Skip to main content
Log in

Numerical investigation into the dependence of the Allen–Cahn equation on the free energy

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Phase-field modeling is strongly influenced by the shape of a free energy functional. In the theory of thermodynamics, it is a logarithmic type potential that is legitimate for modeling and simulating binary systems. Nevertheless, a tremendous amount of works have been dedicated to phase-field equations driven by 4-th double-well potentials as a polynomial approximation to the logarithmic type, which is valid only in the critical temperature regime. For comprehensive understanding of polynomial and logarithmic potentials and their relationship in the context of phase-field modeling, we provide and analyze a numerical framework for the Allen–Cahn equation derived from the Ginzburg–Landau functional with a logarithmic potential and its polynomial approximations. We prove that our numerical schemes guarantee the boundedness and energy dissipation properties of the solutions. As for the logarithmic free energy, we characterize different morphological changes of numerical solutions under various atomic binding energy configurations. Comparison of the logarithmic potential with its 2n-th order polynomial approximations reveals difference in the dynamics of spinodal decomposition. In particular, unlike the 6-th order or higher polynomials, the most studied solution by the 4-th order polynomial approximation using the 4-th double-well potential turns out to violate the logarithmic energy dissipation law. The geometric aspect of the Allen–Cahn equation with the logarithmic potential is also confirmed numerically. In summary, this study demonstrates the validity and applicability of the numerical framework for logarithmic and polynomial potentials and supports the need for further mathematical analysis on the logarithmic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27(6), 1085–1095 (1979)

    Article  Google Scholar 

  2. Barrett, J.W., Blowey, J.F: An error bound for the finite element approximation of the Cahn–Hilliard equation with logarithmic free energy. Numer. Math. 72(1), 1–20 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beneš, M., Chalupecký, V., Mikula, K.: Geometrical image segmentation by the Allen–Cahn equation. Appl. Numer. Math. 51(2-3), 187–205 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Capuzzo, D., Finzi, V., March, R.: Area-preserving curve-shortening flows: From phase separation to image processing. Interfaces Free Bound 4, 325–343 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cherfils, L., Miranville, A., Zelik, S.: The Cahn–Hilliard equation with logarithmic potentials. J. Math. 79(2), 561–596 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Chen, W., Conde, S., Wang, C., Wang, X., Wise, S.M.: A Linear energy stable scheme for a thin Film Model without slope selection. J. Sci. Comput. 52, 546–562 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, W., Li, W., Wang, C., Wang, S., Wang, X.: Energy stable higher-order linear ETD multi-step methods for gradient flows: Application to thin film epitaxy. Res. Math. Sci. 7(13), 1–27 (2020)

    MathSciNet  MATH  Google Scholar 

  8. Chen, W., Wang, C., Wang, X., Wise, S.M.: Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential. J. Comput. Phys.: X. 3(100031), 1–29 (2019)

    MathSciNet  Google Scholar 

  9. Chen, W., Li, W., Luo, Z., Wang, C., Wang, X.: A stabilized second order exponential time differencing multistep method for thin film growth model without slope selection. ESAIM: M2AN 54(3), 727–750 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cheng, K., Qiao, Z., Wang, C.: A third order exponential time differencing numerical scheme for no-slope-selection epitaxial thin film model with energy stability. J. Sci. Comput. 81, 154–185 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Copetti, M.I.M., Elliot, C.M.: Numerical analysis of the Cahn–Hilliard equation with a logarithmic free energy. Numer. Math. 63(1), 39–66 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dawes, A.T., Iron, D.: Cortical geometry may influence placement of interface between Par protein domains in early Caenorhabditis elegans embryos. J. Theor. Biol. 333, 27–37 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Della Porta, F., Giorgini, A., Grasselli, M.: The nonlocal Cahn–Hilliard–Hele–Shaw system with logarithmic potential. Nonlinearity 31(10), 4851–4881 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dong, L., Wang, C., Wise, S.M., Zhang, Z.: A positivity-preserving, energy stable scheme for a ternary Cahn–Hilliard system with the singular interfacial parameters. J. Comput. Phys 442(110451), 1–29 (2021)

    MathSciNet  MATH  Google Scholar 

  15. Dong, L., Wang, C., Zhang, H., Zhang, Z.: A positivity-preserving, energy stable and convergent numerical scheme for the Cahn–Hilliard equation with a Flory–Huggins–Degennes energy. Comm. Math. Sci. 17(4), 921–939 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dong, L., Wang, C., Zhang, H., Zhang, Z.: A positivity-preserving second-order BDF scheme for the Cahn–Hilliard equation with variable interfacial parameters. Commun. Comput. Phys. 28, 967–998 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Evans, L.C., Soner, H.M., Souganidis, P.E.: Phase transitions and generalized motion by mean curvature. Comm. Pure Appl. Math 45(9), 1097–1123 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Eyre, D.J.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. Mater. Res. Soc. Symp. Proceedings 529, 39–46 (1998)

    Article  MathSciNet  Google Scholar 

  19. Gaskell, D.R.: Introduction to the thermodynamics of materials. Taylor and Francis, New York (2013)

    Google Scholar 

  20. Guillén-González, F., Tierra, G.: Second order schemes and time-step adaptivity for Allen–Cahn and Cahn–Hilliard models. Comput. Math. Appl. 432, 23–34 (2015)

    MATH  Google Scholar 

  21. Grillo, A., Carfagna, M., Federico, S.: An Allen–Cahn approach to the remodelling of fibre-reinforced anisotropic materials. J. Eng. Math. 109 (1), 139–172 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guo, R., Ji, L., Xu, Y.: High order local discontinuous Galerkin methods for the Allen–Cahn equation: Analysis and simulation. J. Comp. Math 34, 135–158 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. He, D., Pan, K., Hu, H.: A spatial fourth-order maximum principle preserving operator splitting scheme for the multi-dimensional fractional Allen–Cahn equation. Appl. Numer. Math 151, 44–63 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jeong, D., Kim, J.: A practical numerical scheme for the ternary Cahn–Hilliard system with a logarithmic free energy. Phys. A 442, 510–522 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jeong, D., Kim, J.: Practical estimation of a splitting parameter for a spectral method for the ternary Cahn–Hilliard system with a logarithmic free energy. Math. Methods Appl. Sci. 40, 1734–1745 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jeong, D., Kim, J.: Conservative Allen–Cahn–Navier–Stokes system for incompressible two-phase fluid flows. Comput. Fluids. 156, 239–246 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jia, J., Zhang, H., Xu, H., Jiang, X.: An efficient second order stabilized scheme for the two dimensional time fractional Allen–Cahn equation. Appl. Numer. Math 165, 216–231 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Joshi, V., Jaiman, R.K.: An adaptive variational procedure for the conservative and positivity preserving Allen–Cahn phase-field model. J. Comput. Phys. 366, 478–504 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kim, J., Kang, K., Lowengrub, J.: Conservative multigrid methods for ternary Cahn–Hilliard systems. Commun. Math. Sci. 2(1), 53–77 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Lattanzio, C., Mascia, C., Plaza, R., Simeoni, C.: Kinetic schemes for assessing stability of traveling fronts for the Allen–Cahn equation with relaxation. Appl. Numer. Math 141, 234–247 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lee, D., Kim, J.: Mean curvature flow by the Allen–Cahn equation. Eur. J. Appl. Math. 26, 535–559 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lee, H.G.: A second-order operator splitting Fourier spectral method for fractional-in-space reaction–diffusion equations. J. Comput. Appl. Math 333, 395–403 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lee, J.C.: Thermal physics: Entropy and free energies, 2nd edn. World Scientific Publishing Company, Singapore (2011)

    Book  MATH  Google Scholar 

  34. Lee, S., Lee, D.: The fractional Allen-Cahn equation with the sextic potential. Appl. Math. Comput. 351, 176–192 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Li, W., Chen, W., Wang, C., Yan, Y., He, R.: A second order energy stable linear scheme for a thin film model without slope selection. J. Sci. Comput. 76(3), 1905–1937 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Li, C., Huang, Y., Yi, N.: An unconditionally energy stable second order finite element method for solving the Allen–Cahn equation. J. Comput. Appl. Math 353(2), 38–48 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, Y., Guo, S.: Triply periodic minimal surface using a modified Allen–Cahn equation. Appl. Math. Comput. 295, 84–94 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Li, Y., Jeong, D., Kim, H., Lee, C., Kim, J.: Comparison study on the different dynamics between the Allen–Cahn and the Cahn–Hilliard equations. Comput. Math. Appl. 77, 311–322 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. Liu, C., Wang, C., Wang, Y.: A structure-preserving, operator splitting scheme for reaction-diffusion equations with detailed balance. J. Comput. Phys. 436(110253), 1–22 (2021)

    MathSciNet  MATH  Google Scholar 

  40. Long, J., Luo, C., Yu, Q., Li, Y.: An unconditional stable compact fourth-order finite difference scheme for three dimensional Allen–Cahn equation. Comput. Math. Appl. 77, 1042–1054 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  41. Magaletti, F., Picano, F., Chinappi, M., Marino, L., Casciola, C.M.: The sharp-interface limit of the Cahn–Hilliard/Navier–Stokes model for binary fluids. J. Fluid Mech. 714, 95–126 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Meng, X., Qiao, Z., Wang, C., Zhang, Z.: Artificial regularization parameter analysis for the no-slope-selection epitaxial thin film model. CSIAM-AM 1(3), 441–462 (2020)

    Article  Google Scholar 

  43. Pacard, F.: Geometric aspects of the Allen–Cahn equation. Mat. Contemp. 37, 91–122 (2009)

    MathSciNet  MATH  Google Scholar 

  44. Qian, Y., Wang, C., Zhou, S.: A positive and energy stable numerical scheme for the Poisson–Nernst–Planck–Cahn–Hilliard equations with steric interactions. J. Comput. Phys. 426(109908), 1–17 (2021)

    MathSciNet  MATH  Google Scholar 

  45. Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discrete Contin. Dyn. Syst. Ser. A 28(4), 1669–1691 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Kessler, D., Nochetto, R.H., Schmidt, A.: A posteriori error control for the Allen–Cahn problem: Circumventing Gronwall’s inequality. ESAIM:M2AN 38(1), 129–142 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wise, S.M., Wang, C., Lowengrub, J.S.: An energy-stable and convergent finite-difference scheme for the phase-field crystal equation. SIAM J. Numer. Anal. 47(3), 2269–2288 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yang, X.: Error analysis of stabilized semi-implicit method of Allen–Cahn equation. Discrete Contin. Dyn. Syst. Ser. B 11(4), 1057–1070 (2009)

    MathSciNet  MATH  Google Scholar 

  49. Zhang, H., Yan, J., Qian, X., Song, S.: Numerical analysis and applications of explicit high order maximum principle preserving integrating factor Runge-Kutta schemes for Allen–Cahn equation. Appl. Numer. Math 161, 372–390 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  50. Wang, C., Wang, X., Wise, S.M.: Unconditionally stable schemes for equations of thin film epitaxy. Discrete Contin. Dyn. Syst. 28(1), 405–423 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Y. Kim acknowledges support from the National Research Foundation of Korea (NRF- 2020R1 F1A1A01049528) and from UNIST (1.210118.01). D. Lee acknowledges support from the National Research Foundation of Korea (NRF-2015R1C1A1A01054694, NRF-2018R1D1A1B07049292).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongsun Lee.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Silas Alben

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Lee, D. Numerical investigation into the dependence of the Allen–Cahn equation on the free energy. Adv Comput Math 48, 36 (2022). https://doi.org/10.1007/s10444-022-09955-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-022-09955-1

Keywords

Mathematics Subject Classification (2010)

Navigation