Skip to main content
Log in

A new local projection stabilization virtual element method for the Oseen problem on polygonal meshes

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

For the Oseen problem, we present a new stabilized virtual element method on polygonal meshes that allows us to employ “equal-order” virtual element pairs to approximate both velocity and pressure. By introducing the local projection type stabilization terms to the virtual element method, the method can not only circumvent the discrete Babuška-Brezzi condition, but also maintain the favorable stability and approximation properties of residual-based stabilization methods. In particular, it does not need to calculate complex high-order derivative terms and avoids the strong coupling terms of velocity and pressure. Error estimates are obtained without depending on the inverse of the viscosity, which means that the method is effective in the convective-dominated regime. Some numerical experiments are performed to verify the method has good behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Brooks, A.N., Hughes, T.J.R.: . Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations 32(1-3), 199–259 (1982)

    Google Scholar 

  2. Burman, E.: Consistent SUPG-method for transient transport problems: stability and convergence. Comput. Methods Appl. Mech. Engrg. 199(17-20), 1114–1123 (2010)

    Article  MathSciNet  Google Scholar 

  3. Hughes, T.J.R., Franca, L.P., Balestra, M.: A new finite element formulation for computational fluid dynamics. V. Circumventing the Babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput. Methods Appl. Mech. Engrg. 59(1), 85–99 (1986)

    Article  MathSciNet  Google Scholar 

  4. Johnson, C., Saranen, J.: Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations. Math. Comp. 47(175), 1–18 (1986)

    Article  MathSciNet  Google Scholar 

  5. Becker, R., Braack, M.: A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38(4), 173–199 (2001)

    Article  MathSciNet  Google Scholar 

  6. Becker, R., Braack, M.: A two-level stabilization scheme for the Navier-Stokes equations. In: Numerical mathematics and advanced applications, pp 123–130 (2004)

    Chapter  Google Scholar 

  7. Braack, M., Burman, E.: Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method. SIAM J. Numer. Anal. 43(6), 2544–2566 (2006)

    Article  MathSciNet  Google Scholar 

  8. Matthies, G., Skrzypacz, P., Tobiska, L.: A unified convergence analysis for local projection stabilisations applied to the Oseen problem. M2AN Math. Model. Numer. Anal. 41(4), 713–742 (2007)

    Article  MathSciNet  Google Scholar 

  9. Matthies, G., Tobiska, L.: Local projection type stabilization applied to inf-sup stable discretizations of the Oseen problem. IMA J. Numer. Anal. 35 (1), 239–269 (2015)

    Article  MathSciNet  Google Scholar 

  10. Cangiani, A., Dong, Z., Georgoulis, E.H., Houston, P.: hp-version discontinuous Galerkin methods on polygonal and polyhedral meshes. Springer Briefs in Mathematics. Springer, Cham (2017)

    Book  Google Scholar 

  11. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)

    Article  MathSciNet  Google Scholar 

  12. Wang, J., Ye, X.: A weak Galerkin mixed finite element method for second order elliptic problems. Math. Comp. 83(289), 2101–2126 (2014)

    Article  MathSciNet  Google Scholar 

  13. Chen, G., Feng, M., Xie, X.: A robust WG finite element method for convection-diffusion-reaction equations. J. Comput. Appl. Math. 315, 107–125 (2017)

    Article  MathSciNet  Google Scholar 

  14. Di Pietro, D.A., Ern, A.: A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Engrg. 283, 1–21 (2015)

    Article  MathSciNet  Google Scholar 

  15. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(1), 199–214 (2013)

    Article  MathSciNet  Google Scholar 

  16. Brezzi, F., Buffa, A., Lipnikov, K.: Mimetic finite differences for elliptic problems. M2AN Math. Model. Numer. Anal. 43(2), 277–295 (2009)

    Article  MathSciNet  Google Scholar 

  17. Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66(3), 376–391 (2013)

    Article  MathSciNet  Google Scholar 

  18. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24(8), 1541–1573 (2014)

    Article  MathSciNet  Google Scholar 

  19. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: Virtual element implementation for general elliptic equations. In: Building bridges: connections and challenges in modern approaches to numerical partial differential equations, Lect. Notes Comput. Sci. Eng., vol. 114, pp 39–71 (2016)

  20. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM Math. Model. Numer. Anal. 50(3), 727–747 (2016)

    Article  MathSciNet  Google Scholar 

  21. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: Virtual element method for general second-order elliptic problems on polygonal meshes. Math. Models Methods Appl. Sci. 26(4), 729–750 (2016)

    Article  MathSciNet  Google Scholar 

  22. Vacca, G., Beirão da Veiga, L.: Virtual element methods for parabolic problems on polygonal meshes. Numer. Methods Partial Differential Equations 31(6), 2110–2134 (2015)

    Article  MathSciNet  Google Scholar 

  23. Mora, D., Rivera, G., Rodríguez, R.: A virtual element method for the Steklov eigenvalue problem. Math. Models Methods Appl. Sci. 25(8), 1421–1445 (2015)

    Article  MathSciNet  Google Scholar 

  24. Zhang, B., Feng, M.: Virtual element method for two-dimensional linear elasticity problem in mixed weakly symmetric formulation. Appl. Math. Comput. 328, 1–25 (2018)

    Article  MathSciNet  Google Scholar 

  25. Beirão da Veiga, L., Brezzi, F., Marini, L.D.: Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51(2), 794–812 (2013)

    Article  MathSciNet  Google Scholar 

  26. Zhang, B., Yang, Y., Feng, M.: Mixed virtual element methods for elastodynamics with weak symmetry. J. Comput. Appl. Math. 353, 49–71 (2019)

    Article  MathSciNet  Google Scholar 

  27. Cangiani, A., Manzini, G., Sutton, O.J.: Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37 (3), 1317–1354 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Antonietti, P.F., Beirão da Veiga, L., Scacchi, S., Verani, M.: A C1 virtual element method for the Cahn-Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54(1), 34–56 (2016)

    Article  MathSciNet  Google Scholar 

  29. Liu, X., Li, J., Chen, Z.: A nonconforming virtual element method for the Stokes problem on general meshes. Comput. Methods Appl. Mech. Engrg. 320, 694–711 (2017)

    Article  MathSciNet  Google Scholar 

  30. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM Math. Model. Numer. Anal. 51(2), 509–535 (2017)

    Article  MathSciNet  Google Scholar 

  31. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Virtual elements for the Navier-Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 56 (3), 1210–1242 (2018)

    Article  MathSciNet  Google Scholar 

  32. Chen, L., Wang, F.: A divergence free weak virtual element method for the Stokes problem on polytopal meshes. J. Sci. Comput. 78(2), 864–886 (2019)

    Article  MathSciNet  Google Scholar 

  33. Benedetto, M.F., Berrone, S., Borio, A., Pieraccini, S., Scialò, S.: Order preserving SUPG stabilization for the virtual element formulation of advection-diffusion problems. Comput. Methods Appl. Mech. Engrg. 311, 18–40 (2016)

    Article  MathSciNet  Google Scholar 

  34. Berrone, S., Borio, A., Manzini, G.: SUPG stabilization for the nonconforming virtual element method for advection-diffusion-reaction equations. Comput. Methods Appl. Mech. Engrg. 340, 500–529 (2018)

    Article  MathSciNet  Google Scholar 

  35. Irisarri, D., Hauke, G.: Stabilized virtual element methods for the unsteady incompressible Navier-Stokes equations. Calcolo 56(4), Paper No. 38, 21 (2019)

    Article  MathSciNet  Google Scholar 

  36. Guo, J., Feng, M.: A new projection-based stabilized virtual element method for the Stokes problem. J. Sci. Comput. 85(1), Paper No. 16, 28 (2020)

    MathSciNet  MATH  Google Scholar 

  37. Dassi, F., Beirão da Veiga, L., Vacca, G.: Vorticity-stabilized virtual elements for the oseen equation. Math. Mod. and Meth. Appl. Sci., (31) (2021)

  38. Girault, V., Raviart, P.-A.: Finite element methods for Navier-Stokes equations. volume 5 of Springer Series in Computational Mathematics (1986)

  39. Braack, M., Schieweck, F.: Equal-order finite elements with local projection stabilization for the Darcy-Brinkman equations. Comput. Methods Appl. Mech. Engrg. 200(9-12), 1126–1136 (2011)

    Article  MathSciNet  Google Scholar 

  40. Dallmann, H., Arndt, D., Lube, G.: Local projection stabilization for the Oseen problem. IMA J. Numer. Anal. 36(2), 796–823 (2016)

    Article  MathSciNet  Google Scholar 

  41. Matthies, G., Lube, G., Röhe, L.: Some remarks on residual-based stabilisation of inf-sup stable discretisations of the generalised Oseen problem. Comput. Methods Appl. Math. 9(4), 368–390 (2009)

    Article  MathSciNet  Google Scholar 

  42. Berrone, S.: Adaptive discretization of stationary and incompressible Navier-Stokes equations by stabilized finite element methods. Comput. Methods Appl. Mech. Engrg. 190(34), 4435–4455 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

In particular, our deepest gratitude goes to the anonymous reviewers for their careful work and thoughtful suggestions that have helped improve this paper substantially.

Funding

This research was supported by the National Nature Science Foundation of China (No. 11971337), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11901078) and the Fundamental Research Funds for the Central Universities (Grant No. ZYGX2020J021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minfu Feng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Lourenco Beirao da Veiga

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Feng, M. & Luo, Y. A new local projection stabilization virtual element method for the Oseen problem on polygonal meshes. Adv Comput Math 48, 30 (2022). https://doi.org/10.1007/s10444-022-09952-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-022-09952-4

Keywords

Mathematics Subject Classification (2010)

Navigation