditions contained in them are required to hold
independently of h. Therefore, when considering a mesh family T = {Ωh}h, these assumptions have to be verified
simultaneously by every Ωh ∈ T .
It is well-known from the FEM literature that the approximation properties depend on specific assumptions on the
geometry of the elements. For example, classical geometrical assumptions for a family of triangulations (Ωh)h→0, are
the ones respectively introduced in [31] and [45]:

(a) Shape regularity condition: there exists a real number γ ∈ (0, 1), independent of h, such that ∀E ∈ Ωh we have

γhE ≤ rE ,

where hE and rE are, respectively, the longest edge in E and its inradius;
(b) Minimum angle condition: there exists α0 > 0, independent of h, such that ∀E ∈ Ωh we have

αE ≥ α0,

where αE is the minimal angle of E.

6



Similarly, in the VEM we need a set of geometrical assumptions to ensure approximation properties. The first pair
of assumptions were proposed in [6] and remained untouched also in [2] and [21]. In these papers, the Authors assume
that a real constant ρ ∈ (0, 1) exists, independent of h, such that two conditions hold:

Assumption G1 Every polygonal cell E ∈ Ωh is star-shaped with respect to a disc with radius ρhE .
Assumption G2 For every polygonal cell E ∈ Ωh, the length |e| of every edge e ∈ ∂E satisfies |e| ≥ ρhE .

Constant ρ is often referred to as mesh regularity constant or parameter. Condition G1 can be weakened in the
following way, as specified in [6] and more accurately in [21]:

Assumption G1 - weak Every polygonal cell E ∈ Ωh is the union of a finite number N of disjoint polygonal subcells
E1, . . . , EN such that, for j = 1, . . . , N ,
(a) element Ej is star-shaped with respect to a disc with radius ρhEj;
(b) elements Ej and Ej+1 share a common edge.

Assumption G1 (or G1 - weak) is the polygonal extension of the classical conditions for triangular meshes, with hE
indicating the elemental diameter instead of the longest edge. Under assumption G1 - weak, and therefore also under
G1, it can be proved [21] that the simplicial triangulation of E determined by the star-centers (the centers of the discs
in G1 and G1 - weak) of E1, . . . , EN satisfies the shape regularity and the minimum angle conditions. Moreover, for
1 ≤ j, k ≤ N it holds that hEj

/hEk
≤ ρ−|j−k|.

These assumptions are more restrictive than necessary, but at the same time they are not particularly demanding, since
they allow the method to work on very general decompositions. This fact was already mentioned in the very first
papers. For example, in [2, Ahmad et al.] the Authors say that:

“Actually, we could get away with even more general assumptions, but then it would be long and boring to make
precise (among many possible crazy decompositions that nobody will ever use) the ones that are allowed and the
ones that are not.”

In [17] and [22] assumption G1 is preserved, but assumption G2 is substituted by the alternative version:

Assumption G3 There exists a positive integerN , independent of h, such that the number of edges of every polygonal
cell E ∈ Ωh is (uniformly) bounded by N .

Assumption G2 implies assumption G3. However, assumption G3 is weaker than assumption G2, as it allows for
edges arbitrarily small with respect to the element diameter. Both assumption pairs G1+G2 and G1+G3 imply that the
number of vertices of E and the minimum angle of the simplicial triangulation of E given by connecting the vertices
of E and its star-center, are controlled by ρ.

Another step forward in the direction of refining the geometrical assumptions has been made in [16]. In addition to
assumption G1, the Authors imagine to unwrap the boundary ∂E of each polygon E ∈ Ωh onto an interval IE of the
real line, obtaining a one-dimensional mesh IE . The collection of the unwrapped boundaries of all elements in a mesh
Ωh is denoted by {IE}E∈Ωh

. Moreover, each one-dimensional mesh IE can be subdivided into a number of disjoint
sub-meshes I1

E , . . . , INE , corresponding to the edges of E (we consider each IiE as a mesh as it may contain more than
one edge, see Fig. 1). Then, the following condition is assumed.

Assumption G4 For every polygonal cell E ∈ Ωh, the family {IE}E∈Ωh
is piecewise quasi-uniform, that is:

(a) each mesh IE can be subdivided into at most N disjoint sub-meshes I1
E , . . . , INE , for some N ∈ N;

(b) each sub-mesh IiE , i = 1, . . . , N , is quasi uniform: the ratio between the largest and the smallest element in IiE
is bounded from above by some c ∈ R+ independent of h.

Each polygon E is in a one-to-one correspondence to a one-dimensional mesh IE , but a sub-mesh IiE ⊂ IE might
contain more than one edge of E. This implies that assumption G4 does not require a uniform bound on the number
of edges in each element and does not exclude the presence of small edges, cf. Fig. 1. For instance, the mesh families
created by agglomeration, cracking, gluing, etc.. of existing meshes are admissible according to G4.

Fig. 1. Examples of admissible elements according to assumption G4. Red dots indicate the vertices of the element.
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According to the literature (see Appendix A), possible assumption pairs requested to guarantee the convergence of the
VEM are given by combining G1 (or, equivalently, G1 - weak) with either G2 or G3 or G4.

4. Breaking the geometrical assumptions

In this section, we test the behaviour of the virtual element method on a number of mesh “datasets”, to stress one
or more of the geometrical assumptions discussed in Section 3. We call a dataset a collection D := {Ωn}n=0,...,N of
meshes Ωn covering the domain Ω = (0, 1)2 such that
- the mesh Ωn+1 has smaller mesh size than Ωn for every n = 0, . . . , N − 1;
- the meshes Ωn follow a common refinement pattern, so that they contain similar polygons organized in similar

configurations.
Note that each mesh Ωn is uniquely identified by its size as Ωh, therefore we can consider a dataset D as a subset of a
mesh family: D = {Ωh}h∈H′ ⊂ T whereH′ is a finite subset ofH.

In addition to the violation of the geometrical assumptions, we are also interested in the behaviour of the VEM
when the measures of mesh elements and edges scale in a nonuniform way in the refinement process. To this end, for
each mesh Ωn ∈ D we define the following quantities and study their trend for n→ N :

An =
maxE∈Ωn

|E|
minE∈Ωn |E|

and en =
maxe∈Ωn

|e|
mine∈Ωn |e|

. (26)

We specifically designed six datasets in order to consider several possible combinations of the geometrical assumptions
of the previous section and the scaling indicators An and en, as shown in Table 1. Note that most of the considered
datasets do not fulfill any set of geometrical assumptions required by the convergence analysis found in the literature
(see Appendix A).

4.1. Datasets definition

We now introduce the datasets, describing for each of them how they are built, which geometrical assumptions
they fulfill or violate, and how the indicators An and en depend on n in the limit for n → N . Each dataset is built
around (and often named after) a particular polygonal element contained in it, which is meant to stress one or more
assumptions or indicators. The detailed construction algorithms, together with the explicit computations of An and en
for all datasets, can be found in Appendix B.

Reference dataset. The first dataset, DTriangle, contains only triangular meshes that are built by inserting a number
of vertices in the domain through the Poisson Disk Sampling algorithm [24], and connecting them in a Delaunay
triangulation (see Appendix B.1). The refinement is obtained by increasing the number of vertices generated by the
Poisson algorithm. The meshes in this dataset do not violate any of the geometrical assumptions and the indicators An
and en are almost constant. We use DTriangle as the reference dataset to evaluate the other datasets by comparing the
performance of the VEM over them.

Hybrid datasets. Next, we consider some hybrid datasets, characterized by a progressive insertion in Ω of one or
more identical polygonal elements (called the initial polygons), the rest of the domain being tessellated by triangles.
These triangles are created by the library Triangle [43], bounding the area of the triangular elements with the area of
the initial polygons. Steiner points [43] can be added, and the edges of the initial polygons are split when necessary
by the insertion of new vertices. The refinement is iterative, with parameters to indicate size, shape and number of the
initial polygons; details on this process are provided in the Appendix B.2.

The top and bottom panels of Fig. 2 respectively show the datasets DMaze and DStar, which we selected as they
violate different geometrical assumptions. Other choices for the initial polygons are possible, for instance considering
the ones in Benchmark [5].

A “maze” is a 10-sided polygonal element E spiralling around an external point. Progressively, each mesh inDMaze

contains an increasing number of mazesE with decreasing thickness as n→ N . EveryE is obviously not star-shaped,
challenging assumption G1. Moreover, the length of the shortest edge e of E decreases faster than the diameter hE of
the polygon. This fact implies, on one side, that the ratio |e|/hE of assumption G2 cannot be bounded from below by
a constant ρ that is independent of h, and, on the other side, that assumption G1-weak also fails. Indeed, even splitting
E into a finite number of rectangles, it is not possible to define a global radius ρ, independent of h, with respect to
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which the union of these rectangles is star-shaped according to G1, if the shortest edge of E is constantly decreasing.
Concerning the scaling indicators, we have An ∼ an for a constant e < a < 3 and en ∼ n log(n).

Dataset DStar is built by inserting star-like polygonal elements, still denoted by E. As n → N , the number of
spikes of each E increases and the inner vertices of the star move towards the barycenter of the element. In this case,
assumption G3 is not satisfied because the number of spikes in each E increases from mesh to mesh. Therefore, the
total number of vertices and edges in a single element cannot be bounded uniformly.
Last, each star E is star-shaped with respect to the maximum circle inscribed in it. However, as shown in Fig. 3,
the radius r of such circle decreases faster than the elemental diameter hE , therefore it is not possible to define a
global ρ > 0 able to uniformly bound from below the quantity r/hE : this violates assumption G1. In order to satisfy
assumption G1-weak, we should split each E into a number of sub-polygons that are star-shaped according to G1.
Independently of the way we partition E, the number of sub-polygons would always be bigger than or equal to the
number of spikes inE, which is constantly increasing. So, the number of sub-polygons would tend to infinity violating
condition G1-weak. Last, both An and en scale linearly.

Fig. 2. Meshes Ω0,Ω2,Ω4,Ω6 from datasets DMaze (top) and DStar (bottom).

Fig. 3. Ratio r/hE for datasets DStar and DJenga.

Mirroring datasets. Another possible strategy to build a sequence of meshes whose elements are progressively
smaller, is to adopt a mirroring technique. In practice, we start with the first base mesh Ω̂0, which coincides with
the first computational mesh Ω0. At every step n ≥ 1, we build a new base mesh Ω̂n from the previous base mesh
Ω̂n−1. The computational mesh Ωn is then obtained by mirroring Ω̂n 4n times and resizing everything to fit the domain
Ω. This construction allows us to obtain a number of vertices and degrees of freedom in each mesh that is comparable
to that of the meshes at the same refinement level in datasets DMaze and DStar.
Examples of meshes from mirrored datasets are presented in Fig. 4; examples of non-mirrored base meshes are visible
in Appendix B.3. Algorithms for the construction of the following datasets are reported in Appendix B.3, while the
mirroring algorithm is detailed in Appendix B.5.
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In the case of the dataset DJenga, we build the n-th base mesh Ω̂n as follows. We start by drawing two horizontal
edges that split the domain (0, 1)2 into three horizontal rectangles with area equal to 1/4, 1/2 and 1/4 respectively.
Then, we split the rectangle with area 1/2 vertically, into two equally-sized rectangles with area 1/4. This provides
us with base mesh Ω̂0, which coincides with mesh Ω0. At each next refinement step n ≥ 1, we split the left-most
rectangle in the middle of the base mesh Ω̂n−1 by adding a new vertical edge, and apply the mirroring technique to
obtain Ωn. This process is shown in the top panels of Fig. 4.

This mesh family breaks all assumptions G1 (and G1-weak), G2, G3, and G4. In fact, the length of the radius r of
the biggest possible disc inscribed into a rectangle is equal to 1/2 of its shortest edge e. As shown in Fig. 3, the ratio
|e|/hE , decreases unboundedly in the left rectangle E every time we split it, and consequently r/hE decreases at a
similar rate. This implies that a lower bound with a uniform constant ρ independent of h cannot exist for these ratios,
thus breaking assumptions G1, G1-weak and G2. In addition, the number of edges of the top and bottom rectangular
elements also grows unboundedly, against assumption G3. Last, the one-dimensional mesh of assumption G4, which is
built on the elemental boundary of the top and bottom rectangular elements, cannot be subdivided into a finite number
of quasi uniform sub-meshes. In fact, either we have infinite sub-meshes or an infinite edge ratio. Finally, we note that
both An and en scale like 2n.

In the case of the dataset DSlices (Fig. 4, middle), we build the n-th base mesh Ω̂n as follows. First, we sample
a collection of points along the diagonal (the one connecting the vertices with coordinates (0, 1) and (1, 0)) of the
reference square [0, 1]2, and connect them to the vertices (0, 0) and (1, 1). In particular, at each step n ≥ 0, the base
mesh Ω̂n contains the vertices (0, 0) and (1, 1), plus the vertices with coordinates (2−i, 1 − 2−i) and (1 − 2−i, 2−i)
for i = 1, . . . , n+ 2. Then, we apply the mirroring technique.

The dataset DSlices violates assumptions G1 and G1-weak. In fact, up to a multiplicative scaling factor depending
on h, the length of the radius of the biggest inscribed disc in every element E is decreasing faster than the diameter of
the element, which is constantly equal to

√
2 times the same scaling factor, thus violating G1. Furthermore, the dataset

also breaks assumption G1-weak because any finite subdivisions of its elements would suffer the same issue. Instead,
the other geometrical assumptions are satisfied. Since no edge is split, we find that en ∼ c, while An ∼ 2n.

In DUlike (Fig. 4, bottom), we build Ω̂n at each step n ≥ 0 by inserting 2n equispaced U -shaped continuous
polylines inside the domain, creating as many U -like polygons. Then, we apply the mirroring technique.

For arguments similar to the ones brought for DMaze, DUlike does not satisfy assumptions G1, G1-weak and G2.
For connectivity reasons, the lower side of the outer U -shaped polygon of every base mesh must be split into smaller
segments when we apply the mirroring technique. Therefore, the number of edges of such cells cannot be limited from
above, contradicting assumption G3. Nonetheless, assumption G4 is satisfied because this subdivision is uniform.
Last, edge lengths scale exponentially and areas scale uniformly, i.e., en ∼ 2n, An ∼ c.

Fig. 4. Meshes Ω0,Ω1,Ω2,Ω3 from datasets DJenga (top), DSlices (middle) and DUlike (bottom).
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Table 1
Summary of the geometrical conditions violated and the asymptotic trend of the indices An and en for all datasets (a is a constant such that
e < a < 3). Assumption G1-weak is not explicitly reported because all the considered datasets that violate G1, also violate G1-weak.

dataset DTriangle DMaze DStar DJenga DSlices DUlike

G1 × × × × ×

G2 × × ×

G3 × × ×

G4 ×

An c an n 2n 2n c

en c n log(n) n 2n c 2n

Multiple mirroring datasets. As a final test, we modified datasets DJenga, DSlices and DUlike in order to stress the
indicators An and en harder.
This is easily obtained by inserting four new elements at each step instead of one, as explained in Appendix B.4.
The resulting datasets, DJenga4, DSlices4 and DUlike4, are qualitatively similar to the mirroring datasets above. These
datasets fulfill the same assumptions as their respective original versions, but the number of elements at each refinement
step now increases four times faster. The indicators An and en change from 2n to 24n, but An remains constant for
DUlike4, and en remains constant for DSlices4.

4.2. Performance analysis

We solved the discrete Poisson problem (3) with the VEM (6) described in Section 2 for k = 1, 2, 3 over each mesh
of each of the datasets defined in Section 4.1, using as groundtruth the function

u(x, y) =
sin(πx) sin(πy)

2π2
, (x, y) ∈ Ω = (0, 1)2. (27)

This function has homogeneous Dirichlet boundary conditions, and this choice was appositely made to prevent the
boundary treatment from having an influence on the approximation error. In Fig. 5 and Fig. 6 we plot the relative
L2-norm ||u−uh||0,Ω/||u||0,Ω and the relative H1-seminorm |u−uh|1,Ω/|u|1,Ω (also called discrete energy norm) of
the approximation error as the number of DOFs increases (that is, as n→ N ).

We also consider the condition numbers of matrices G and H (with the notation adopted in [7]) as numerical in-
dicators of the good behaviour of the method, and identities |Π∇k D − I| = 0 and |Π0

kD − I| = 0 as an estimate of
the approximation error produced by projectors Π∇k and Π0

k, represented by matrices Π∇k and Π0
k, respectively. The

computation of the projectors is obviously affected by the condition numbers of G and H, but the two indicators are
not necessarily related. All of these quantities are computed element-wise and the maximum value among all elements
of the mesh is selected. Condition numbers and identity values for k = 1, 2, 3 are reported in Table 2 (for k < 3 we
have Π0

k = Π∇k ).

First, the reference dataset DTriangle guarantees for the correctness of the VEM, as it performs perfectly according
to the theoretical results both in L2 and in H1 norms (the slopes being indicated by the triangles) for all k values,
maintaining reasonable condition numbers and optimal errors on the projectors Π0

k and Π∇k .

For the hybrid datasets DStar and DMaze, errors decrease at the correct rate for most of the meshes, and only start
deflecting for very high numbers of DOFs and very complicated meshes. These deflections are not due to numerical
problems, as in both datasets we have cond(G)< 106 and cond(H)< 109, which are still reasonable values. Projectors
seem to work properly: |Π∇k D − I| remains below 10−8 and |Π0

kD − I| below 10−7. In a preliminary stage of this
work, we obtained similar plots (not reported here) using other hybrid datasets built in the same way, with polygons
surrounded by triangles. In particular, we did not see big differences when starting with the other initial polygons of
Benchmark [5], cf. the construction discussed in “Hybrid datasets” in Section 4.1.

On the meshes from “Mirroring datasets”, An or en may scale non-uniformly, as reported in Table 1 (indeed, they
can scale exponentially). This reflects to cond(G) and cond(H), which grow up to 1010 and 1014 for DJenga in the
case k = 3. Nonetheless, the discrepancy of the projectors identities remains below 10−5, which is not far from what
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happened with DMaze and DStar. Dataset DJenga exhibits an almost perfect convergence rate, even though L2 and
H1 errors are bigger in magnitude than the ones measured for hybrid datasets; DSlices shows even bigger errors and a
non-optimal convergence rate, and DUlike is the dataset with the poorest performance, but still converges at a decent
rate for k > 1.

Fig. 5. L2-norm and H1-seminorm of the approximation errors of the reference, hybrid and mirroring datasets for k = 1, 2, 3.

In the setting of “Multiple mirroring datasets”, all datasets diverge badly (see Fig. 6), and this is principally due to
very poor conditioning in the matrices involved in the calculations (see Table 2). DatasetDJenga4 andDSlices4 maintain
a similar trend to the ones in Fig. 5 until numerical problems cause cond(G) and cond(H) to explode up to over 1030

for DJenga4 and 1018 for DSlices4. In these conditions, projection matrices Π∇k and Π0
k become meaningless and the

method diverges. The situation slightly improves forDUlike4: cond(H) is still 1016, but the discrepancy of Π∇k and Π0
k

remain acceptable. As a result, DUlike4 does not properly explode, but the approximation error and the convergence
rate are much worse than those seen in Fig. 5.

Table 2
Summary of numerical performance for all datasets. We report the log10 of the original values for the condition number of G and H and the
discrepancy of projection matrices Π∇

k and Π0
k . Note that for k < 3 we have Π0

k = Π∇
k .

dataset DTriangle DMaze DStar DJenga DSlices DUlike DJenga4 DSlices4 DUlike4

k 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

cond(G) 0 2 5 2 3 6 1 3 6 1 5 10 2 4 6 1 4 7 6 18 31 6 8 10 2 6 11

cond(H) 2 5 7 2 5 8 3 6 9 4 9 14 2 8 10 3 7 10 13 26 39 2 15 18 5 10 16

|Π∇
k D− I| -13 -11 -9 -12 -10 -8 -12 -10 -8 -12 -8 -5 -12 -10 -9 -13 -10 -8 -9 3 13 -8 -6 -5 -13 -8 -5

|Π0
kD− I| -10 -8 -7 -5 -5 -7 20 8 -4
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Fig. 6. L2-norm and H1-seminorm of the approximation errors of the reference and multiple mirroring datasets for k = 1, 2, 3.

As a preliminary conclusion, by simply looking at the previous plots we observe that the relationship is not particu-
larly strong between the geometrical assumptions respected by a certain dataset and the performance of the VEM. In
fact, we obtained reasonable results with meshes violating several assumptions.

5. Mesh Quality Indicator

We now aim at defining a mesh quality indicator, that is, a scalar function capable of providing insights on the
behaviour of the VEM over a particular sequence of meshes, before actually computing the approximated solutions.

5.1. Definition

We start from the geometrical assumptions defined in Section 3. Even if we proved them not to be strictly necessary
for the convergence of the method, they can still be good indicators for the general quality of a sequence of meshes.
From each geometrical assumption Gi, i = 1, . . . , 4, we derived a scalar function %i : {E ⊂ Ωh} → [0, 1] defined
element-wise, which measures how well a polygon E ∈ Ωh meets the requirements of Gi from 0 (E does not respect
Gi) to 1 (E fully respects Gi).
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%1(E) =
k(E)

|E|
=


1 if E is convex
∈ (0, 1) if E is concave and star-shaped
0 if E is not star-shaped

(28)

%2(E) =
min(

√
|E|, mine∈∂E |e|)

max(
√
|E|, hE)

(29)

%3(E) =
3

# {e ∈ ∂E}
=

{
1 if E is a triangle
∈ (0, 1) otherwise

(30)

%4(E) = min
i

mine∈Ii
E
|e|

maxe∈Ii
E
|e|

(31)

The operator k(E) in %1 measures the area of the kernel of a polygon E, defined as the set of points in E from which
the whole polygon is visible. Therefore, %1(E) can be interpreted as an estimate of the value of the constant ρ from
assumption G1 on the polygon E. Similarly, the function %2 returns an estimate of the constant ρ introduced in G2,
expressed trough the ratio |e|/hE , with the insertion of the quantity

√
|E| in order to avoid pathological situations.

Function %3 is a simple counter of the number of edges of a polygon, which penalizes elements with numerous edges
as required by G3. Last, we recall from Section 3 that the boundary of a polygon E can be considered as a one-
dimensional mesh IE , which can be subdivided into a number of disjoint sub-meshes I1

E , . . . , INE , each one containing
possibly more than one edge of E. In practice, we consider as a sub-mesh the collection of all edges whose vertices
lie on the same line. For example, as shown in Fig. 7, the boundary of the top bar E in the base mesh of DJenga is
represented by a mesh IE = {I1

E , I2
E , I3

E , I4
E}, where I1

E , I2
E and I3

E contain, respectively, the left, top and right
edge of E, while I4

E contains all the aligned edges in the bottom of E. Function %4 returns the minimum ratio between
the smallest and the largest element in every IE , that is a measure of the quasi-uniformity of IE imposed by G4.

Fig. 7. One-dimensional mesh IE = {I1E , I2E , I3E , I4E} for the top bar E of a DJenga base mesh.

Combining together %1, %2, %3 and %4, we define a global function % : {Ωh}h → [0, 1] which measures the overall
quality of a mesh Ωh. Given a dataset D, we can study the behaviour of %(Ωh) for Ωh ∈ D and determine the quality
of the dataset through the refinement process. In particular, we chose the formula %1%2 + %1%3 + %1%4 as it reflects
the way in which the relative assumptions are typically imposed: G1 and G2, G1 and G3 or G1 and G4 (but not, for
instance, G2 and G3 simultaneously):

%(Ωh) =

√
1

# {E ∈ Ωh}
∑
E∈Ω

%1(E)%2(E) + %1(E)%3(E) + %1(E)%4(E)

3
. (32)

We have %(Ωh) = 1 if and only if Ωh is made only of equilateral triangles, %(Ωh) = 0 if and only if Ωh is made only
of non star-shaped polygons, and 0 < %(Ωh) < 1 otherwise. All indicators %1, %2, %3 and %4, and consequently %, only
depend on the geometrical properties of the mesh elements; therefore their values can be computed before applying
the VEM, or any other numerical scheme.
We point out that this approach is easily upgradeable to future developments: whenever new assumptions on the
features of a mesh should come up, one simply needs to introduce in our framework a new function %i that measures
the violation of the new assumption and insert it into the formulation of the general indicator % in equation (32).
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5.2. Results

We evaluated the indicator % over the datasets defined for this work; results are shown in Fig. 8. If we compare

(a) (b)

Fig. 8. Indicator % for all datasets.

Fig. 8(a) and 8(b) with Fig. 5 and 6 respectively, we can look for a correspondence between the behaviour of % on a
dataset, computed before solving the problem, and the approximation error actually produced by that dataset. Clearly,
as % does not depend on the polynomial degree k nor on the type of norm used, we will compare it to an average of
the plots for the different k values and for the different norms (L2 and H1).

We preliminarily observe that, for an ideal dataset made by meshes containing only equilateral triangles, % would
be constantly equal to 1. We assume this value as a reference for the other datasets: the closer is % on a dataset to the
line y = 1, the smaller is the approximation error that we expect that dataset to produce. Similarly, the more negative
is the % slope, the worse is the convergence rate that we expect over that dataset.

For meshes belonging to DTriangle, % is almost constant and very close to 1, thus foreseeing the excellent conver-
gence rates and the low errors seen in every sub-figure of Fig. 5. The plots for DMaze and DStar in Fig. 8(a) are close
to DTriangle, hence we expect them to behave similarly. This is confirmed by Fig. 5: DMaze and DStar are almost
coincident and very close to DTriangle until the very last meshes, especially in the L2 plots.

The DJenga plot in Fig. 8(a) anticipates a perfect convergence rate but greater error values with respect to the
previous three, and again this behaviour is respected in Fig. 5. The curve relative to DSlices in Fig. 8(a) is quite distant
from the ideal value of 1. Importantly, it keeps decreasing from mesh to mesh, even if the plot allows us to assume that
it may flatten within a couple more meshes. Looking at Fig. 5, we notice that this dataset produces an error significantly
higher than the previous ones (DTriangle,DMaze,DStar,DJenga), and in some cases the H1 error convergence rate is
significantly lower than the theoretical estimate. Last, the % values in Fig. 8(a) predict huge errors and a completely
wrong convergence rate for DUlike. This dataset is actually the one with the worst performance in Fig. 5, where it does
not even always converge (see the case k = 1, H1 seminorm).

As far as multiply refined datasets are concerned, we notice that, since it only depends on the geometry of the
elements, % is not affected by numerical errors. The % plot for DJenga4 in Fig. 8(b) is very similar to the plot obtained
for DJenga in 8(a), therefore we should expect DJenga4 in Fig. 6 to perform similarly to DJenga in Fig. 5. This is
actually the case at least until the last mesh for k = 3, when numerical problems appear which % is not able to predict.
Also dataset DSlices4 has a similar trend to DSlices but decreases faster, reaching a % value of ∼ 0.2 instead of ∼ 0.34
within a smaller number of meshes. As above, DSlices4 performs similarly to DSlices until condition numbers explode,
in the last two meshes for every value of k. Last, the % plot of DUlike4 is significantly worse than the one of DUlike

(and than any other), both in terms of distance from y = 1 and slope. In Fig. 6 we can observe how, even if DUlike4

does not properly explode (as it suffers less from numerical problems, cf. Table 2), the approximation error and the
convergence rate are the worse among all the considered datasets.

Summing up these results, we conclude that indicator % is able, up to a certain accuracy, to predict the behaviour of
the VEM over the considered datasets, both in terms of error magnitude and convergence rate. The prediction may be
inaccurate in presence of very similar performance (the case of DMaze and DStar), or in extreme situations in which
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the numerical problems become so significant to overcome any influence that the geometrical features of the mesh
could have on the performance (the last meshes of DJenga4 and DSlices4).

6. Conclusions

In this work, we collected the regularity assumptions that are used in the literature to guarantee the convergence and
the error estimates in the L2 and H1 norms for the VEM. These conditions allow a great flexibility for the type and
variety of polygons to be used in a mesh, but they still seem overestimated. Experimentally, we verified that the VEM
works, with a good convergence rate, also on meshes and datasets that strongly violate these assumptions. We also
built examples of datasets for which, violating significantly the regularity assumptions, the VEM shows a convergence
rate suboptimal or diverges. Finally, we introduced new indicators to represent how much the regularity hypothesis are
violated by a tessellation and combined these indicators in a single score, aimed at estimating how a dataset can be
expected to be performing in the solution of the VEM. The results obtained are encouraging, showing a satisfactory
correlation between the errors and this indicator. Consequently, our approach provides an experimental score that is
able to predict if a tessellation of a domain can be critical for the VEM.

As possible future developments, we are interested in refining the regularity indicator here proposed, for example,
to deduce new decomposition rules of a domain with possible applications to mesh generators, or to adaptive coars-
ening/refinement algorithms. We are also experimenting similar indicators to evaluate the properties of polyhedral
meshes.

Appendix A. Main convergence results in the literature of the VEM

This appendix is a short overview of the main results on convergence analysis from the VEM literature. For each
selected paper, we report (where available) results for abstract energy error, H1 error estimate and L2 error estimate,
highlighting the geometrical assumptions considered. We may have changed the notation in a few points and intro-
duced some very minor modifications in the theorem statements for consistency with our paper.

A.1. “Basic Principles of Virtual Elements Methods” [6]

This work is the very first paper about the VEM, where this method was introduced. The original formulation adopts
the regular conforming virtual element space, which we still denote by V hk as in (7) and (8) with a small abuse of
notation:

V hk :={vh ∈ H1(Ω) : vh|E ∈ V hk (E) ∀E ∈ Ωh}, (A.1a)

where

V hk (E) :={vh ∈ H1(E) : vh|∂E ∈ C0(∂E), vh|e ∈ Pk(e) ∀e ∈ ∂E, ∆vh ∈ Pk−2(E)}, (A.1b)

and the dofi-dofi formulation SE,dd
h defined in (20) is introduced for the stabilization bilinear form.

Although not explicitly used to derive the following abstract result for the convergence in the energy norm, the Authors
introduce the mesh regularity assumptions G1 and G2 and the concept of simple polygon, which is a connected
polygonal element with a nonintersecting boundary made of straight edges. This setting is the general and widely
adopted framework of the virtual element formulation in many successive papers. Moreover, a broken H1-seminorm
is introduced, for functions v ∈ H1(Ωh):

|v|h,1 :=

( ∑
E∈Ωh

|∇v|20,E

)1/2

. (A.2)

Theorem A.1 (abstract energy error) Under the k-consistency and stability assumptions defined in Section 2, cf.
(21) and (22), the discrete problem has a unique solution uh. Moreover, for every approximation uI ∈ V hk of u and
every approximation uπ of u that is piecewise in Pk(Ωh), we have

|u− uh|1,Ω ≤ C(|u− uI |1,Ω + |u− uπ|h,1 + Fh), (A.3)

where C is a constant depending only on α∗ and α∗ (the constants in (22)), and, for any h, Fh = |f − fh|V h
k

′ is the
smallest constant such that

(f, v)− 〈fh − f, v〉 ≤ Fh|f |1 ∀v ∈ V hk .

16



The Authors claim that an L2 error estimate of the convergence rate can be derived with the usual duality argument
techniques.

A.2. “Equivalent projectors for virtual element methods” [2]

In this paper V hk (E) is replaced by the enhanced VEM space (8) adopted in our work (in the paper it is called “modified
VEM space”) and the dofi-dofi stabilization is adopted. Under the geometrical assumptions G1 and G2, H1 and L2

error estimates are provided; while for the abstract energy error, Theorem A.1 is reported.
Theorem A.2 (H1 error estimate) Assuming G1, G2, let the right-hand side f belong to Hk−1(Ω), and that the
exact solution u belong to Hk+1(Ω). Then

||u− uh||1,Ω ≤ C|h|k|u|k+1,Ω (A.4)

with C a positive constant independent of h.
Theorem A.3 (L2 error estimate) Assuming G1, G2 and with Ω convex, let the right-hand side f belong to Hk(Ω),
and that the exact solution u belong to Hk+1(Ω). Then

||u− uh||0,Ω + |h|||u− uh||1,Ω ≤ C|h|k+1|u|k+1,Ω, (A.5)

with C a constant independent of h.

A.3. “Stability analysis for the virtual element method” [17]

This paper is based on the regular conforming VEM space (A.1) defined in [6]. A new abstract energy error estimate
is deduced, and the H1 error is studied considering two different stabilization techniques. The Authors also introduce
new analytical assumptions on the bilinear form ah(·, ·), replacing (22):

aEh (vh, vh) ≤ C1(E)|||vh|||2E , for all vh ∈ V hk (E); (A.6a)

|||q|||2E ≤ C2(E)aEh (q, q), for all q ∈ Pk(E), (A.6b)

being ||| · |||E a discrete semi-norm induced by the stability term and C1(E), C2(E) positive constants which depend
on the shape and possibly on the size ofE. Differently than the standard analysis of [6] where a kind of bound (A.6)(b)
is assumed for every vh ∈ V hk (E), here the estimate is only required for the polynomials q ∈ Pk(E). Thus, even when
C1(E) and C2(E) can be chosen independent of E, on V hk (E) the semi-norm induced by the stabilization term may
be stronger than the energy aEh (·, ·)1/2.
For the following theorem, from the constants in (A.6) the Authors derive the quantities:

C̃(h) = max
E∈Ωh

{1, C2(E)}, C1(h) = max
E∈Ωh

{C1(E)}, C∗(h) =
1

2
max
E∈Ωh

{min{1, C2(E)−1}},

Theorem A.4 (abstract energy error) Under the stability assumptions (A.6), let the continuous solution u of the
problem satisfy u|E ∈ VE for all E ∈ Ωh, where VE ⊆ V hk (E) is a subspace of sufficiently regular functions. Then,
for every uI ∈ V hk and for every uπ such that uπ|E ∈ Pk(E), the discrete solution uh satisfies

|u− uh|1,Ω . Cerr(h) (Fh + |||u− uI ||| + |||u− uπ||| + |u− uI |1,Ω + |u− uπ|h,1), (A.7)

where the constant Cerr(h) is given by

Cerr(h) = max
{

1, C̃(h)C1(h), C̃(h)3/2
√
C∗(h)C1(h)

}
.

The Authors consider the stability term SEh (·, ·) as the sum of two contributions: the first, S∂Eh , involving the boundary
degrees of freedom; the second, SoEh , involving the internal degrees of freedom. It can be shown that, for the following
results, we can restrict the analysis to S∂Eh , which can be expressed in the dofi-dofi form S∂E,dd

h already defined in
(20), or in the trace form proposed in [44]:

S∂E,trh (vh, wh) = hE

∫
∂E

∂svh∂swhds, (A.8)

where ∂svh denotes the tangential derivative of vh along ∂E.
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Theorem A.5 (H1 error estimate with dofi-dofi stabilization) Assuming G1, G3, let u ∈ Hs(Ω), s > 1, be the
solution of the problem with SEh = S∂E,dd

h . Let uh be the solution of the discrete problem, then it holds

||u− uh||1,Ω . C(h)hs−1|u|s,Ω 1 < s ≤ k + 1, (A.9)

with
C(h) = max

E∈Ωh

(log(1 + hE/hm(E))),

where hm(E) denotes the length of the smallest edge of E.
Corollary A.1 Assuming G1 and G2 instead, then c(h) . 1 and therefore

||u− uh||1,Ω . hs−1|u|s,Ω 1 < s ≤ k + 1.

Theorem A.6 (H1 error estimate with trace stabilization) Under Assumption G1, let u ∈ Hs(Ω), s > 3/2 be the
solution of the problem with SEh = S∂E,trh . Let uh be the solution of the discrete problem, then it holds

||u− uh||1,Ω . hs−1|u|s,Ω 3/2 < s ≤ k + 1. (A.10)

A.4. “Some Estimates for Virtual Element Methods” [21]

In this paper, the enhanced VEM space is defined in a slightly different (but still equivalent) formulation from (8):

V hk (E) :=
{
vh ∈ H1(E) : vh|∂E ∈ Pk(∂E),

∃ qvh(= −∆vh) ∈ Pk(E) such that
∫
E

∇vh · ∇wh dx =

∫
E

qvhwh dx ∀wh ∈ H1
0 (E),

and Π0,E
k vh −Π∇,Ek vh ∈ Pk−2(E)

}
.

(A.11)

Different stabilization types are considered, but the convergence results in this case do not depend on the choice of
SEh . The geometrical assumptions required throughout the article are G1 and G2.
Theorem A.7 (abstract energy error) Assuming G1, G2, if f ∈ Hs−1(Ω) for 1 ≤ s ≤ k, then there exists a positive
constant C depending only on k and ρ from G1 such that

|u− uh|1,Ω ≤ C( inf
v∈V h

k

|u− v|1,Ω + inf
w∈Pk(Ωh)

|u− w|h,1 + hs|f |s−1,Ω). (A.12)

Theorem A.8 (H1 error estimate) Assuming G1, G2, if u ∈ Hs+1(Ω) for 1 ≤ s ≤ k, then there exists positive
constants C1, C2 depending only on k and ρ from G1 such that

|u− uh|1,Ω + |u−Π∇k uh|h,1 ≤ C1h
s|u|s+1,Ω. (A.13)

Theorem A.9 (L2 error estimate) Assuming G1, G2, with Ω convex, if u ∈ Hs+1(Ω) for for 1 ≤ s ≤ k, then there
exists a positive constant C depending only on Ω, k and ρ from G1 such that

||u− uh||0,Ω ≤ Chs+1|u|s+1,Ω. (A.14)

A.5. “Virtual element methods on meshes with small edges or faces” [22]

The Authors establish error estimates for virtual element methods on polygonal or polyhedral meshes that can contain
small edges (d = 2) or small faces (d = 3). The VEM space is the enhanced space formulated as in (A.11), and the
local stabilizing bilinear form is considered in the dofi-dofi formulation SE,dd

h and in the trace formulation SE,trh of
(A.8). Also, the following constants are defined:

H := sup
E∈Ωh

(
maxe∈∂E he
mine∈∂E he

)
, αh :=

{
ln (1 +H) with SE,dd

h

1 with SE,trh

(A.15)

The geometrical assumptions required throughout the article are G1 and G3. The Authors introduce a mesh-dependent
energy norm || · ||h :=

√
ah(·, ·) and a functional Ξh : V hk → Pk(Ωh) given by

Ξh =

{
Π0

1 if k = 1, 2

Π0
k−1 if k ≥ 3.

(A.16)
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Theorem A.10 (abstract energy error) Assuming G1, G3, let u and uh be the solutions of the continuous and dis-
crete problems. We have:

||u− uh||h . inf
w∈V h

k

||u− w||h + ||u−Π∇k u||h +
√
αh

(
||u−Π∇k u||h,1 + sup

w∈V h
k

(f, w − Ξhw)

|w|1,Ω

)
. (A.17)

Theorem A.11 (H1 error estimate) Assuming G1, G3, if the solution u belongs to Hs+1(Ω) for some 1 ≤ s ≤ k,
we have:

||u− uh||h .
√
αhh

s|u|s+1,Ω, and (A.18)

|u− uh|1,Ω +
√
αh
[
|u−Π∇k uh|h,1 + |u−Π0

ku|h,1
]
. αhh

s|u|s+1,Ω. (A.19)

Theorem A.12 (L2 error estimate) Assuming G1, G3, if the solution u belongs to
Hs+1(Ω) for some 1 ≤ s ≤ k, we have:

||u− uh||0,Ω ≤ C αhh
s+1|u|s+1,Ω. (A.20)

The notation A . B indicates that A ≤ CB, with a positive constant C depending on the mesh regularity parameter ρ
of G1 and the degree k in the case of SE,trh , and also on yhe maximum number of edges N of G3 in the case of SE,dd

h .

A.6. “Sharper error estimates for Virtual Elements and a bubble-enriched version” [16]

In this paper, it is shown that the H1 interpolation error |u − uI |1,E on each element E can be split into a boundary
contribution and a bulk contribution. The idea is to decouple the polynomial order on the boundary and in the bulk of
the element. Let ko and k∂ be two positive integers with ko ≥ k∂ and let k = (ko, k∂). For any E ∈ Ωh the Authors
define the generalized virtual element space:

V hk :={vh ∈ H1
0 (Ω) : vh|E ∈)V hk (E), ∀E ∈ Ωh}, (A.21a)

where

V hk (E) :={vh ∈ H1
0 (E) : vh|∂E ∈ C0(∂E), vh|e ∈ Pk∂ (e) ∀e ∈ ∂E, ∆vh ∈ Pko−2(E)}. (A.21b)

For ko = k∂ , the space V hk (E) coincides with the regular virtual element space in (A.1). Moreover, given a function
v ∈ H1

0 ∩ Hs(Ωh), on each element E ∈ Ωh the Authors define the interpolant function Ihv as the solution of the
following elliptic problem: {

∆Ihv = Π0,E
ko−2∆v in E

Ihv = vb on ∂E,

where vb is the standard 1D piecewise polynomial interpolation of v|∂E .
Theorem A.13 (abstract energy error) Under Assumption G1, let u ∈ H1

0 (Ωh)∩Hs(Ωh) with s > 1 be the solution
of the continuous problem and uh ∈ V hk be the solution of the discrete problem. Consider the functions

eh = uh − Ihu, eI = u− Ihu, eπ = u− uπ, eu = uπ − Ihu,

where uπ ∈ Pko(Ωh) is the piecewise polynomial approximation of u defined in Bramble-Hilbert Lemma. Then it
holds that

|u− uh|21,Ω + α ah(eh, eh) . α2
∑
E∈Ωh

h2
E ||f − fh||20,E + α2|eπ|21,Ωh

+ α|eI |21,Ω + α
∑
E∈Ωh

σE (A.22)

where α is the coercivity constant and σE := SEh ((I −Π∇,Ek0
)eu, (I −Π∇,Ek0

)eu).
Theorem A.14 (H1 error estimate with dofi-dofi stabilization) Assuming G1, G4, let u ∈ H1

0 (Ωh) be the solution
of the continuous problem and uh ∈ V hk be the solution of the discrete problem obtained with the dofi-dofi stabilization.
Assume moreover that u ∈ H k̄(Ωh) with k̄ = max{ko + 1, k∂ + 2} and f ∈ Hko−1. Then it holds that

|u− uh|21,Ω . α
∑
E∈Ωh

(
(α+NE)1/2hkoE + hk∂∂E

)2

, (A.23)

where h∂E denotes the maximum edge length, α is the constant defined in (A.15), and NE is the number of edges in
E.
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Theorem A.15 (H1 error estimate with trace stabilization) Under Assumption G1, let u ∈ H1
0 (Ωh) be the solution

of the continuous problem and uh ∈ V hk be the solution of the discrete problem obtained with the trace stabilization.
Assume moreover that u ∈ H k̄(Ωh) with k̄ = max{ko + 1, k∂ + 2} and f ∈ Hko−1. Then it holds that

|u− uh|21,Ω .
∑
E∈Ωh

(
hkoE + hk∂∂E

)2

. (A.24)

Appendix B. Dataset generation

In this appendix, we take a closer look at how the datasets presented in Section 4.1 are built. All algorithms have
been written using CinoLib [35]. We recall that a dataset is a finite mesh sequence D = {Ωn}n=0,...,N , ordered
decreasingly with respect to the mesh size. We also recall the definition of the quantities:

An =
maxE∈Ωn |E|
minE∈Ωn

|E|
and en =

maxe∈Ωn |e|
mine∈Ωn

|e|
, for n = 0, . . . , N.

B.1. Reference dataset

The first dataset, DTriangle, contains only triangular meshes that are built by inserting a number of points in the
domain, and connecting them in a Delaunay triangulation. The point set is defined through the Poisson Disk Sampling
algorithm proposed in [24], empirically adjusting the distance between points (called radius in the original paper) in
order to generate meshes with the desired number of vertices. Points are then connected in a Delaunay triangulation
using the well known Triangle library [43], with the default parameters configuration.
In DTriangle, An and en are almost constant, as no constraints are imposed to the triangulation process.

B.2. Hybrid datasets

The construction of hybrid datasets is characterized by the insertion in Ω of one or more polygonal elements, and
by a tessellation algorithm. Each hybrid dataset is built around (and named after) an initial polygon E = E(tn)
depending on a deformation parameter tn ∈ [0, 1), which is used to deform E. This parameter directly depends on
the mesh number (i.e. tn → 1 as n → N ), and it can be adjusted to improve or worsen the quality of the polygon E
(the higher, the worse).
At refinement step n, mesh Ωn is created by inserting a number of identical copies of the deformed polygon E(tn)
(opportunely resized) in the domain Ω, and tessellating the rest of Ω using the Triangle library. This procedure is
detailed in Algorithm 1.
Note that, a whole family of other datasets may be generated by simply defining a new initial polygon. More examples
can be found in [5].

The initial polygon E(tn) for dataset DMaze is the 10-sided element shown in Fig. B.1, with vertices

(0, 1), (0, 0), (1, 0), (1, 0.75), (0.5, 0.75),(
0.5, 0.5 +

tn
4

)
,

(
0.75 +

tn
4
, 0.5 +

tn
4

)
,(

0.75 +
tn
4
, 0.25− tn

4

)
,

(
0.25− tn

4
, 0.25− tn

4

)
,

(
0.25− tn

4
, 1

)
.

As tn → 1, the length of the shortest edge (the one with vertices (0, 1) and (0.25− tn/4, 1)) goes to zero, and so does
the area of E(tn).

Fig. B.1. Initial polygons E(t0), E(t2), E(t4) and E(t6) from dataset DMaze.
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For building the initial polygon E(tn) of dataset DStar (Fig. B.2), we first build a ī-sided regular polygon, with
ī = 8(1 + b10tnc) and vertices {

v0 = (1, 0),

vi = σ(vi−1), for i = 1, . . . , ī,

being σ(v) the rotation centered at (0, 0) of vertex v by an angle of 2π/̄i. Then we project every odd-indexed vertex
towards the barycenter of E(tn):

v′2j+1 = s v2j+1, for j = 0, . . . , ī−1
2 ,

where the projection factor s ∈ (0, 1) is gradually decreased until the angles at the even-indexed vertices become
smaller than (1− tn)π/3.
As tn → 1 we have an increasing number of edges (from 8 to almost 90), the minimum angle and the area decrease to
zero while the length of every edge increases.

Fig. B.2. Initial polygons E(t0), E(t2), E(t4) and E(t6) from dataset DStar.

Once we defined the initial polygon E(tn), we can build the corresponding dataset through Algorithm 1. We have
some initial parameters, which are set a priori and remain untouched: the number of meshes in the dataset N , the area
of the initial polygon at the first step d0 and the deformation range T = [tmin, tmax]. In this work we set N = 10,
d0 = 0.03, which corresponds to 3% of the domain, and T = [0, 0.95].
Then we have three main parameters, en ∈ N, tn ∈ T and dn ∈ (0, d0), which respectively regulate the number of
initial polygons inserted, the deformation of these polygons and their area. In particular, en increases inversely to dn
(Ωn+1 has twice as polygons as Ωn, with halved areas), so that the percentage of the domain covered by polygons (not
triangles) is preserved all across the dataset. Due to the complicated shapes of some initial polygons, it may be hard to
ask for exactly |E(tn)| = dn, therefore we only impose |E(tn)| ≤ dn.
Several options are possible for setting en, tn and dn, and the speeds at which these quantities vary, strongly affect
the geometrical qualities of the meshes in the dataset. In our datasets, en increases exponentially, tn increases linearly
inside T and dn decreases exponentially. The exponential increase of the number of initial polygons inserted in the
domain may lead to intersections between them, or with the domain boundaries. To avoid this phenomenon, we inserted
a while loop in Algorithm 1 which decreases dn until no intersections occur: this ensures stability to the algorithm, but
in practice it activates only for very dense meshes and it typically runs only few iterations.
Last, when all polygons have been inserted in Ω, the Triangle algorithm is used to generate a Delaunay triangulation.
The already inserted polygons are considered as holes in the domain, and we set no limitations on the number of
Steiner points that may appear in the triangulation process. We adopt the following parameters configuration, cf. [43]:
– q: no angles smaller than 20 degrees;
– c: enclose the convex hull with segments;
– l: use only vertical cuts in the divide-and-conquer algorithm (this switch is primarily of theoretical interest);
– a: maximum triangle area constraint, set equal to dn.
Due to the freedom left to the Triangle algorithm, it is not possible to estimateAn and en precisely for hybrid datasets;
hence, the relative values reported in Table 1 have been measured a posteriori.

B.3. Mirroring datasets

The construction of DJenga, DSlices and DUlike, at every step n ≥ 1, consists in a first algorithm for iteratively
generating a base mesh Ω̂n from the previous base mesh Ω̂n−1, followed by a mirroring technique which returns
the computational mesh Ωn. The base mesh generation algorithm is different for each dataset (Algorithms 2, 3 and
4), while the mirroring algorithm (Algorithm 5) is common to all three datasets. Algorithms 2, 3 and 4 depend on
two initial parameters: N indicates the number of meshes in the dataset and Nel indicates the number of elements to
insert at each step. For mirroring datasets we set Nel = 1, while for multiple mirroring datasets (described in the next
section) we set Nel = 4.
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Algorithm 1 hybrid datasets generation
1: define the initial polygon
2: set the initial parameters N , d0, and T
3: for n = 0, . . . , N do
4: set the main parameters: en = 2n, tn = n tmax−tmin

N , dn = d0/2
n

5: use Poisson Disk Sampling with radius r = 1/
√

2en to find a set of en points {pi}i=1,...,en in Ω
6: generate polygon E(tn) with |E(tn)| ≤ dn
7: insert a copy of E(tn) centered around every pi

8: while polygon E(tn) intersects with other polygons or with the boundary of Ω do
9: dn ← dn − ε

10: generate a polygon E(tn) with |E(tn)| ≤ dn
11: insert a copy of E(tn) centered around every pi

12: end while
13: use Triangle to generate the Delaunay triangulation Ωn of Ω, considering polygons E(tn) as holes
14: add Ωn to D
15: end for

In the DJenga base mesh shown in Fig. B.3 we have a top bar, a bottom bar and a right square which are fixed
independently of n, and n + 1 rectangles in the left part of the domain. At each refinement step n ≥ 1, a new rect-
angular element is created by splitting in two equal parts the leftmost rectangular element in the previous base mesh,
and consequently updating the top and the bottom bars with new vertices and edges. Therefore, all elements in Ω̂n,
except for the top and the bottom bars, are rectangles with height equal to 1/2 and basis ranging from 1/2 to 1/2n+1.
Once that the base mesh Ω̂n is generated, the mirroring algorithm is recursively applied for n times to generate the
computational mesh Ωn, as described in Algorithm 2.
When computingAn and en, we can restrict our calculations to the base mesh, because these ratios are not affected by

Fig. B.3. Non-mirrored base meshes Ω̂0, Ω̂1, Ω̂2, Ω̂3 from datasets DJenga.

the mirroring algorithm. In particular, the longest edge in the base mesh is the upper edge of the top bar, which is never
split, while the shortest edge is the basis of the leftmost rectangle, which halves at each step: this causes en ∼ 2n.
The top bar is also the element with the greatest area (together with the bottom bar and the right square), which is
constantly equal to 1/4, while the leftmost rectangle has area 1/2 ∗ 1/2n+1 = 1/2n+2, therefore An ∼ 2n.

In theDSlices base meshes shown in Fig. B.4, at each step n ≥ 0, we add the vertices with coordinates (2−i, 1−2−i)
and (1 − 2−i, 2−i) for i = 1, . . . , n + 2, and we connect them to the vertices (0, 0) and (1, 1). As a result, at each
iteration we create a couple of new polygons, called upper slice and lower slice, symmetrical with respect to the
diagonal, and we add them to the base mesh.
The area of the two inner triangles (the biggest polygons in the base mesh) is constantly equal to 1/4. For evaluating

Fig. B.4. Non-mirrored base meshes Ω̂0, Ω̂1, Ω̂2, Ω̂3 from datasets DSlices.

the area of the two most external polygons, we consider them as the union of the two identical triangles obtained by
splitting the polygons along the diagonal (the one connecting the vertices with coordinates (0, 1) and (1, 0)). Then the
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Algorithm 2 DJenga dataset generation
1: set the number of meshes N and the number of elements Nel
2: for n = 0, . . . , N do
3: top bar = {(0, 0.75), (1, 0.75), (1, 1), (0, 1)}
4: bottom bar = {(0, 0), (1, 0), (1, 0.25), (0, 0.25)}
5: right square = {(0.5, 0.25), (1, 0.25), (1, 0.75), (0.5, 0.75)}
6: vector b = sample n ∗Nel equally spaced points inside interval (0, 0.5)
7: for i = 1, . . . , size(b) do
8: rectangles[i] = {(b[i− 1], 0.25), (b[i], 0.25), (b[i], 0.75), (b[i− 1], 0.75)}
9: insert vertex (b[i], 0.75) in top bar

10: insert vertex (b[i], 0.25) in bottom bar
11: end for
12: generate mesh Ω̂n = {top bar, bottom bar, right square, rectangles}
13: for i = 1, . . . , n do
14: Ω̂n = mirror mesh(Ω̂n)
15: end for
16: add the newly generated Ωn = Ω̂n to DJenga

17: end for

smallest area in the base mesh is the sum of the areas of two equal triangles with basis
√

2/2 and height 2−n/
√

2, and
simple calculations lead to An ∼ 2n. Last, we notice that all the edges in the base mesh have lengths between 1 and√

2, because no edge is ever split, hence en ∼ c.

Algorithm 3 DSlices dataset generation
1: set the number of meshes N and the number of elements Nel
2: for n = 0, . . . , N do
3: vector b = [2−1, 2−2, . . . , 2−n∗Nel ]
4: for i = 1, . . . , size(b) do
5: upper slices[i] = {(0, 0), (b[i], 1− b[i]), (1, 1), (b[i+ 1], 1− b[i+ 1])}
6: lower slices[i] = {(0, 0), (1− b[i], b[i]), (1, 1), (1− b[i+ 1], b[i+ 1])}
7: end for
8: generate mesh Ω̂n = {upper slices, lower slices}
9: for i = 1, . . . , n do

10: Ω̂n = mirror mesh(Ω̂n)
11: end for
12: add the newly generated Ωn = Ω̂n to DSlices

13: end for

In the DUlike base meshes shown in Fig. B.5, at each step n ≥ 0 we insert 2n U -shaped continuous polylines inside
the domain. We have an internal rectangle and a sequence of concentric equispaced U-like polygons culminating with
the external U. This last element is not different from the other U -like polygons, but is created separately, because we
need to split its lower edge in order to match the base mesh that will appear below it during the mirroring algorithm.
In every base mesh, the shortest edge is the one corresponding to the width of each U -like polygon, which measures

Fig. B.5. Non-mirrored base meshes Ω̂0, Ω̂1, Ω̂2, Ω̂3 from datasets DUlike.

2−(n+1), and the longest edges are the left and right boundaries of the domain. This causes en ∼ 2n. Said e the shortest
edge, the smallest area is the one of the internal rectangle, equal to 2e(1/2 + e), and the biggest area is the one relative
to the external U , equal to 3e− 2e2. We have
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An =
3− 2e

1 + 2e
=

3− 2(2−(n+1))

1 + 2(2−(n+1))
=

3− 2−n

1 + 2−n
∼ c.

Algorithm 4 DUlike dataset generation
1: set the number of meshes N and the number of elements Nel
2: for n = 0, . . . , N do
3: vector b = sample 2n∗Nel equally spaced points inside interval (0, 0.5)
4: for i = 1, . . . , size(b) do
5: U-like polygons[i] = {(b[i], 1), (b[i], b[i]), (1−b[i], b[i]), (1−b[i], 1), (1−b[i+ 1], 1), (1−b[i+ 1], b[i+

1]), (b[i+ 1], b[i+ 1]), (b[i+ 1], 1)}
6: end for
7: internal rectangle = {(b[end], 1), (b[end], b[end]), (1− b[end], b[end]), (1− b[end], 1)}
8: external U = {(0, 1), (0, 0), (1, 0), (1, 1), (1− b[0], 1), (1− b[0], b[0]), (b[0], b[0]), (b[0], 1)}
9: for b ∈ b do

10: insert vertices (b, 0) and(1− b, 0) in external U
11: end for
12: generate mesh Ω̂n = {external U, U-like polygons, internal rectangle}
13: for i = 1, . . . , n do
14: Ω̂n = mirror mesh(Ω̂n)
15: end for
16: add the newly generated Ωn = Ω̂n to DUlike

17: end for

B.4. Multiple mirroring datasets

Multiple mirroring datasets are built with the exactly same algorithms of the mirroring datasets, changing the pa-
rameterNel. This parameter regulates the number of elements generated in each base mesh of the dataset. In particular,
datasets DJenga4, DSlices4 and DUlike4 are defined setting Nel = 4. An example of a multiple mirroring dataset with
Nel = 4 is shown in Fig. B.6, where the first three base meshes of DUlike4 are presented.
The Nel value influences ratios An and en: if An, en ∼ 2n for Nel = 1, these quantities become asymptotic to 24n

when Nel = 4, except for the cases in which the ratios were constant (see Table 1).

Fig. B.6. Non-mirrored base meshes Ω̂0, Ω̂1 and Ω̂2 from datasets DUlike4.

B.5. The mirroring algorithm

The mirroring algorithm (Algorithm 5) generates four adjacent copies of any polygonal meshM defined over the
domain Ω = [0, 1]2. In CinoLib [35], a polygonal mesh can be defined by a vector verts containing all its vertices and
a vector polys containing all its polygons. The result of the algorithm is therefore a polygonal mesh M′, generated
by some vectors new-verts and new-polys, containing four times the number of vertices and polygons of M. When
iterated a sufficient number of times, this construction allows us to obtain a number of vertices and degrees of freedom
in each mesh of the mirroring datasets that is comparable to that of the meshes at the same refinement level in hybrid
datasets.
Vector new-verts contains all vertices v ∈ verts copied four times and translated by vectors (0, 0), (1, 0), (1, 1) and
(0, 1) respectively. The coordinates of all vertices in new-vertices are divided by 2, so that all new points lie in the
same domain as the input mesh. Vector new-polys is simply vector polys repeated four times. A final cleaning step
is required to remove duplicated vertices and edges that may arise in the mirroring process, for example if the initial
meshM has vertices along its boundary.
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Algorithm 5 mesh mirroring
1: input: base meshM
2: verts = verts(M), polys = polys(M)
3: new-verts = verts
4: for vertex v ∈ verts do
5: insert vertex v + (1, 0) in new-verts
6: end for
7: for vertex v ∈ verts do
8: insert vertex v + (1, 1) in new-verts
9: end for

10: for vertex v ∈ verts do
11: insert vertex v + (0, 1) in new-verts
12: end for
13: for vertex v ∈ new-verts do
14: v ← v/2
15: end for
16: new-polys = [polys, polys, polys, polys]
17: M′ = mesh{new-verts, new-polys}
18: remove duplicated vertices and edges fromM′
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