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Abstract: An efficient direct solver for solving the Lippmann-Schwinger integral equation
modeling acoustic scattering in the plane is presented. For a problem with N degrees of
freedom, the solver constructs an approximate inverse in O(N3/2) operations and then,
given an incident field, can compute the scattered field in O(N logN) operations. The
solver is based on a previously published direct solver for integral equations that relies on
rank-deficiencies in the off-diagonal blocks; specifically, the so-called Hierarchically Block
Separable format is used. The particular solver described here has been reformulated in a
way that improves numerical stability and robustness, and exploits the particular structure
of the kernel in the Lippmann-Schwinger equation to accelerate the computation of an
approximate inverse. The solver is coupled with a Nyström discretization on a regular
square grid, using a quadrature method developed by Ran Duan and Vladimir Rokhlin that
attains high-order accuracy despite the singularity in the kernel of the integral equation.
A particularly efficient solver is obtained when the direct solver is run at four digits of
accuracy, and is used as a preconditioner to GMRES, with each forwards application of the
integral operators accelerated by the FFT. Extensive numerical experiments are presented
that illustrate the high performance of the method in challenging environments. Using the
10th-order accurate version of the Duan-Rokhlin quadrature rule, the scheme is capable of
solving problems on domains that are over 500 wavelengths wide to residual error below
10−10 in a couple of hours on a workstation, using 26M degrees of freedom.

1. Introduction

A recurring problem in scientific computing is the simulation of the scattering of acoustic waves in media
with variable wave speed, an environment which arises in a wide variety of applications such as seismology,
ultrasound tomography, and sonar. We are specifically interested in a situation in time-harmonic scattering
with wavenumber κ > 0, where a given incident field uinc impinges on a medium with smooth wave speed
v = v(x) that takes on a constant value vfree everywhere outside of a finite domain Ω. The scattered field
can then be written

(1) u(x) =

∫
Ω

G(x,y)σ(y) dy, x ∈ R2,

where

(2) G(x,y) =
i

4
H0(κ‖x− y‖).

The density σ is unknown a priori and can be obtained by solving the Lippmann-Schwinger equation given
by

(3) σ(x) + κ2b(x)

∫
Ω

G(x,y)σ(y) dy = −κ2b(x)uinc(x), x ∈ R2.

The function b, which we refer to as a scattering potential, specifies how much the wave speed deviates from
the free-space wave speed:

b(x) = 1− v2
free

v(x)2
.

As long as b is bounded above by 1, existence and uniqueness of the solution is guaranteed [8, Theorem 8.7].

The presence of the free-space fundamental solution in (1) makes the formulation immune to pollution error
(cf. [2]) and guarantees that the scattered field will satisfy the Sommerfeld radiation condition, avoiding the
need for special techniques, such as absorbing boundary conditions [11] or perfectly matched layers [3], which
would be required if a differential equation formulation of the scattering problem were directly discretized.
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Moreover, (3) is typically a Fredholm equation of the second kind (for instance when viewed as an operator
on L2(Ω)), which admits well-conditioned high-order accurate discretizations.

Remark 1.1. The equation (3) is obtained by inserting (1) as an ansatz into the variable-coefficient
Helmholtz equation

(4) −∆utot(x)− κ2(1− b(x))utot(x) = 0, x ∈ R2,

where utot = uinc + u is the total field, and then applying the fact that the incident field satisfies the
homogeneous free-space Helmholtz equation.

Integral equation formulations of scattering problems do come with certain trade-offs. Particularly, they
upon discretization lead to linear systems with dense coefficient matrices. Additionally, the fact that the
kernel in (3) is singular necessitates some care in order to attain high-order accurate discretizations. Both
of these issues were addressed in [10], where the authors present a high-order accurate quadrature rule that
is tailored specifically for (3), and use an FFT to rapidly apply the global operator. (This is possible since
the kernel G(x,y) in (3) is translation invariant, and a regular square mesh is used for the discretization.)
This allows for iterative solvers to be used, and the overall solver is shown to be highly effective in many
environments. However, it turns out that as the wavenumber κ grows, the iteration count required grows
prohibitively, especially when the scatterer is highly refractive. This may seem surprising given that (3) is a
second kind Fredholm equation, but it is explained by the fact that as κ grows, the magnitude of the second
term in (3) grows as κ2, which means that it quickly comes to dominate the first term, and the overall
behavior of the integral equation tends towards the behavior of a first kind equation.

To overcome the difficulties posed by the slow convergence of iterative methods for problems with oscil-
latory solutions, one may look to utilize a direct solver, leveraging the rank structure of the linear system.
Many data-sparse matrix formats and corresponding inversion algorithms have been proposed, including H-
[17], H2- [4], Hierarchically Off-Diagonal Low Rank (HODLR) [1] and Hierarchically Block/Semi- Separable
(HBS/HSS) matrices [21, 6, 26]. These format are differentiated by whether or not the interactions between
adjacent patches in the domain are compressed and whether or not the basis matrices used in the hierarchical
structure are taken to be nested [20, Sec. 15.8]. In this work, we rely on the so called HBS format, which
uses nested bases (H2 rather than H structure), and does compress adjacent patches (“weak admissibility”).
These ideas trace back to, e.g., [21, 22, 15, 24].

There are two general approaches to inverting HBS matrices. The first approach is to compute the factors
of a data-sparse representation of the inverse through use of explicit formulas in terms of the factors of the
original HBS matrix. The prototypical example of this is reviewed in [13]. Often, these can be viewed as
derived through the recursive usage of variants of the Woodbury formula. Generally, such methods achieve
high practical speed and are relatively memory efficient. The weakness of these methods is that they can
run into stability issues if ill-conditioned matrices are encountered during the inversion process. This is
especially prevalent for problems like the Lippmann-Schwinger equation where the off-diagonal blocks of the
discretized system can vary drastically in magnitude due to the presence of the scattering potential. The
second approach is to use rank structure to create an equivalent sparse linear system and then use black box
sparse direct solvers to compute an LU factorization. An example of this is presented in [18]. The advantage
of this approach is that pivots can be adaptively determined to reduce fill-in while still avoiding the inversion
of ill-conditioned matrices, leading to a compromise between stability and speed. However, finding the
optimal pivots is generally unfeasible, and in our experience, without careful tuning, this approach while
very robust is significantly more costly in both computational time and memory than the first approach.

In this paper, we present a new direct solver, following the first approach, where the inversion formulas
are intentionally derived to be stable for the Lippmann-Schwinger problem and the same basis matrices are
used for both the original HBS matrix and the computed inverse. This solver is based on discrete scattering
matrices and is closely related to the solver derived in [5] for scattering in homogeneous media. We empirically
find that this scheme avoids instabilities, while maintaining, if not exceeding, the performance of other explicit
inversion formula methods. Furthermore, it compresses only the free-space kernel which leads to speedups
in environments where multiple scattering potentials are of interest, such as inverse scattering. The direct
solver can also be used as a preconditioner and then combined with an iterative solver. We demonstrate the
stability and speed of our solver through extensive numerical experiments on several challenging problems.
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The paper is organized as follows: In Section 2, we review some preliminaries necessary to describe our
solver, namely the interpolative decomposition and the high-order discretization of (3). Section 3 defines
the HBS matrix format and discusses efficient techniques for computing the compressed version of our linear
system in this format. Section 4 describes our direct solver, gives a brief complexity estimate, and a discussion
on how this method relates to existing approaches. In Section 5, we motivate using our direct solver as a
preconditioner. Section 6 contains our numerical tests, and the final section summarizes our findings and
outlines some potential directions for future work.

2. Preliminaries

2.1. Interpolative decomposition (ID). The interpolative decomposition is a matrix factorization in
which a subset of the columns (rows) are used to approximately span the column (row) space of the matrix.
To be precise, for a matrix A ∈ Cm×n, a rank k column ID takes the form

(5) A ≈ A(:, I)W,

where I ⊂ [1, 2, . . . , n] is a k-element index vector and W ∈ Ck×n is a matrix for which W( : , I) = I (in
other words, W contains the k × k identity matrix as a submatrix). For (5) to be a useful approximation,
we would like the bound

(6) ‖A− A(:, I)W‖2 ≤ (1 + C)σk+1(A)

to hold for some modest size constant C. In (6), σk+1(A) is the (k + 1)th largest singular value of A. We
call the elements of I the skeleton indices and the remaining indices [1, 2, · · · , n]\I the residual indices. The
rank k row ID, where all rows of A are represented as linear combinations of a select subset, can be defined
analogously:

A ≈ XA(J , :),
where now J is a k-element index vector and X ∈ Cm×k satisfies X(J , : ) = I.

The ID is well suited for our application since it is highly storage efficient (observe that whenever the
matrix entries of A can be computed on the fly, the factorization (5) requires the storage of only the index
vector I, and the k × (n− k) nonzero entries of W, regardless of how large m is). Moreover, the ID enables
us to construct low rank approximations using the method of “proxy sources” (see [7, Sec. 5.2] and [20,
Sec. 17.2]), which is crucial for achieving a complexity better than O(N2), cf. Section 3.2. An additional
benefit is that the presence of the identity submatrix in W and X can be leveraged for slightly more efficient
matrix-matrix multiplication.

In addition to satisfying (6), it is for purposes of numerical stability important that the entries of W in
(5) are not large in magnitude. It can be shown that there exists an ID such that all entries of W have
magnitude at most 1, but we are not aware of a polynomial-time algorithm for computing a factorization
with this property guaranteed. While there do exist polynomial-time algorithms when this condition is
slightly relaxed (see for example [16]), in practice we find that it is more efficient and effectively as robust
to compute an ID using the standard column-pivoted QR algorithm (CPQR). We refer the reader to [7]
for more details. For a rank k approximation, only O(mnk) operations are required. This can be further
reduced to O(mn log k + k2n) through the use of randomized algorithms [25].

2.2. High-order accurate discretization. To discretize (3), we place a uniform grid {xi}Ni=1 with mesh
width h on the rectangle Ω. (If needed, we can slightly increase the length of one side of the rectangle
to ensure that it is a multiple of h.) We then use a Nyström discretization which collocates (3) at the
nodes {xi}Ni=1, while replacing the integrand by a quadrature. We could in this step use a trapezoidal rule
quadrature, and simply omit one point to avoid the singularity in the kernel. Such a “punctured trapezoidal
rule” Nyström discretization would take the form

(7) σ(xi) + κ2h2b(xi)

N∑
j=1
j 6=i

G(xi,xj)σ(xj) = −κ2b(xi)u
inc(xi), i ∈ {1, 2, . . . , N}.

This crude treatment of the singularity results in roughly 2nd-order convergence.
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O(h4 log(1/h)2) O(h6 log(1/h)2) O(h8 log(1/h)2) O(h10 log(1/h)2)

Figure 1. The “stencils” of the Duan-Rokhlin quadrature corrections described in Section
2.2. The index set Si is shown with red dots on a local grid centered around xi. The
4th-order stencil (leftmost) requires only a single correction point, while the 6th-, 8th-, and
10th-order stencils require 5, 13, and 25 points, respectively.

To improve the convergence order, we employ a correction technique proposed by Duan and Rokhlin [10]
that modifies the quadrature weights for a small number of elements near the diagonal. These corrections
are derived by exploiting the form of the singularity of the Hankel function in (2) and smoothness in σ, and
result in a modified linear system

(8) σ(xi) + κ2h2b(xi)

N∑
j=1
j 6=i

G(xi,xj)σ(xj) + κ2h2b(xi)
∑
j∈Si

τijσ(xj)

= −κ2b(xi)u
inc(xi), i ∈ {1, 2, . . . , N},

where Si identifies the set of indices to be corrected. Remarkably, convergence of order O(h4 log(1/h)2) can
be attained by correcting just a single point (so that Si = {i}). To attain higher orders, slightly larger stencils
are required, as shown in Figure 1; for instance order O(h10 log(1/h)2) requires 25 points. Experimentally,
we do not observe the effect of the logarithm terms in these convergence orders, so we informally refer to the
order of these rates in the sequel by just the polynomial part (e.g. we refer to the O(h4 log(1/h)2) scheme
as a 4th-order scheme) for ease of exposition. The quadrature corrections τij depend only on the quantity
κh, in addition to the order of the correction, so after a precomputation they can be cheaply interpolated
for different values of κ and h. We refer the reader to [10] for the details of computing the quadrature
corrections.

For notational convenience, we hereafter restrict our focus to the case of 4th-order (i.e. diagonal) correc-
tions and outline as we go any relevant additional considerations for larger stencils. Equation (8) can now
be expressed as the linear system

(9) (I + BG)q = f,

where I is the N × N identity matrix, B is a diagonal matrix with B(i, i) = κ2b(xi), q(i) = σ(xi), f(i) =
−κ2b(xi)u

inc(xi), and G is the matrix with entries given by

(10) G(i, j) =

{
h2G(xi,xj), i 6= j

h2τii, i = j
,

for i, j = 1, 2, . . . , N . Incorporating higher-order corrections requires adding B times a Toeplitz matrix to
the left-hand side of (9), so the coefficient matrix in (9) can always be applied to vectors in quasilinear time
using the FFT.

3. HBS compression

The linear system (9) involves a coefficient matrix that is dense, but rank structured. In this section,
we describe the so-called Hierarchically Block Separable (HBS) format that we use to represent this matrix.
In Section 3.1, we briefly introduce our notation, referring to [20, Ch. 14] for additional details. Section
3.2 describes how to efficiently construct the low rank factorizations that are required in what is sometimes
referred to as the “compression step” in a rank-structured algorithm.



5

1

2 3

4 5 6 7

8 9 10 11 1312 1514

Figure 2. A tree with four levels, corresponding to the partitioning of the physical domain
in Figure 3.

3.1. HBS matrices. To define an N ×N HBS matrix, we first need a binary tree structure on the row and
column indices of the matrix. We label the root of the tree by 1, and form the corresponding index vector
I1 = [1, 2, · · · , N ]. We partition the indices into two disjoint index vectors I2 and I3 (i.e. I1 = I2 ∪ I3 and
I2 ∩ I3 = ∅), which correspond to nodes on the tree which are the children of the root node and which we
label as 2 and 3. We similarly split I2 into index vectors I4 and I5, which then correspond to the children
of node 2 on the tree and are accordingly labeled nodes 4 and 5. We then do the analogous partitioning of
I3 to obtain I6 and I7. We continue this process until all nodes with no children have only a handful of
indices. We refer to nodes without children as leaves and all other nodes in the tree as parents.

The HBS format is flexible and can be used with a variety of different trees, but for simplicity we restrict
our attention to uniform trees that have 2L leaf boxes for some positive integer L. We label the levels in
the tree so that ` = 0 denotes the root, level ` has 2` nodes, and the leaves are at level ` = L. Figure 2
illustrates our node labeling convention for a tree with L = 3.

Given such a tree structure, we say that a matrix A is an HBS matrix if the following two properties hold:

(1) For any two sibling nodes (i.e. nodes with the same parent) in the tree α and β, there exist matrices
Ûα ∈ Cnα×kα , V̂β ∈ Cnβ×kβ , and Aα,β ∈ Ckα×kβ such that

A(Iα, Iβ) = ÛαAα,βV̂
∗
β ,

with kα < nα = |Iα| and kβ < nβ = |Iβ |.
(2) For any parent node τ with children α and β there exist matrices Uτ ,Vτ ∈ C(kα+kβ)×kτ , such that

Ûτ =

[
Ûα 0

0 Ûβ

]
Uτ , V̂τ =

[
V̂α 0

0 V̂β

]
Vτ .

For notational convenience, we also define Ûτ = Uτ and V̂τ = Vτ when τ is a leaf.

The first condition imposes that A can be tessellated in a fashion with numerically low-rank off-diagonal
blocks. This condition on its own is the definition of the well-known Hierarchically Off-Diagonal Low-Rank
(HODLR) format [1]. The second condition distinguishes the HBS format from the HODLR format by
specifying that the basis matrices can be taken to be nested. We refer to [20, Ch. 14] for more details.

Remark 3.1. Vital to the efficacy of the HBS format is that the only matrices that need to be stored are the
small basis matrices Uτ and Vτ for each box τ , the matrices A(Iτ , Iτ ) for all leaves τ , and the sibling-sibling
interaction matrices Aα,β and Aβ,α for all sibling pairs α and β. All necessary matrix algebra can then be
done with these factors alone, without explicitly forming large blocks of the full matrix or the extended basis
matrices Ûτ and V̂τ .

3.2. Computing an HBS representation. The coefficient matrix in (9) can be well-approximated by
an HBS matrix with modest ranks if a tree structure is chosen based on a division of physical space. We
will compress only the matrix G, as opposed to the full operator I + BG, since this makes the compression
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Figure 3. Division of Ω into boxes corresponding to the tree in Figure 2.

independent of the scattering potential, which is useful in a variety of applications and allows us to leverage
translation invariance of the kernel to accelerate the computation.

We let the root of our tree correspond to the entire domain Ω, and let I1 = [1, 2, . . . , N ]. We then bisect
Ω vertically in half and associate the nodes 2 and 3 with the resulting left and right boxes, respectively. The
vectors I2 and I3 will contain indices that correspond to points in the left and right half of the domain,
respectively. We now split the box corresponding to the node 2 in half horizontally, and associate the upper
box with node 4 and lower box with node 5, populating the index vectors I4 and I5 with the indices of
the points xi that lie in their corresponding box. Similarly, boxes for nodes 6 and 7 are obtained by the
analogous splitting of the box for node 3. We continue this procedure, alternating between vertical and
horizontal cuts at each level until all undivided boxes contain only a few of the xi. We will slightly abuse
notation and refer to a node τ in the tree and its corresponding box Ωτ interchangeably. Figure 3 illustrates
the partition of physical space that corresponds with the tree in Figure 2.

For such a tree and a compression tolerance ε ∈ (0, 1), we expect there to be an HBS matrix Gε, such
that

(11)
‖G− Gε‖2
‖G‖2

≤ ε,

where the ranks kα and kβ at each level in the definition of the HBS matrix increase only gradually as ε→ 0.
After, the HBS matrix Gε is obtained, it can be inverted efficiently using the algorithm in Section 4.1. In
the remainder of this section we discuss how to efficiently compute such a Gε.

For the reasons mentioned in Section 2.1, we use the ID for low-rank factorization. Let τ be any leaf
node. We will obtain the factor Uτ from a row ID of the form

(12) G(Iτ , Icτ ) ≈ UτG(Iskel
τ , Icτ ).

Since |Icτ | = O(N), directly applying the CPQR algorithm would be expensive for large N , and ultimately
yield an O(N2) algorithm. Fortunately, this cost can be reduced using the method of proxy sources [7].
The idea here is that the submatrix G(Iτ , Icτ ) can be interpreted as encoding the interactions induced by
the kernel (2) of charges located at {xi}i∈Icτ on the target points {xi}i∈Iτ . The proxy source technique is
based on a result from potential theory that states that every solution to the Helmholtz equation generated
by sources outside of the box Ωτ can be exactly replicated by layer potentials on the boundary of Ωτ [20,
Sec. 17.2]. Numerically, we approximate the effect of a continuum layer potential on ∂Ωτ by placing sources
on a thin “ring” of collocation points that are just outside of Ωτ , as shown in Figure 4(b), where the target
points in Iτ are drawn in blue and the proxy points in Iproxy

τ are drawn in red. In other words, any field on
the box τ induced by charges at {xi}i∈Icτ can be well-approximated by charges places at the proxy points
{xi}i∈Iproxy

τ
. Expressed in the language of linear algebra, our claim is that the relation

(13) colspan(G(Iτ , Icτ )) ⊆ colspan(G(Iτ , Iproxy
τ ))

holds to high accuracy. Thus, if we compute Uτ and an index vector Iskel
τ such that G(Iτ , Iproxy

τ ) ≈
UτG(Iskel

τ , Iproxy
τ ), then we expect that the same Uτ and Iskel

τ satisfy (12) up to whatever accuracy (13)
holds to.

The accuracy of the proxy source technique depends on how “thick” one takes the ring of proxy sources
to be. Using just a single wide line of sources, as shown in Figure 4(b), typically leads to 4 or 5 accurate
digits, while using a double wide ring, as shown in Figure 4(c) is almost always enough to attain 10 accurate
digits. If a triple wide ring is used, full double precision accuracy typically results. See Table 1 for details.
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(a) (b) (c)

Figure 4. The proxy source compression technique, cf. Section 3.2. (a) We seek to build
a basis for the range of the matrix G(Iτ , Icτ ) that maps sources on the red points (Ic

τ ) to
targets on the blue points (Iτ ). This is expensive since G(Iτ , Icτ ) has O(N) columns. (b)
The proxy source techniques relies on the observation that any solution to the homogeneous
Helmholtz equation on Ωτ (the box holding the blue dots) can be approximated to high
precision by placing sources on the red “proxy points” (Iproxy

τ ) only. This means that we can
work with the small matrix G(Iτ , Iproxy

τ ). (c) Using a thicker ring of proxy sources, higher
accuracy can be attained.

Size of Ωτ
0.25λ× 0.25λ 1λ× 1λ 4λ× 4λ

width=1 8.7e-05 1.6e-04 9.6e-04
width=2 1.1e-10 1.8e-10 6.2e-10
width=3 5.6e-15 5.2e-15 4.0e-15

Table 1. Errors incurred when using the method of proxy sources to accelerate the com-
pression stage. The target box Ωτ holds 20 × 20 points. The error reported is the relative
error in maximum norm. To be precise, using the notation in Section 3.2, the error reported
is ‖B−QQ∗B‖∞/‖B‖∞ where B = G(Iτ , Icτ ) is the matrix to be approximated, where Q is
a matrix whose columns form an orthornormal basis for the columns of G(Iτ , Iproxy

τ ), and
where ‖B‖∞ = max |B(i, j)|.

By the symmetry of G, we can set Vτ = Uτ and use the column skeleton indices Iskel
τ also for the row

skeletons.

Another advantage of the proxy source technique is that the matrix G(Iτ , Iproxy
τ ) that needs to get

factorized is identical for every node τ on a given level. This means that only one box per level needs to
actually be processed.

Remark 3.2. A slight disadvantage of the proxy source technique is that it slightly overestimates the
interaction rank for boxes that are located at the boundary of the domain. To see why, consider a box in
the southwest corner of the computational domain. The optimal set of proxy nodes need only capture a field
generated by sources to the north and to the east. But the proxy sources will completely surround the box
nevertheless, and will force the inclusion of skeleton nodes along the outer boundaries.

Remark 3.3. The compression stage is in a sense a “universal” computation, since it depends only on the
size of a box, and on the parameter hκ. This means that if one is willing to live with mild restrictions on
the grids that can be used, the bases and the skeleton sets could be precomputed once and for all, and be
stored.
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Figure 5. Illustration of ID with 4th-order corrections described in Section 3.2. The red
circles denote points in the box τ and the blue points denote the points in the proxy ring
used. The solid red dots denote the points that correspond to skeleton indices, as chosen
using CPQR as explained in Section 2.1. Each image corresponds to a specific compression
tolerance, which is specified in the title, and also reported is the rank (i.e. the number of
solid red circles) for that tolerance.

Figure 6. Analogue of Figure 5 for the 10th-order quadrature corrections.

After the relevant factors have been computed on the leaf level, the nodes on level L−1 can be processed,
picking the skeleton indices for each box to be a subset of the skeleton indices of its children. If τ is now a
parent node with children α and β, this can be accomplished by computing a row ID of the form

(14) G([Iskel
α , Iskel

β ], Icτ ) ≈ UτG(Iskel
τ , Icτ ).

Again, the method of proxy sources is employed to reduce the cost of computing this factorization. The
sibling-sibling interaction matrices are also simply given by

(15) Gα,β = G(Iskel
α , Iskel

β ) and Gβ,α = G(Iskel
β , Iskel

α ),

so these dense matrices themselves do not need to be stored. Translation invariance is again exploited so it
suffices to factor just a single box on this level. The equations (14) and (15) can be viewed as a recursion
relation, which can be applied to move up the tree, processing one level at a time, employing the method of
proxy sources and translation invariance on each level.

This procedure carries over straightforwardly when higher-order quadrature corrections are included.
However, the required ranks in each ID and the necessary thickness of the ring of proxy sources for a fixed
accuracy increases. The former effect is illustrated in Figures 5 and 6, which show the skeleton points and
ranks of the ID when the interaction through the kernel (2) with κ = 10 and 4th- and 10th-order quadrature
respectively between a box of 20 by 20 points in a 40 by 40 uniform lattice of points is compressed to various
accuracies.

Remark 3.4. A delicate question in building a rank-structured representation of a matrix is how to choose
the local compression tolerance. Since errors do to some degree aggregate in the pass from smaller to larger
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blocks, it is advantageous to use a smaller (absolute) tolerance for boxes on the finest level, and then to
gradually increase the tolerance parameter in the upwards pass. Deriving rigorous bounds on the error
propagation is difficult, in particular when non-orthonormal basis matrices are used. Moreover, such bounds
tend to be pessimistic since the worst-case alignment of the all error vectors is statistically extremely unlikely.
In the numerical experiments reported in Section 6, we picked a local compression tolerance by multiplying
a given global tolerance parameter ε by (an estimate of) the Frobenius norm of the block to be compressed.
This simple strategy automatically enforces more precise approximation of blocks at the finer levels, and has
empirically proven to work well.

4. A direct solver based on discrete scattering operators

We are now ready to describe the inversion procedure for (9). In the following, we will assume that an
HBS approximation to the matrix G has been computed using the procedure described in Section 3.2 and
therefore all necessary matrices, as described in Remark 3.1, have been computed. In Section 4.1, we give
a formal description of our solver. This is followed by Section 4.2 which gives a brief outline of the solver’s
complexity. Section 4.3 provides some discussion contextualizing our work in relation to some existing direct
solvers.

4.1. Description of solver. For each node τ , we introduce the notation

(16) qτ = q(Iτ ), wτ = G(Iτ , Icτ )q(Icτ ), fτ = f(Iτ ).

The vector qτ represents the restriction of q to the points in τ and wτ represents the incoming field on the
points in τ generated from all of the points outside of τ .

The key observation that enables our direct solver is that to represent the interactions between nodes, it
suffices to work with compressed versions of these vectors. To this end, we define an outgoing expansion q̃τ
and an incoming expansion w̃τ through the relations

(17) q̃τ = V̂
∗
τqτ , wτ = Ûτ w̃τ ,

respectively, where Ûτ and V̂τ are the extended basis matrices defined in Section 3.1. The expansions q̃τ
and w̃τ serve as proxies for qτ and wτ , and are analogous to the multipole and local expansions in the fast
multipole method [14]. The key to relating the two expansions is the following lemma, which states that
the incoming expansion of a non-root node can be split into a sibling-sibling interaction plus a contribution
from the incoming field of the parent:

Lemma 4.1. Let τ be a parent node with children α and β. Then, with Gα,β and Gβ,α defined by (15), we
have

(18)
[
w̃α
w̃β

]
=

[
0 Gα,β

Gβ,α 0

] [
q̃α
q̃β

]
+ Uτ w̃τ ,

whenever Ûα and Ûβ have full column rank.

Proof. By definition of the extended basis matrices, the full incoming field on α and β can be expressed by[
wα
wβ

]
=

[
0 G(Iα, Iβ)

G(Iβ , Iα) 0

] [
qα
qβ

]
+ Ûτwτ

=

[
Ûα 0

0 Ûβ

] [
0 Gα,β

Gβ,α 0

] [
V̂
∗
α 0

0 V̂
∗
β

] [
qα
qβ

]
+

[
Ûα 0

0 Ûβ

]
Uτ w̃τ

=

[
Ûα 0

0 Ûβ

]([
0 Gα,β

Gβ,α 0

] [
q̃α
q̃β

]
+ Uτ w̃τ

)
.

The result then follows from the fact that Ûα and Ûβ have full column rank and by (17)[
w̃α
w̃β

]
=

[
Û
†
α 0

0 Û
†
β

] [
wα
wβ

]
.
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�

We are now in position to derive the solver, which follows the pattern of the solver in [20, Ch. 18], but
with some accelerations that are enabled by the particular nature of the equilibrium equation (9).

The first stage consist of a sweep upwards through the hierarchical tree, going from smaller to larger
boxes. To start, let τ denote a leaf box. Recalling the definition of local potentials in (16), and restricting
the equilibrium equation (9) to τ , we obtain the local equilibrium equation

(19) (I + BτGτ )qτ + Bτwτ = fτ ,

where Bτ = B(Iτ , Iτ ) and Gτ = G(Iτ , Iτ ). Setting

(20) Xτ = (I + BτGτ )−1

and then multiplying both sides of (19) by V∗τXτ produces

(21) V∗τqτ + V∗τXτBτwτ = V∗τXτ fτ .

Using the fact that by definition V̂τ = Vτ for leaves, (21) can be rewritten using the notation in (17) as

(22) q̃τ + Sτ w̃τ = r̃τ ,

where

(23) Sτ = V∗τXτBτUτ

and

(24) r̃τ = V∗τXτ fτ .

The matrix Sτ can be viewed as a discrete analogue of a scattering matrix, which is a mathematical operator
that encodes the relationship between the incoming field and the effective charge on a box in the absence of
a source [5].

We next move one level up the tree and consider a parent node τ with leaf children α and β. Combining
Lemma 4.1 and the fact that both α and β satisfy (22), we have the equilibrium equation

(25)
[
q̃α
q̃β

]
+

[
Sα 0
0 Sβ

]([
0 Gα,β

Gβ,α 0

] [
q̃α
q̃β

]
+ Uτ w̃τ

)
=

[̃
rα
r̃β

]
.

Setting

(26) Xτ =

[
I SαGα,β

SβGβ,α I

]−1

and then multiplying both sides of (25) by V∗τXτ produces

V∗τ

[
q̃α
q̃β

]
+ V∗τXτ

[
Sα 0
0 Sβ

]
Uτ w̃τ = V∗τXτ

[̃
rα
r̃β

]
.

Using (17) and defining

(27) Sτ = V∗τXτ

[
Sα 0
0 Sβ

]
Uτ ,

and

(28) r̃τ = V∗τXτ

[̃
rα
r̃β

]
gives us exactly (22) again, where now (27) allows us to compute the discrete scattering matrix for τ using
the scattering matrices for its children, α and β. This allows us to recursively traverse up the tree, obtaining
a relation identical to (22) at each level until we get to the root.

Now, let τ be the root and let α and β be its children. Since there is no incoming field on τ , the only
incoming field on α is due to charges in β and vice versa. Therefore, the equation analogous to (25) simplifies
in this case to

(29)
[

I SαGα,β
SβGβ,α I

] [
q̃α
q̃β

]
=

[̃
rα
r̃β

]
,
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which can be inverted directly. Then, the incoming fields on α and β can be computed by the matrix-vector
product [

w̃α
w̃β

]
=

[
0 Gα,β

Gβ,α 0

] [
q̃α
q̃β

]
.

The incoming and outgoing expansions of the nodes on other levels can be computed using a downward
sweep, as follows. Let τ be a node, such that its parent has been processed and so the incoming expansion
w̃τ has been computed. If α and β are children of τ , then using (25) and (26) we can obtain the equation
for the outgoing expansions on α and β[

q̃α
q̃β

]
= Xτ

([̃
rα
r̃β

]
−
[
Sα 0
0 Sβ

]
Uτ w̃τ

)
.

The incoming expansions w̃α and w̃β can then be computed using (18). We can proceed to compute the
incoming and outgoing expansions for the children of α and β and so on, all the way down the tree.

After the incoming expansion for a leaf node τ is determined, (19) and (17) are used to determine the
solution of the original system through the equation

qτ = Xτ (fτ − BτUτ w̃τ ) .

It is customary to split the solution process into a build stage in which the matrices that define the solution
operator are all constructed, and a solve stage in which the computed approximate solution operator is applied
to a given incoming field. In our setting, the build stage consists of a single pass up the tree in which the
local solution operator Xτ and the local scattering matrix Sτ is computed for each node τ . This is illustrated
in Algorithm 1, which computes the local solution operators and scattering matrices on all nodes, first for
the leaves using (20) and (23), and then for all other nodes in an upward pass using (26) and (27). Then,
given a right-hand side vector, the solve stage consists of a pass up the tree, where the r̃τ are computed using
(24) and (28), and then a downward pass where the incoming expansions w̃τ are computed. This procedure
is summarized in Algorithm 2. In an environment where an inverse needs to be applied to multiple different
vectors, such as in preconditioning or when one is interested in evaluating the scattered field for multiple
incident fields, the build stage which is the dominant cost needs to be executed just once.

Remark 4.1. A dominant cost of the build stage is the evaluation of the matrices Xτ , as defined by (26).
This computation can be accelerated by exploiting the presence of the two identity matrices on the diagonal
and the fact that the matrices Gα,β and Gβ,α tend to be substantially rank deficient. A heuristic argument
for this rank deficiency is that the matrices Gα,β and Gβ,α encode the interactions between the skeleton
indices of two adjacent boxes. While these points typically live on the entire perimeter of each box (see
Figures 5 and 6), the interactions can be accurately represented using mostly points on the single shared
side. Thus, we expect the ranks of the off-diagonal blocks to be a little over 25% of their sizes, which can be
leveraged for more efficient inversion.

To this end, suppose we have low rank factorizations Gα,β = Lα,βR
∗
α,β and Gβ,α = Lβ,αR

∗
β,α, which can

be computed once per level during the HBS compression at a modest cost. We can apply the Woodbury
formula to (26) to get the equivalent formula for the local solution operator of a non-leaf node

(30) Xτ = I−
[
SαLα,β 0

0 SβLβ,α

] [
I R∗β,αLβ,α

R∗α,βLα,β I

]−1 [
0 R∗α,β

R∗β,α 0

]
.

Note that the matrix that needs to be inverted in (30) is substantially smaller than that in (26).

4.2. Complexity estimate. The computational complexity of our solver depends on the numerical ranks
of the off-diagonal blocks in the HBS format. For a 2D volume kernel like (2), the interaction rank of a
box grows like the square root of the number of points it contains when the wavenumber and compression
tolerance are fixed [18, Sec. 4]. Since the HBS compression and inversion stages use cubic dense linear algebra,
the cost of each is dominated by the cost of processing the root level where the rank of interaction grows
as O(N1/2), and thus both stages require O(N3/2) operations. Applying the inverse to a vector requires an
operation that grows quadratically with the rank of each box, so each level requires O(N) operations, for
a total of O(N logN) operations. As for memory, besides the HBS factors the only matrices that need be
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Algorithm 1 Build inverse as described in Section 4.1
Input: HBS compression of coefficient matrix specified by (Uτ ,Vτ ) for all non-root nodes, (Bτ ,Gτ ) for all

leaves, and (Gα,β ,Gβ,α) for all parents with children α and β
Output: Inverse of HBS matrix specified by Xτ for all nodes and Sτ for all non-root nodes

1: for all τ a leaf do
2: Xτ = (I + BτGτ )−1

3: Sτ = V∗τXτBτUτ
4: end for
5: for ` = L− 1, L− 3, . . . , 0 do
6: for all τ on level ` do
7: [α, β]← children of τ

8: Xτ =

[
I SαGα,β

SβGβ,α I

]−1

9: if ` 6= 0 then

10: Sτ = V∗τXτ

[
Sα 0
0 Sβ

]
Uτ

11: end if
12: end for
13: end for

Algorithm 2 Apply inverse to right-hand side f as described in Section 4.1
Input: HBS matrix, its inverse as in Algorithm 1, and right-hand side f

Output: Solution vector q

1: // Upwards pass
2: for all τ a leaf do
3: rτ = Xτ fτ
4: r̃τ = V∗τ rτ
5: end for
6: for ` = L− 1, L− 3, . . . , 1 do
7: for all τ on level ` do
8: [α, β]← children of τ

9: r̃τ = V∗τXτ

[̃
rα
r̃β

]
10: end for
11: end for

12: // Top-level solve
13: τ ← root
14: [α, β]← children of τ

15:

[
w̃α
w̃β

]
=

[
0 Gα,β

Gβ,α 0

]
Xτ

[̃
rα
r̃β

]

16: // Downwards pass
17: for ` = 2, 3, . . . , L− 1 do
18: for all τ on level ` do
19: [α, β]← children of τ

20:

[
q̃α
q̃β

]
= Xτ

([̃
rα
r̃β

]
−
[
Sα 0
0 Sβ

]
Uτ w̃τ

)
21:

[
w̃α
w̃β

]
=

[
0 Gα,β

Gβ,α 0

] [
q̃α
q̃β

]
+ Uτ w̃τ

22: end for
23: end for

24: // Form solution vector
25: for all τ a leaf do
26: qτ = rτ − XτBτUτ w̃τ
27: end for

stored for the inverse are the local solution operators Xτ , and so the cost of storage is still O(N). For a more
detailed analysis of the costs of solvers for HBS matrices, we refer the reader to [18, Sec. 4], which applies
in our setting as well.

Remark 4.2 (Complexity for a fixed PDE). In the case where κ is kept fixed as N is increased, it should
be possible to reduce the O(N3/2) cost of the inversion stage to O(N) using techniques such as HIF [19],
nested trees [9], or strong recursive skeletonization [23]. This is the subject of ongoing work.
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Remark 4.3 (Complexity for a fixed number of points per wavelength). In the case where κ is increased
as N grows to keep a fixed number of discretization points per wavelength (so that κ ∼ N1/2), the overall
complexity of the solver is O(κ3). In this case, the acceleration techniques referenced in Remark 4.2 do not
apply, and we are not aware of any direct solvers that scale better than O(κ3) in the general case.

4.3. Comparison with existing solvers. The connection between the procedure described in Section 4.1
and some existing work on HBS-based direct solvers can be elucidated through the use of the sparse matrix
embeddings introduced in [18]. For the equation (9) and an HBS tree with only two levels, the corresponding
matrix embedding is given by

(31)


(I + BαGα) 0 BαUα 0 0 0

0 (I + BβGβ) 0 BβUβ 0 0
−V∗α 0 0 0 I 0
0 −V∗β 0 0 0 I
0 0 −I 0 0 Gα,β
0 0 0 −I Gβ,α 0




qα
qβ
w̃α
w̃β
q̃α
q̃β

 =


fα
fβ
0
0
0
0

 .

Upon eliminating qα and qβ in the equations for w̃α and w̃β , the system

(32)


Sα 0 I 0
0 Sβ 0 I
−I 0 0 Gα,β
0 −I Gβ,α 0



w̃α
w̃β
q̃α
q̃β

 =


r̃α
r̃β
0
0


is obtained, where we continue to use the notation of Section 4.1. The classical Woodbury inversion formula
for HBS matrices as discussed in [13] corresponds to using the (1, 1) and (2, 2) blocks in (32) to eliminate
w̃α and w̃β to obtain

(33)
[
S−1
α Gα,β

Gβ,α S−1
β

] [
q̃α
q̃β

]
=

[
S−1
α r̃α

S−1
β r̃β

]
.

This requires inverting both Sα and Sβ , which in our application is often highly ill-conditioned due to B in (9)
containing small diagonal entries. Indeed, for the problems in Section 6, we frequently encounter scattering
matrices with condition numbers far greater than the reciprocal of machine precision in double-precision
arithmetic.

The scheme described in Section 4.1, on the other hand, uses the (3, 1) and (4, 2) blocks in (32) as pivots.
This leads to the mathematically equivalent system

(34)
[

I SαGα,β
SβGβ,α I

] [
q̃α
q̃β

]
=

[̃
rα
r̃β

]
.

Solving (34) is often a more benign operation, since the coefficient matrix is a perturbation to the identity. In
particular, in regions where the scattering potential is small in magnitude, the “perturbation terms” SαGαβ
and SβGβα will be of small magnitude too, which ensures that (34) is well-conditioned. In other words,
the formulation (34) avoids the “spurious” ill-conditioning issues in (33). In addition, the resulting solvers
require fewer arithmetic operations.

The approach suggested in [18] is to apply a sparse direct solver package, such as UMFPACK, to the
entire system (31). Such packages have highly optimized algorithms for selecting pivots to minimize fill-in,
while avoiding the inversion of ill-conditioned matrices. In our experiments, we find this strategy is as robust
as our solver, but we empirically find the approach of [18] to be slower and more memory-intensive than the
technique described here.

5. Using the solver as a preconditioner

The computational cost of the direct solver that we have described depends strongly on the requested
accuracy, for two reasons. First, as the compression tolerance goes to zero, all interaction ranks increase,
and since the solver relies on dense linear algebra, its overall run time scales cubically with the numerical
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ranks. Second, in order to attain high accuracy, the high-order accurate version of Duan-Rokhlin quadrature
must be used, which as discussed in Section 3.2 increases the ranks even further.

When high accuracy is desired, the best approach is often to run the direct solver that we have described at
low accuracy, and then use the computed rough inverse as a preconditioner. This turns out to be remarkably
effective due to the fact that the 4th-order accurate Duan-Rokhlin quadrature involves only the diagonal
entries of the matrix, which means that they do not impact the compression of the off-diagonal blocks at all.

To describe the idea in more detail, suppose that we seek to solve a high-order discretization such as,
cf. (9),

(I + BG + BT)q = f,

where G is defined by (10) (representing the O(h4) order accurate discretization of the integral operator),
and where T is the necessary “correction” matrix for a 10th-order discretization. In other words, T contains
the 10th-order corrections minus the 4th-order corrections. The idea is now to build a rough approximate
inverse M to the more compressible 4th-order discretization of the operator, so that

M ≈
(
I + BG

)−1
.

We then apply GMRES to the preconditioned system

M(I + BG + BT)q = Mf,

exploiting that the original operator I + BG + BT can be applied rapidly to vectors since B is sparse, and
G + T is a convolution operator that be applied through the FFT (see [10] for details).

The left image in Figure 7 displays the spectrum in the complex plane of a discretization of the left-hand
side of (3) using 1600 degrees of freedom with 10th-order quadrature corrections, where κ = 8π, so that each
side of Ω is 4 vacuum wavelengths across, and the scattering potential was chosen to be the lens described
in Section 6.3. While most of the eigenvalues cluster near 1 reflecting the fact that (3) is a second-kind
Fredholm integral equation, there are many eigenvalues that are located far from 1. As a result, an iterative
method, such as GMRES, will converge quite slowly. For example, for a right-hand side corresponding to a
plane wave, GMRES takes 62 iterations to reach a tolerance of 10−5 and 80 iterations to reach a tolerance
of 10−10.

The image on the right of Figure 7 shows the spectrum after preconditioning with the direct solver
with compression tolerance 10−2 and the 4th-order quadrature corrections. Now, all of the eigenvalues are
clustered closely to 1, which means that GMRES will converge in just a few iterations, even if high accuracy
is required. (In fact, all eigenvalues are within distance 0.06 from 1!) For the same plane wave as in the
previous paragraph, GMRES now only takes 3 iterations to converge to a tolerance of 10−5 and 6 iterations
to converge to a tolerance of 10−10. Furthermore, for this example, building the preconditioner takes only
a fraction of a second on a laptop computer and each preconditioned iteration is only twice as slow as an
iteration without any preconditioning.
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Figure 7. Spectra of unpreconditioned (left) and preconditioned (right) discretization of
Lippmann-Schwinger equation with κ = 8π, 1600 degrees of freedom, 10th-order quadrature
corrections, and the lens potential as described in Section 6.3. Observe the scale in the
figure to the right; all eigenvalues are very close to one.

6. Numerical experiments

We present three sets of numerical experiments: In Section 6.1, we study the scaling of our solver with
respect to mesh refinement for a scattering potential given by a Gaussian bump. We empirically verify the
theoretical estimates in Section 4.2. This is followed by Section 6.2, where we examine the case of scattering
against a cavity. We end on Section 6.3 which demonstrates how our solver can be used as a preconditioner
as motivated in Section 5. Here we consider scattering against a cavity in the regime where the wavenumber
is increased with the number of points per wavelength held constant, and also four challenging problems
introduced in [12]. All timings are reported on a workstation with 2 Intel Xeon Gold 6254 (18 cores at
3.1GHz base frequency) processors with 768 GB of RAM.

6.1. The direct solver applied to a Gaussian scattering potential. We first study the case where
the scattering potential is given by b(x) = 1.5 exp(−160‖x‖2) as shown in the left plot in Figure 8. The
wavenumber is set to κ = 25, so that Ω is approximately 4 wavelengths wide, and the incident field is taken
to be the plane wave uinc(x) = exp(iκx1). We run the direct solver with compression tolerances 10−3, 10−6,
10−9 and 10−12 with the 10th-order quadrature corrections. For each choice of compression tolerance, we
keep the number of degrees of freedom in a leaf node of the HBS tree constant at 100, increase the number
of levels in the tree, and note the following quantities:

N The total number of degrees of freedom.
h The mesh width. Note that h = 1/

√
N .

Tskel Time in seconds to compute the HBS approximation.
Tbuild Time in seconds to invert the HBS approximation.
Tapply Time in seconds to apply the inverse a single time.
mem Total memory in GB used to store both the HBS approximation and its inverse.
res The relative residual error in the computed solution.

The results are summarized in Tables 2–5. The total field is shown in the right plot of Figure 8.
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Figure 8. Left: Scattering potential for Gaussian bump in Section 6.1. Right: Total field
for Section 6.1.

N h Tskel Tbuild Tapply mem res
6400 0.0125 1.35 0.40 0.05 0.12 7.74e-05
25600 0.00625 5.51 1.77 0.12 0.60 5.71e-05
102400 0.003125 28.78 9.07 0.48 2.94 9.75e-05
409600 0.0015625 128.50 39.35 2.00 12.14 1.56e-04
1638400 0.00078125 680.04 165.15 10.53 48.59 5.77e-04

Table 2. Data for Section 6.1 with compression tolerance 10−3.

N h Tskel Tbuild Tapply mem res
6400 0.0125 2.30 0.86 0.07 0.27 9.54e-09
25600 0.00625 11.57 4.43 0.19 1.42 7.13e-08
102400 0.003125 56.32 22.93 0.76 6.86 4.15e-08
409600 0.0015625 328.92 114.94 6.58 31.33 4.39e-08
1638400 0.00078125 2201.34 590.61 33.50 145.71 3.14e-07

Table 3. Data for Section 6.1 with compression tolerance 10−6.

N h Tskel Tbuild Tapply mem res
6400 0.0125 2.82 1.22 0.07 0.36 1.57e-12
25600 0.00625 16.48 6.91 0.24 1.98 3.37e-12
102400 0.003125 80.08 37.49 1.04 10.01 1.45e-11
409600 0.0015625 475.07 200.59 6.82 48.22 3.48e-09
1638400 0.00078125 3139.07 1023.81 67.17 225.26 2.99e-09

Table 4. Data for Section 6.1 with compression tolerance 10−9.

N h Tskel Tbuild Tapply mem res
6400 0.0125 2.99 1.41 0.07 0.38 1.87e-15
25600 0.00625 15.90 7.80 0.22 2.11 3.80e-15
102400 0.003125 83.22 42.56 1.00 10.82 6.94e-15
409600 0.0015625 529.54 237.64 5.98 52.79 1.71e-14
1638400 0.00078125 3474.55 1304.09 47.13 250.27 5.07e-14

Table 5. Data for Section 6.1 with compression tolerance 10−12.
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Figure 9. Scaling of HBS compression, inversion, and inverse application for experiment
in Section 6.1 with compression tolerances 10−3 (top left), 10−6 (top right), 10−9 (bottom
left), and 10−12 (bottom right).

Figure 9 provides plots that compare the observed timings with the estimates of the asymptotic complexity
in Section 4.2. The empirical results indicate slightly better scaling than the predicted O(N3/2) complexity,
but this effect is merely due to the fact that the true asymptotic has not yet had a chance to establish itself
at these problem sizes. Looking at the prefactors in the scalings, we see that compression is significantly
slower than inversion. As the compression tolerance ε goes to zero, the prefactors grow at an observed rate
of between O(log(1/ε)) and O((log(1/ε))2).

Remark 6.1. It is interesting to note that in Tables 2–5 the residual errors tend to grow with the number
of degrees of freedom. This is due to the accumulation of errors in compression as the number of levels in the
tree increase, cf. Remark 3.4. Nonetheless, the residuals here are all close to the HBS compression tolerance.

6.2. The direct solver applied to a cavity problem. Solutions to the problem considered in Section
6.1 do not involve any backscattering; a fact that makes the problem highly amenable to iterative methods.
Indeed, it was found in [10] that for such a potential even an iterative method without preconditioning
converges in just a few iterations, although a direct solver might still be better-suited when one is interested
in scattering for multiple incident fields.

We now consider a cavity potential given in polar coordinates by

b(r, θ) = (1− sin(0.5θ)500) exp(−2000(0.1− r2)2)

(see the left image in Figure 10). Without preconditioning, the number of GMRES iterations required to
solve even relatively low frequency scattering to a couple of digits is unfeasibly high, due to the near-resonant
behavior of the problem. We repeat the experiments of the previous section for this scattering potential when
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Figure 10. Left: Scattering potential for Section 6.2. Right: Total field for κ = 50.27.

κ = 50.27, so that Ω is about 8 wavelengths across. The results are given in Tables 6–9 and Figure 11. The
total field is plotted in the right of Figure 10.

N h Tskel Tbuild Tapply mem res
6400 0.0125 2.21 0.46 0.05 0.15 6.42e-05
25600 0.00625 5.36 2.16 0.14 0.67 2.82e-04
102400 0.003125 30.70 9.63 0.77 3.08 3.68e-04
409600 0.0015625 167.84 46.80 3.09 14.52 6.86e-04
1638400 0.00078125 940.77 222.96 13.16 65.10 1.14e-03

Table 6. Data for Section 6.2 with compression tolerance 10−3.

N h Tskel Tbuild Tapply mem res
6400 0.0125 2.42 0.94 0.07 0.30 9.52e-08
25600 0.00625 12.59 4.97 0.42 1.57 5.89e-08
102400 0.003125 60.27 25.71 1.12 7.64 5.54e-07
409600 0.0015625 360.95 130.26 6.52 35.64 5.75e-07
1638400 0.00078125 2280.63 645.20 25.84 158.14 1.09e-06

Table 7. Data for Section 6.2 with compression tolerance 10−6.

N h Tskel Tbuild Tapply mem res
6400 0.0125 2.61 1.11 0.07 0.36 4.23e-11
25600 0.00625 15.81 6.54 0.21 2.01 7.40e-11
102400 0.003125 79.86 36.36 1.06 10.38 2.67e-10
409600 0.0015625 491.72 206.02 9.55 50.42 4.59e-10
1638400 0.00078125 3289.37 1109.28 25.72 234.48 1.02e-08

Table 8. Data for Section 6.2 with compression tolerance 10−9.
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Figure 11. Scaling of HBS compression, inversion, and inverse application for direct solver
experiment in Section 6.2 with compression tolerances 10−3 (top left), 10−6 (top right),
10−9 (bottom left), and 10−12 (bottom right).

N h Tskel Tbuild Tapply mem res
6400 0.0125 2.72 1.23 0.06 0.39 3.28e-14
25600 0.00625 16.34 7.20 0.21 2.15 1.03e-13
102400 0.003125 82.90 40.68 1.16 10.95 6.29e-13
409600 0.0015625 515.89 227.17 5.08 53.34 3.36e-12
1638400 0.00078125 3495.09 1304.42 48.21 252.23 1.02e-11

Table 9. Data for Section 6.2 with compression tolerance 10−12.

Besides a marginal increase in cost due to the slightly higher wavenumber, the results are practically
identical to those for the Gaussian bump. This illustrates the fact that the direct solver, unlike iterative
solvers, is agnostic to features of the scattering potential.

6.3. Using an approximate inverse as a preconditioner. We will next demonstrate the effectiveness
of using the direct solver as a preconditioner. We recall from Section 5 that the idea is to use a low-order
quadrature with a small correction stencil in order to improve compressibility of the off-diagonal blocks of
the coefficient matrix, and a lower compression tolerance to obtain a leaner representation. The resulting
inverse is too rough to use as a direct solver for the highly ill-conditioned problems under consideration, but
is an excellent preconditioner.

For an initial experiment, we stick with the cavity problem described in Section 6.2. We use the a compres-
sion tolerance of 10−4 and a 4th-order quadrature corrections to build the preconditioner for the GMRES
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Figure 12. Total field for κ = 201.06 (left) and κ = 804.25 (right) for cavity potential in
Figure 10.

iteration. The matrix-vector product is executed using the coefficient matrix with 10th-order corrections
applied using the FFT as discussed in Section 2.2. We apply this approach to the cavity scattering poten-
tial where the number of points per wavelength is kept fixed at 10 and the wavenumber is increased, with
GMRES set to terminate when the norm of the relative residual is below 10−10. In addition to the relevant
previously defined quantities, we also examine:

Tgmres Total time spent by GMRES.
iter The number of GMRES iterations required to reach a relative

residual with norm below 10−10.

Table 10 reports these results for computational domains ranging from approximately 8 to 512 wavelengths
across. The total field when κ = 201.06 and κ = 804.25 are displayed in the left and right plots of Figure
12, respectively.

N κ Tskel Tbuild Tgmres mem iter res
6400 50.27 0.23 0.24 0.20 0.04 4 6.97e-11
25600 100.53 0.65 0.99 0.62 0.21 5 6.16e-12
102400 201.06 2.26 4.36 2.49 1.01 6 1.04e-12
409600 402.12 14.91 20.06 9.78 4.67 6 3.23e-11
1638400 804.25 99.01 91.37 56.13 21.16 9 8.12e-12
6553600 1608.50 430.60 398.88 330.91 94.63 13 3.93e-11
26214400 3216.99 3102.09 2024.16 2698.53 418.37 22 3.30e-11

Table 10. Data for preconditioned iterative solver for the cavity problem in Section 6.3.

Without preconditioning, the problems in the larger domains in Table 10 would require thousands of
GMRES iterations to achieve convergence to a tolerance that yields accuracy for these intrinsically ill-
conditioned problems. To investigate whether the excellent performance we observed for the cavity problem
was a fluke or is the universal behavior of the preconditioner, we next consider four challenging test problems
that were introduced in [12]:
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Lens: A vertically-graded lens given by b(x) = 4(x2−0.1)[1−erf(25(‖x‖−0.3))]
with κ = 300 (Figure 13, top left). The incident field is given by a plane
wave uinc(x) = exp(iκ(x1 − 0.5)). The computational domain is about
47.7 vacuum wavelengths across.

Random bumps: The sum of 200 Gaussian bumps randomly placed in Ω and rolled off
to zero in a smooth fashion with κ = 160 (Figure 13, top right). The
incident field is given by a plane wave uinc(x) = exp(iκ(x1 − 0.5)). The
computational domain is about 25.5 vacuum wavelengths across.

Photonic crystal: A 20 by 20 square grid of Gaussian bumps with a channel removed
with κ = 77.1 (the first complete band gap) (Figure 13, bottom). The
incident field is given by a plane wave uinc(x) = exp(iκ(x1 − 0.5)). The
computational domain is about 12.2 vacuum wavelengths across.

Photonic crystal 2: Same geometry and wavenumber as above. The incident field is now
given by a plane wave uinc(x) = exp(iκ(−x1/

√
2 + x2/

√
2− 1)).

As in the previous section, for each problem we use our direct solver as a preconditioner for GMRES
with 4th-order quadrature corrections and compression tolerance set to 10−4, and study the behavior as the
mesh is refined. The iterative solver again uses the 10th-order quadrature corrections and matrix-vector
multiplications are done using the FFT. GMRES is set to terminate when the norm of the relative residual
falls below 10−10 or 100 iterations is reached. The two previously undefined quantities are also reported in
Table 11:

Enear The absolute error between the real part of the computed solution
at the point (.75, .5) and the reference solution given in [12].

Efar The absolute error between the real part of the computed solution
at the point (1.5, 1) and the reference solution given in [12].

The real parts of the total field for each experiment is plotted in Figure 14. Table 11 clearly demonstrates
how powerful the preconditioner is. For problems involving 26M degrees of freedom, we obtain nine or ten
correct digits with between 9 and 23 iterations across the different examples. Let us stress that the quantities
Enear and Efar report errors in solving the PDE, not just in solving the linear system.

N h iter res Enear Efar

Lens 102400 0.003125 51 6.38e-11 1.27e-02 2.06e-03
409600 0.015625 9 6.18e-11 1.05e-05 6.77e-07
1638400 0.00078125 7 4.86e-12 1.14e-08 5.22e-10
6553600 0.000390625 7 7.64e-12 8.29e-11 2.81e-10
26214400 0.0001953125 9 5.41e-12 7.85e-11 2.79e-10

Bumps 102400 0.003125 100 3.69e-02 3.14e-01 2.53e-02
409600 0.015625 22 9.84e-11 3.90e-04 2.82e-04
1638400 0.00078125 10 8.05e-12 4.17e-07 3.01e-07
6553600 0.000390625 13 9.24e-11 5.29e-10 6.83e-10
26214400 0.0001953125 23 3.71e-11 1.20e-10 9.90e-10

Crystal 102400 0.003125 24 6.49e-11 1.67e-03 1.09e-03
409600 0.015625 8 3.70e-12 2.96e-06 1.47e-06
1638400 0.00078125 7 2.30e-12 3.68e-09 1.29e-09
6553600 0.000390625 15 2.24e-11 4.81e-10 2.94e-10
26214400 0.0001953125 11 5.23e-11 4.57e-10 3.00e-10

Crystal 2 102400 0.003125 24 9.99e-11 5.15e-03 4.01e-03
409600 0.015625 8 2.36e-12 7.12e-06 5.97e-06
1638400 0.00078125 7 1.82e-12 7.88e-09 1.15e-08
6553600 0.000390625 14 8.33e-11 1.67e-10 5.01e-09
26214400 0.0001953125 11 4.75e-11 1.27e-10 5.00e-09

Table 11. Data for problems from [12] in Section 6.3.
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Figure 13. Lens (top left), random bumps (top right), and photonic crystal (bottom)
scattering potentials.

Figure 14. The real part of the total fields for the challenging problems from [12] in Section 6.3.
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7. Conclusions

This paper describes an accelerated, high-order direct solver for the Lippmann-Schwinger equation for
acoustic scattering. The solver is based on the Hierarchically Block Separable format, and specifically the
formulation based on scattering matrices described in [5] and [20, Ch. 18]. We demonstrate that signifi-
cant acceleration can be achieved by taking advantage of the particular form of the kernel function in this
application, and of simplifications that arise from the use of uniform grids. The algorithm for comput-
ing an approximate inverse has asymptotic complexity O(N3/2), while applying the inverse has complexity
O(N logN).

Numerical experiments substantiate the claims in regards to the asymptotic complexity and demonstrate
very favorable practical performance. A particularly effective method results from using the direct solver
as a preconditioner for GMRES, with numerical experiments showing how a highly ill-conditioned cavity
problem that is 500 wavelengths across can be solved to ten accurate digits in a couple of hours on a single
workstation, using 26M degrees of freedom.

The specific direct solver described here is designed primarily for handling highly ill-conditioned problems
in the high-frequency scattering regime. In this environment, the asymptotic complexities reported match
those of existing state of the art solvers when the number of points per wavelength is fixed as the problem
size N is increased. Ongoing work is concerned with accelerating the solver to attain linear complexity in
the situation where the elliptic PDE either has non-oscillatory solutions, or where the PDE is kept fixed as
the problem size is increased, cf. Remark 4.2.
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