Skip to main content
Log in

Development and analysis of two new finite element schemes for a time-domain carpet cloak model

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we are concerned about a time-domain carpet cloak model, which was originally derived in our previous work Li et al. (SIAM J. Appl. Math., 74(4), pp. 1136–1151, 2014). Some finite element schemes have been developed for this model and used to simulate the cloaking phenomenon in Li et al. (SIAM J. Appl. Math., 74(4), pp. 1136–1151, 2014) and Li et al. (Methods Appl. Math., 19(2), pp. 359–378, 2019). However, numerical stabilities for those proposed explicit schemes are only proved under the time step constrain τ = O(h2), which is impractical and too restricted. To overcome this disadvantage, we propose two new finite element schemes for solving this carpet cloak model: one is the implicit Crank-Nicolson (CN) scheme, and another one is the explicit leap-frog (LF) scheme. Inspired by a totally new energy developed for the continuous model, we prove the unconditional stability for the CN scheme and conditional stability for the LF scheme under the usual CFL constraint τ = O(h). Both numerical stabilities inherit the exact form as the continuous stability. Optimal error estimate is also established for the LF scheme. Finally, numerical results using the LF scheme are presented to support our analysis and demonstrate the cloaking phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammari, H., Kang, H., Lee, H., Lim, M., Yu, S.: Enhancement of near cloaking for the full Maxwell equations, SIAM. J. Appl. Math. 73, 2055–2076 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Anees, A., Angermann, L.: Time domain finite element method for Maxwell’s equations. IEEE Access 7, 63852–63867 (2019)

    Article  Google Scholar 

  3. Bao, G., Li, P., Wu, H.: An adaptive edge element method with perfectly matched absorbing layers for wave scattering by biperiodic structures. Math. Comput. 79, 1–34 (2010)

    Article  MathSciNet  Google Scholar 

  4. Bokil, V.A., Cheng, Y., Jiang, Y., Li, F.: Energy stable discontinuous Galerkin methods for Maxwell’s equations in nonlinear optical media. J. Comput. Phys. 350, 420–452 (2017)

    Article  MathSciNet  Google Scholar 

  5. Brenner, S.C., Gedicke, J., Sung, L. -Y.: An adaptive p1 finite element method for two-dimensional transverse magnetic time harmonic Maxwell’s equations with general material properties and general boundary conditions. J. Sci. Comput. 68(2), 848–863 (2016)

    Article  MathSciNet  Google Scholar 

  6. Brezzi, F., Douglas Jr., J., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47, 217–235 (1985)

    Article  MathSciNet  Google Scholar 

  7. Cassier, M., Joly, P., Kachanovska, M.: Mathematical models for dispersive electromagnetic waves: An overview. Comput. Math. Appl. 74(11), 2792–2830 (2017)

    Article  MathSciNet  Google Scholar 

  8. Ciarlet Jr, P., Zou, J.: Fully discrete finite element approaches for time-dependent Maxwell’s equations. Numer. Math. 82, 193–219 (1999)

    Article  MathSciNet  Google Scholar 

  9. Li, J., Liang, Z., Zhu, J., Zhang, X.: Anisotropic metamaterials for transformation acoustics and imaging. In: Acoustic Metamaterials: Negative Refraction, Imaging, Sensing and Cloaking (eds. by R.V. Craster and S. Guenneau), Springer Series in Materials Science, Vol.166, pp.169-195 (2013)

  10. Chung, E.T., Du, Q., Zou, J.: Convergence analysis of a finite volume method for Maxwell’s equations in nonhomogeneous media, SIAM. J. Numer. Anal. 41, 37–63 (2003)

    Article  MathSciNet  Google Scholar 

  11. Cockburn, B., Li, F., Shu, C.-W.: Locally divergence-free discontinuous Galerkin methods for the Maxwell equations. J. Comput. Phys. 194, 588–610 (2004)

    Article  MathSciNet  Google Scholar 

  12. Demkowicz, L., Kurtz, J., Pardo, D., Paszynski, M., Rachowicz, W., Zdunek, A.: Computing with hp-adaptive finite elements. Vol. 2: Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications. CRC Press, Taylor and Francis (2008)

  13. Duan, H., Liu, W., Ma, J., Tan, R.C.E., Zhang, S.: A family of optimal Lagrange elements for Maxwell’s equations. J. Comput. Appl. Math. 358, 241–265 (2019)

    Article  MathSciNet  Google Scholar 

  14. Greenleaf, A., Kurylev, Y., Lassas, M., Uhlmann, G.: Cloaking devices, electromagnetics wormholes and transformation optics. SIAM Rev. 51, 3–33 (2009)

    Article  MathSciNet  Google Scholar 

  15. Guevara Vasquez, F., Milton, GW., Onofrei, D.: Broadband exterior cloaking. Opt. Express 17, 14800–14805 (2009)

    Article  Google Scholar 

  16. Hao, Y., Mittra, R.: FDTD Modeling of metamaterials: theory and applications artech house publishers (2008)

  17. Hesthaven, J.S., Warburton, T.: Nodal discontinuous Galerkin methods: algorithms. Analysis, and Applications, Springer (2008)

  18. Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numerica 11, 237–339 (2002)

    Article  MathSciNet  Google Scholar 

  19. Hong, J., Ji, L., Kong, L.: Energy-dissipation splitting finite-difference time-domain method for Maxwell equations with perfectly matched layers. J. Comput. Phys. 269, 201–214 (2014)

    Article  MathSciNet  Google Scholar 

  20. Kohn, R.V., Onofrei, D., Vogelius, M.S., Weinstein, M.I.: Cloaking via change of variables for the Helmholtz equation. Comm. Pure Appl. Math. 63, 973–1016 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Lassas, M., Salo, M., Tzou, L.: Inverse problems and invisibility cloaking for FEM models and resistor networks. Math. Mod. Meth. Appl. Sci. 25 (2), 309–342 (2015)

    Article  MathSciNet  Google Scholar 

  22. Lee, J.J.: A mixed method for time-transient acoustic wave propagation in metamaterials. J. Sci. Comput. 84, 20 (2020)

    Article  MathSciNet  Google Scholar 

  23. Leonhardt, U.: Optical conformal mapping. Science 312, 1777–1780 (2006)

    Article  MathSciNet  Google Scholar 

  24. Leonhardt, U., Tyc, T.: Broadband invisibility by non-Euclidean cloaking. Science 323, 110–112 (2009)

    Article  Google Scholar 

  25. Li, J.: Two new finite element schemes and their analysis for modeling of wave propagation in graphene. Results in Applied Mathematics 9 100136, 21 (2021)

    MathSciNet  Google Scholar 

  26. Li, J., Hesthaven, J.S.: Analysis and application of the nodal discontinuous Galerkin method for wave propagation in metamaterials. J. Comput. Phys. 258, 915–930 (2014)

    Article  MathSciNet  Google Scholar 

  27. Li, J., Huang, Y.: Time-domain finite element methods for Maxwell’s equations in metamaterials, Springer Series in Computational Mathematics, vol.43 Springer (2013)

  28. Li, J., Huang, Y., Yang, W.: Well-posedness study and finite element simulation of time-domain cylindrical and elliptical cloaks. Math. Comp. 84, 543–562 (2015)

    Article  MathSciNet  Google Scholar 

  29. Li, J., Huang, Y., Yang, W., Wood, A.: Mathematical analysis and time-domain finite element simulation of carpet cloak, SIAM. J. Appl. Math. 74(4), 1136–1151 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Li, J., Meng, C., Huang, Y.: Improved analysis and simulation of a time-domain carpet cloak model, Comput. Methods Appl. Math. 19(2), 359–378 (2019)

    MATH  Google Scholar 

  31. Li, J., Pendry, J.B.: Hiding under the carpet: a new strategy for cloaking. Phys. Rev. Lett. 101, 203901 4 (2008)

    Google Scholar 

  32. Li, J., Shi, C., Shu, C. -W.: Optimal non-dissipative discontinuous Galerkin methods for Maxwell’s equations in Drude metamaterials. Comput. Math. Appl. 73, 1760–1780 (2017)

    Article  MathSciNet  Google Scholar 

  33. Li, W., Liang, D., Lin, Y.: A new energy-conserved s-fdtd scheme for maxwell’s equations in metamaterials. Int. J. Numer. Anal. Mod. 10, 775–794 (2013)

    MathSciNet  MATH  Google Scholar 

  34. Liu, R., Ji, C., Mock, J.J., Chin, J.Y., Cui, T.J., Smith, D.R.: Broadband ground-plane cloak. Science 323, 366–369 (2009)

    Article  Google Scholar 

  35. Logg, A., Mardal, K.-A., Wells, G.N. (eds.): Automated solution of differential equations by the finite element method: the FEniCS book. Springer, Berlin (2012)

  36. Monk, P.: Analysis of a finite element method for Maxwell’s equations, SIAM. J. Numer. Anal. 29, 714–729 (1992)

    Article  MathSciNet  Google Scholar 

  37. Monk, P.: Finite element methods for maxwell’s equations oxford university press (2003)

  38. Nédélec, J.-C.: Mixed finite elements in \(\mathcal {R}^{3}\). Numer. Math. 35(3), 315–341 (1980)

    Article  MathSciNet  Google Scholar 

  39. Nédélec, J.-C.: A new family of mixed finite elements in \(\mathcal {R}^{3}\). Numer. Math. 50(1), 57–81 (1986)

    Article  MathSciNet  Google Scholar 

  40. Nicaise, S., Venel, J.: A posteriori error estimates for a finite element approximation of transmission problems with sign changing coefficients. J. Comput. Appl. Math. 235, 4272–4282 (2011)

    Article  MathSciNet  Google Scholar 

  41. Pendry, J.B., Schurig, D., Smith, D.R.: Controlling electromagnetic fields. Science 312, 1780–1782 (2006)

    Article  MathSciNet  Google Scholar 

  42. Quarteroni, A., Valli, A.: Numerical approximation of partial differential equations, Springer Ser. Comput Math, vol. 23. Springer, Berlin (1994)

    Book  Google Scholar 

  43. Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Mathematical aspects of the finite element method (eds. by I. Galligani and E. Magenes). Lecture Notes in Mathematics, Vol. 606. Berlin-Heidelberg-New York: Springer, pp. 292-315 (1977)

  44. Scheid, C., Lanteri, S.: Convergence of a discontinuous Galerkin scheme for the mixed time domain Maxwell’s equations in dispersive media, IMA. J. Numer. Anal. 33(2), 432–459 (2013)

    Article  MathSciNet  Google Scholar 

  45. Shi, C., Li, J., Shu, C. -W.: Discontinuous Galerkin methods for Maxwell’s equations in Drude metamaterials on unstructured meshes. J. Comput. Appl. Math. 342, 147–163 (2018)

    Article  MathSciNet  Google Scholar 

  46. Werner, D. H., Kwon, D. -H. (eds.): Transformation electromagnetics and metamaterials: fundamental principles and applications. Springer, Berlin (2013)

  47. Xie, Z., Wang, J., Wang, B., Chen, C.: Solving Maxwell’s equation in meta-materials by a CG-DG method. Commun. Comput. Phys. 19(5), 1242–1264 (2016)

    Article  MathSciNet  Google Scholar 

  48. Yang, Z., Wang, L.L.: Accurate simulation of ideal circular and elliptic cylindrical invisibility cloaks. Commun. Comput. Phys. 17(3), 822–849 (2015)

    Article  MathSciNet  Google Scholar 

  49. Yang, Z., Wang, L.-L., Rong, Z., Wang, B., Zhang, B.: Seamless integration of global Dirichlet-to-Neumann boundary condition and spectral elements for transformation electromagnetics. Comput. Methods Appl. Mech. Engrg. 301, 137–163 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

J. Li would like to thank UNLV for granting his sabbatical leave during Spring 2021 so that he could have time working on this paper. We are grateful for two anonymous reviewers for their sightful comments on improving our paper.

Funding

J. Li’s work is supported by NSF grant DMS-2011943. C.-W. Shu’s work is supported by NSF grant DMS-2010107 and AFOSR grant FA9550-20-1-0055. W. Yang’s work is supported by Project of Scientifific Research Fund of Hunan Provincial Science and Technology department (No. 2018WK4006), NSFC Projects 12171411 and 11771371.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jichun Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Ilaria Perugia

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Shu, CW. & Yang, W. Development and analysis of two new finite element schemes for a time-domain carpet cloak model. Adv Comput Math 48, 24 (2022). https://doi.org/10.1007/s10444-022-09948-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-022-09948-0

Keywords

Mathematics Subject Classification (2010)

Navigation