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Abstract

This article considers the extension of two-grid hp-version discontinu-
ous Galerkin finite element methods for the numerical approximation
of second-order quasilinear elliptic boundary value problems of mono-
tone type to the case when agglomerated polygonal/polyhedral meshes
are employed for the coarse mesh approximation. We recall that within
the two-grid setting, while it is necessary to solve a nonlinear prob-
lem on the coarse approximation space, only a linear problem must
be computed on the original fine finite element space. In this arti-
cle, the coarse space will be constructed by agglomerating elements
from the original fine mesh. Here, we extend the existing a priori and
a posteriori error analysis for the two-grid hp-version discontinuous
Galerkin finite element method from [1] for coarse meshes consist-
ing of standard element shapes to include arbitrarily agglomerated
coarse grids. Moreover, we develop an hp-adaptive two-grid algorithm
to adaptively design the fine and coarse finite element spaces; we stress
that this is undertaken in a fully automatic manner, and hence can
be viewed as blackbox solver. Numerical experiments are presented
for two- and three-dimensional problems to demonstrate the compu-
tational performance of the proposed hp-adaptive two-grid method.
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1 Introduction

In recent years there has been a tremendous amount of interest in the
mathematical development and application of discretisation methods for the
numerical approximation of partial differential equations (PDEs) which employ
general polygonal/polyhedral (collectively referred to as polytopic) meshes;
see, for example, [2–10], and the references cited therein. The exploitation
of such general meshes is highly advantageous for the efficient approxima-
tion of localized geometrical features present in the underlying geometry.
Indeed, in many geophysical and engineering applications, the numerical study
of fluid-structure interaction, crack and wave propagation phenomena, and
flow in fractured porous media, for example, are typically characterized by a
strong complexity of the physical domain, cf. [11]. Furthermore, the ability to
utilise polytopic meshes offers a number of advantages also in the context of
multilevel linear solvers, such as Schwarz-based domain decomposition precon-
ditioners and multigrid solvers, see, for example, [12–14], and the references
cited therein. In this context, embedded coarse meshes can very easily be con-
structed using mesh agglomeration techniques. Here, collections of elements
present in the original fine mesh are ‘glued’ together to form coarse polytopic
elements; a very simple approach to define these coarse elements is to employ
graph partitioning software, such as METIS [15], for example.

In the present paper we consider the application of polytopic meshes
to design black box two-grid methods for the numerical approximation of
nonlinear PDE problems. Two-grid methods were originally introduced by
[16–18] in the context of standard Galerkin finite element methods for both
non-symmetric linear and nonlinear problems, cf., for example, [19–25], and
the references cited therein. Extensions to discontinuous Galerkin methods
(DGFEMs) have been undertaken in [1, 21, 26], for example. Indeed, in our
own previous work [1, 26] we have studied both the a priori and a posteri-

ori error analysis for the two-grid variant of the hp-version interior penalty
DGFEM for the numerical solution of strongly monotone second order quasi-
linear elliptic partial differential equations on so called standard meshes; by
this we mean meshes comprising of simplicial, quadrilateral, and hexahedral
elements.

We recall that the construction of two-grid methods for nonlinear PDE
problems relies on the definition of a coarse finite element space X and fine
space Y , where the coarse space is, hopefully, considerably coarser compared to
the fine space. The method first solves the (expensive) full nonlinear problem
on the coarse space X before utilizing this solution to linearize the underlying
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PDE problem on the fine space Y . Obtaining a solution on the fine space
then only requires solving a linear problem, which is computationally cheaper
than solving the full nonlinear problem. Previous work on two-grid methods
generally assume that coarse and fine meshes can be easily constructed based
on employing standard shaped elements in such a manner that X ⊂ Y ; i.e.,
that the coarse mesh is embedded within the fine one. In practice, it may
be necessary to construct a coarse mesh from an unstructured fine mesh, in
which case, this condition may be difficult to satisfy when standard elements
are employed. To that end, we shall consider development of two-grid methods
whereby the coarse mesh is constructed by agglomerating fine mesh elements.
In this way, the agglomerated coarse elements will consist of general polytopic
elements. In particular, in this article, we study the hp-version of the two-grid
incomplete interior penalty DGFEM. Here we generalise the analysis presented
in [1] to the current setting, whereby the coarse mesh may be constructed
via agglomeration. Moreover, we develop a general purpose black box two-
grid adaptive algorithm which automatically refines both the fine and coarse
spaces to ensure that the discretisation error is controlled in a computationally
efficient manner.

The outline of this article is as follows. In Sect. 2 we introduce the
underlying model problem, together with its two-grid hp-version DGFEM
approximation. Next, in Sect. 3 we derive an a priori error bound for the pro-
posed numerical scheme. Sect. 4 is devoted to the development of hp-version
adaptive algorithms for automatically refining both the coarse and fine meshes.
In Sect. 5, we perform numerical experiments to demonstrate the performance
of the proposed adaptive strategy. Finally, in Sect. 6 we summarise the work
presented in this article and discuss potential extensions.

2 Model problem and two-grid hp-version
DGFEM

In this section we introduce a model second-order quasilinear elliptic boundary
value problem and discuss its numerical approximation based on employing
the two-grid DGFEM on a fine mesh comprising of standard elements, but
with a coarse mesh consisting of elements constructed by agglomerating fine
elements.

2.1 Model problem

In this article we consider the numerical approximation of the following
quasilinear elliptic boundary value problem: find u ∈ H1(Ω) such that

−∇ · (µ(x, |∇u|)∇u) = f(x) in Ω,

u = 0 on Γ.
(1)
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where Ω is a bounded polygonal/polyhedral Lipschitz domain in Ω ⊂ R
d,

d = 2, 3 with boundary Γ := ∂Ω and f ∈ L2(Ω).

Assumption 2.1 We assume that the nonlinearity µ satisfies the following condi-
tions:

(A1) µ ∈ C0(Ω× [0,∞)) and

(A2) there exist positive constants mµ and Mµ such that the following monotonicity
property is satisfied:

mµ(t− s) ≤ µ(x, t)t− µ(x, s)s ≤Mµ(t− s), t ≥ s ≥ 0,x ∈ Ω. (2)

From [27, Lemma 2.1] we note that, as µ satisfies (2), there exist constants
C1 and C2, C1 ≥ C2 > 0, such that for all vectors v,w ∈ R

d and all x ∈ Ω,

|µ(x, |v|)v − µ(x, |w|)w| ≤ C1|v −w|, (3)

C2|v −w|2 ≤ (µ(x, |v|)v − µ(x, |w|)w) · (v −w). (4)

For ease of notation we shall suppress the dependence of µ on x and write µ(t)
instead of µ(x, t).

2.2 Meshes, spaces, and trace operators

Following [28] we consider a fine mesh Th which partitions Ω ⊂ R
d, d = 2, 3,

into disjoint open-element domains κ such that Ω =
⋃

κ∈Th
κ. We assume

shape-regularity of the mesh and that each element κ ∈ Th is an affine image
of a reference element κ̂; i.e, for each κ ∈ Th there exists an affine mapping
Tκ : κ̂ → κ such that κ = Tκ(κ̂), where κ̂ is the open cube (−1, 1)3 in R

3

and either the open triangle {(x, y) : −1 < x < 1,−1 < y < −x} or the open
square (−1, 1)2 in R

2. We denote by hκ the element diameter of κ ∈ Th and
nκ signifies the unit outward normal vector to κ. We allow the meshes to be
1-irregular, i.e., each face of any one element κ ∈ Th contains at most one
hanging node and each edge of each face contains at most one hanging node.
Under this assumption we can construct an auxiliary 1-irregular mesh by sub-
dividing all quadrilateral and hexahedral elements κ ∈ Th whose edges contain
at least one hanging node into 2d sub-elements. We assume that triangular
elements are regularly reducible, cf. [29], to eliminate hanging nodes in trian-
gular elements on the auxiliary mesh. We point out that these conditions are
necessary to ensure that Theorem 4.1 holds, cf. [1]. Additionally, we note that
these assumptions imply that the family {Th}h>0 is of bounded local variation,
i.e., there exists a constant ρ1 ≥ 1, independent of element sizes, such that
ρ−1
1 ≤ hκ/hκ′ ≤ ρ1, for any pair of elements κ, κ′ ∈ Th which share a common

face F = ∂κ ∩ ∂κ′.
For a non-negative integer p, we denote by Pp(κ̂) the space of polynomials

of total degree p on κ̂. When κ̂ is a hypercube, we also consider Qp(κ̂), the set
of all tensor-product polynomials on κ̂ of degree p in each coordinate direction.
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To each κ ∈ Th we assign a polynomial degree pκ and construct the vector
p = {pκ : κ ∈ Th}. We suppose that p is also of bounded local variation, i.e.,
there exists a constant ρ2 ≥ 1, independent of the element sizes and p, such
that, for any pair of neighboring elements κ, κ′ ∈ Th, ρ

−1
2 ≤ pκ/pκ′ ≤ ρ2. With

this notation, we introduce the fine finite element space

Vhp(Th,p) = {v ∈ L2(Ω) : v|κ ◦ Tκ ∈ Rpκ
(κ̂), κ ∈ Th},

where R is either P or Q.
Next, we introduce a coarse mesh partition TH , consisting of general poly-

topes K constructed by agglomerating elements κ ∈ Th from the fine mesh,
such that Ω =

⋃
K∈TH

K; i.e., for all K ∈ TH , there exists a set Th(K) ⊆ Th of

fine mesh elements such that K =
⋃

κ∈Th(K) κ, Th =
⋃

K∈TH
Th(K), and, for

all κ ∈ Th,

κ ∈ Th(K) =⇒ κ 6∈ Th(K
′) ∀K ′ ∈ TH \ {K}.

We denote by HK the diameter of the coarse element K ∈ TH ; i.e., HK =
diam(K). To each K ∈ TH we assign a polynomial degree PK and construct
the vector P = {PK : K ∈ TH}. We also assume that the polynomial degree
of the coarse mesh element is less than or equal to the polynomial degree of its
constituent fine mesh elements; i.e., PK ≤ pκ for all K ∈ TH and κ ∈ Th(K).
We can then introduce the finite element space on the coarse mesh by

VHP (TH ,P ) = {v ∈ L2(Ω) : v|K ∈ PPK
(K),K ∈ TH}.

We note that due to the assumptions on the polynomial degree that
VHP (TH ,P ) ⊆ Vhp(Th,p).

We shall now define some suitable face operators required for the definition
of the proposed DGFEM. To this end we denote by FI

h the set of all interior
faces of the fine mesh partition Th of Ω, and by FB

h the set of all boundary
faces of the fine mesh Th. Additionally, we let Fh = FI

h ∪FB
h denote the set of

all faces in the mesh Th. We similarly denote by FI
H , FB

H , and FH = FI
H ∪FB

H

the faces on the coarse mesh TH following [5]. Due to the construction of the
coarse mesh via agglomeration of fine mesh elements we note that the faces
in the coarse mesh are simply the faces in the fine mesh which have not been
removed by agglomeration and, hence, we have that FH ⊂ Fh, F

I
H ⊂ FI

h , and
FB

H ⊂ FB
h .

Let v and q be scalar- and vector-valued functions, respectively, which are
smooth inside each element κ ∈ Th. Given two adjacent elements, κ+, κ− ∈ Th
which share a common face F ∈ FI

h , i.e., F = ∂κ+ ∩ ∂κ−, we write v± and
q± to denote the traces of the functions v and q, respectively, on the faces F ,
taken from the interior of κ±, respectively. Using this notation, we define the
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averages of v and q at x ∈ F by

{{v}} =
1

2
(v+ + v−), {{q}} =

1

2
(q+ + q−),

respectively. Similarly, we define the jumps of v and q at x ∈ F as

[[v]] = v+nκ+ + v−nκ− , [[q]] = q+ · nκ+ + q− · nκ− ,

respectively. On a boundary face F ∈ FB
h , we set {{v}} = v, {{q}} = q, [[v]] = vn,

and [[q]] = q · n, where n denotes the unit outward normal vector on Γ. We
define {{ · }} and [[ · ]] analogously on FH .

For a face F ∈ Fh of the fine mesh, we define hF to be the diameter of the
face and the face polynomial degree pF to be defined by

pF =

{
max(pκ, pκ′), if F = ∂κ ∩ ∂κ′ ∈ FI

h ,

pκ, if F = ∂κ ∩ Γ ∈ FB
h .

2.3 DGFEM discretization

With the notation introduced in the previous section we first define, for com-
parison with the proposed two-grid method (see below), the following standard

DGFEM, based on employing an incomplete interior penalty formulation, on
the fine space Vhp(Th,p), for the numerical approximation of the problem (1):
find uhp ∈ Vhp(Th,p) such that

Ahp(uhp; uhp, vhp) = Fhp(vhp) (5)

for all vhp ∈ Vhp(Th,p), where

Ahp(φ; u, v) =
∑

κ∈Th

∫

κ

µ(|∇φ|)∇u · ∇v dx−
∑

F∈F
h

∫

F

{{µ(|∇hφ|)∇hu}} · [[v]] ds

+
∑

F∈F
h

∫

F

σhp[[u]] · [[v]] ds,

Fhp(v) =
∑

κ∈Th

∫

κ

fv dx,

and ∇h is used to denote the broken gradient operator, defined element-wise.
Here, the fine grid interior penalty parameter σhp is defined as

σhp = γhp
p2F
hF

, (6)

where γhp > 0 is a sufficiently large constant; cf. Lemma 2.2 below.
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On the class of spaces H1(Ω) + Vhp(Th,p), we introduce the following
DGFEM energy norm

‖v‖2hp = ‖∇hv‖
2
L2(Ω) +

∑

F∈F
h

∫

F

σhp|[[v]]|
2 ds. (7)

Following [1], we recall that the form Ahp(φ; ·, ·), φ ∈ Vhp(Th,p), is coercive,
in the sense that the following lemma holds.

Lemma 2.2 There exists a positive constant γmin, such that for any γhp > γmin,
there exists a coercivity constant Cc > 0, independent of h and p, such that

Ahp(φ; v, v) ≥ Cc‖v‖2hp
for all φ, v ∈ Vhp(Th,p).

Remark 2.3 We stress that the coercivity bound stated in Lemma 2.2 holds for any
mesh size h and any polynomial degree p.

Finally, we introduce the following hp-version of the two-grid DGFEM
approximation to (1) based on employing the fine and coarse finite element
spaces Vhp(Th,p) and VHP (TH ,P ), respectively, cf. [21, Algorithm 1] and [1,
Sect. 2.3]:

1. (Nonlinear solve) Compute the coarse grid approximation uHP ∈
VHP (TH ,P ) such that

AHP (uHP ; uHP , vHP ) = FHP (vHP ) (8)

for all vHP ∈ VHP (TH ,P ).
2. (Linear solve) Determine the fine grid solution u2G ∈ Vhp(Th,p) such that

Ahp(uHP ; u2G, vhp) = Fhp(vhp) (9)

for all vhp ∈ Vhp(Th,p).

Here, we note that FHP (·) is defined analogously to Fhp(·) and AHP (·; ·, ·) is
defined on the coarse mesh partition TH analogously to Ahp(·; ·, ·), but with
a different coarse mesh interior penalty parameter σHP ; the definition of σHP

is given below in (10).

Remark 2.4 While the above DGFEM formulation is based on employing the incom-
plete interior penalty method, we stress that the proceeding error analysis naturally
generalises to other DGFEMs commonly employed within the literature.
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2.4 Inverse estimates and approximation results for the

coarse space

Before embarking on the error analysis of the two-grid DGFEM defined in
(8)–(9), we first derive some preliminary results. In particular, we revisit some
inverse estimates and polynomial approximation results which are valid on
general polytopic elements and are hence required to analyze the coarse grid
approximation (8). To this end, we first introduce the necessary definitions
and assumptions from [5, Section 3.2 & 4.3] required for the inverse inequality
Lemma 2.8.

Definition 2.5 For each element K ∈ TH we define the family FK
♭ of all possible

d-dimensional simplices contained in K and having at least one face in common with
K. Moreover, we write KF

♭ to denote a simplex belonging to FK
♭ which shares with

K ∈ TH the specific face F ⊂ ∂K.

Assumption 2.6 For any K ∈ TH , there exists a set of non-overlapping d-
dimensional simplices {KF

♭ } ⊂ FK
♭ contained within K, such that for all F ⊂ ∂K,

the following condition holds

hK ≤ Cs
d|KF

♭ |
|F | ,

where Cs is a positive constant, which is independent of the discretization parame-
ters, the number of faces that the element possesses, and the measure of F .

Remark 2.7 We recall from [5] that Assumption 2.6 may be viewed as a natural gen-
eralisation of the standard shape-regularity assumption, defined for standard meshes,
to the setting when general polytopic elements are employed. In this latter case,
ρK = minF⊂∂K d|KF

♭ |/|F | denotes the radius of the largest inscribed ball. Further-
more, we stress that Assumption 2.6 does not place any restriction on the number
of faces that an element K, K ∈ TH , may possess, or the relative size (measure) of
its faces compared to the size of the element.

Equipped with these definitions we state the following inverse inequality
from [5, Lemma 32].

Lemma 2.8 Let K ∈ TH ; then, for all F ⊂ ∂K, assuming Assumption 2.6 is
satisfied, the inverse inequality

‖v‖2L2(∂K) ≤ CsCINVd
P 2

HK
‖v‖2L2(K)

holds, for each v ∈ PP (K), where Cs is the constant from Assumption 2.6 which
is independent of |K|/sup

KF
♭

⊂K
|KF

♭ |, |F |, P , and v; moreover, CINV is a positive

constant arising from a standard inverse inequality on simplices, and is independent
of v, P , and HK .
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We now turn our attention to the derivation of suitable hp–version approx-
imation results for the coarse finite element space. To this end, we define a
covering for the coarse mesh as follows; cf. [5, Definition 17].

Definition 2.9 We define the covering T ♯
H = {K} related to the coarse mesh TH as

a set of open shape-regular d-simplices K, such that, for each K ∈ TH , there exists

a K ∈ T ♯
H , such that K ⊂ K.

With this notation, we make the following assumption.

Assumption 2.10 We assume there exists a covering such that hK := diam(K) ≤
CDHK , for each pair K ∈ TH , K ∈ T ♯

H , with K ⊂ K, for a constant CD > 0,
uniformly with respect to the mesh size.

Furthermore, we require the definition of the following classical extension
operator, cf. [30].

Theorem 2.11 Let D be a domain with minimally smooth boundary ∂D. Then,
there exists a linear operator E : Hs(D)→ Hs(Rd), s ∈ N0, such that Ev|D = v and

‖Ev‖Hs(Rd) ≤ CE‖v‖Hs(D),

where CE is a positive constant depending only on s and parameters which charac-
terize the boundary ∂D.

With this notation we state the following approximation result from [5,
Lemmas 23 & 33].

Lemma 2.12 Let K ∈ TH and K ∈ T ♯
H be the corresponding simplex, such that K ⊂

K, cf. Definition 2.9. Suppose that v ∈ L2(Ω) is such that Ev|K ∈ HLK (K), for some
LK ≥ 0. Then, given Assumption 2.10 is satisfied, there exists Πv ∈ VHP (TH ,P ),
such that Πv|K ∈ PPK

(K) and the following bound holds

‖v − Πv‖Hq(K) ≤ CI,1
HSK−q

K

PLK−q
K

‖Ev‖HLK (K), LK ≥ 0,

for 0 ≤ q ≤ LK . Furthermore, if v ∈ H1(Ω) and Assumption 2.6 is satisfied then the
following bound also holds

‖v − Πv‖L2(∂K) ≤ CI,2
H

SK−1/2
K

P
LK−1/2
K

‖Ev‖HLK (K), LK > 1/2.

Here, SK = min(PK +1, LK) and CI,1 and CI,2 are positive constants which depend
on the shape-regularity of K and the constant Cs from Assumption 2.6, but are
independent of v, HK , and PK .
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From the proof of Theorem 2.11 one can establish that the constant CE

is independent of the measure of the underlying domain D, cf. [14]. Hence,
employing Theorem 2.11, Lemma 2.12 may be stated in the following simplified
form.

Corollary 2.13 Under the assumptions of Lemma 2.12, the following bounds hold

‖v −Πv‖Hq(K) ≤ C′
I,1

H
SK−q
K

PLK−q
K

‖v‖HLK (K), LK ≥ 0, 0 ≤ q ≤ LK ,

‖v − Πv‖L2(∂K) ≤ C′
I,2

H
SK−1/2
K

P
LK−1/2
K

‖v‖HLK (K), LK > 1/2.

Hence, the condition employed in [5, 6] regarding the amount of overlap of
the simplices K is not required.

2.5 Stability analysis of the coarse grid approximation

Based on the inverse inequality stated in Lemma 2.8, following [5, Lemma 35],
we define the coarse mesh interior penalty parameter σHP as follows:

σHP =




γHP maxK∈{K+,K−}

(
CINV

P 2
K

HK

)
, x ∈ F ∈ FI

H , F = ∂K+ ∩ ∂K−,

γHPCINV
P 2

K

HK
, x ∈ F ∈ FB

H , F = ∂K+ ∩ Γ,

(10)
where CINV is the constant from the inverse inequality Lemma 2.8 and γHP > 0
is a sufficiently large constant; cf. Lemma 2.14. We also define the DGFEM
norm ‖·‖HP on the coarse mesh analogously to the fine mesh norm ‖·‖hp from
(7) using the coarse mesh interior penalty parameter σHP defined above.

To analyze the hp–version DGFEM defined on the coarse mesh, cf. (8), in
the case when general polytopic elements are employed, without introducing
unnecessary regularity assumptions on the analytical solution u and only utiliz-
ing the hp-approximation results available on polytopic elements, the analysis
presented in [1] must be generalized in a suitable manner. To this end, we
introduce the following extension of the form AHP (·; ·, ·), cf. [5, 31], to V ×V ,
where V = H1(Ω) + VHP (TH ,P ):

ÃHP (u, v) =
∑

K∈TH

∫

K

µ(|∇u|)∇u · ∇v dx+
∑

F∈F
H

∫

F

σHP [[u]] · [[v]] ds

−
∑

F∈F
H

∫

F

{{µ(|ΠL2(∇Hu)|)ΠL2(∇Hu)}} · [[v]] ds.
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Here, ΠL2 : [L2(Ω)]d → [VHP (TH ,P )]d denotes the orthogonal L2-projection
onto the finite element space [VHP (TH ,P )]d. We note, that

ÃHP (u, v) = AHP (u; u, v) for all u, v ∈ VHP (TH ,P ).

The Lipschitz continuity and strong monotonicity for the extended form
ÃHP (·, ·) are determined in the following lemma.

Lemma 2.14 Let γHP > C2
1C

−1
2 Csdǫ, where ǫ > 1/4; then, given Assumption 2.6

holds, we have that the nonlinear form ÃHP (·, ·) is strongly monotone in the sense
that

ÃHP (v1, v1−v2)−ÃHP (v2, v1−v2) ≥ Cmono‖v1−v2‖2HP for all v1, v2 ∈ V, (11)

and Lipschitz continuous in the sense that

|ÃHP (v1, w)−ÃHP (v2, w)| ≤ Ccont‖v1−v2‖HP ‖w‖HP for all v1, v2, w ∈ V, (12)

where Cmono and Ccont are positive constants independent of the discretization
parameters.

Proof The following proof proceeds in a similar manner to [5, Lemma 27] with mod-
ifications to account for the nonlinearity. Starting with the bound (11), we note by
applying (4) that

ÃHP (v1, v1 − v2)− ÃHP (v2, v1 − v2)

≥ C2

∑

K∈TH

‖∇(v1 − v2)‖2L2(K) +
∑

F∈F
H

‖σ1/2
HP [[v1 − v2]]‖2L2(F )

−
∑

F∈F
H

∫

F
|{{µ(|ΠL2(∇Hv1)|)ΠL2(∇Hv1)

− µ(|ΠL2(∇Hv2)|)ΠL2(∇Hv2)}} · [[v1 − v2]]| ds
≡ I + II + III. (13)

We now proceed by considering Term III. To this end, for F ∈ FI
H , such that

F ⊂ ∂K+ ∩ ∂K−, upon application of (3), the Cauchy-Schwarz inequality, and the
arithmetic-geometric mean inequality ab ≤ a2ǫ+ b2/(4ǫ), ǫ > 0, we deduce that
∫

F
|{{µ(|ΠL2(∇Hv1)|)ΠL2(∇Hv1)− µ(|ΠL2(∇Hv2)|)ΠL2(∇Hv2)}} · [[v1 − v2]]| ds

≤ C1

∫

F
{{|ΠL2(∇H(v1 − v2))|}}|[[v1 − v2]]| ds

≤ C2
1ǫ




∑

K∈{K+,K−}
‖σ−1/2

HP ΠL2(∇H(v1 − v2)|K )‖2L2(F )





+
1

8ǫ
‖σ1/2

HP [[v1 − v2]]‖2L2(F ).

Analogously, for F ∈ FB
H , we have that
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∫

F
|{{µ(|ΠL2(∇Hv1)|)ΠL2(∇Hv1)− µ(|ΠL2(∇Hv2)|)ΠL2(∇Hv2)}} · [[v1 − v2]]| ds

≤ C2
1 ǫ‖σ−1/2

HP ΠL2(∇H(v1 − v2))‖2L2(F ) +
1

4ǫ
‖σ1/2

HP [[v1 − v2]]‖2L2(F ).

Combining these results, employing the inverse inequality Lemma 2.8, the definition
of σHP from (10), and the L2-stability of ΠL2 , we have that

III ≤ C2
1 ǫ

∑

K∈TH

σ−1
HP ‖ΠL2(∇(v1 − v2))‖2L2(∂K) +

1

4ǫ

∑

F∈FH

‖σ1/2
HP [[v1 − v2]]‖2L2(F )

≤ C2
1 ǫCsd

γHP

∑

K∈TH

‖∇(v1 − v2)‖2L2(K) +
1

4ǫ

∑

F∈FH

‖σ1/2
HP [[v1 − v2]]‖2L2(F ).

Inserting this result into (13) gives

ÃHP (v1, v1 − v2)− ÃHP (v2, v1 − v2) ≥
(
C2 −

C2
1ǫCsd

γHP

) ∑

K∈TH

‖∇(v1 − v2)‖2L2(K)

+

(
1− 1

4ǫ

) ∑

F∈F
H

‖σ1/2
HP [[v1 − v2]]‖2L2(F ).

Therefore, the nonlinear form ÃHP (·, ·) is strongly monotone over V × V, assuming
that ǫ > 1/4 and γHP > C2

1C
−1
2 Csdǫ.

We now consider the second bound (12). By applying (3) and Cauchy-Schwarz,
we get that

|ÃHP (v1, w)− ÃHP (v2, w)|
≤ C1

∑

K∈TH

‖∇(v1 − v2)‖L2(K)‖∇w‖L2(K)

+
∑

F∈FH

‖σ1/2
HP [[v1 − v2]]‖L2(F )‖σ

1/2
HP [[w]]‖L2(F )

+
∑

F∈F
H

∫

F
|{{µ(|ΠL2(∇Hv1)|)ΠL2(∇Hv1)− µ(|ΠL2(∇Hv2)|)ΠL2(∇Hv2)}} · [[w]]| ds.

Following a similar proof to the bound for (11), without the need to employ the
arithmetic-geometric mean inequality, we deduce that

∑

F∈FH

∫

F
|{{µ(|ΠL2(∇Hv1)|)ΠL2(∇Hv1)−µ(|ΠL2(∇Hv2)|)ΠL2(∇Hv2)}}· [[w]]| ds

≤ C1


 Csd

γHP

∑

K∈TH

‖∇(v1 − v2)‖2L2(K)




1/2

∑

F∈F
H

‖σ1/2
HP [[w]]‖2L2(F )




1/2

.

A simple application of the Cauchy-Schwarz inequality completes the proof of Lips-
chitz continuity. �

Theorem 2.15 Suppose that γhp and γHP are sufficiently large; cf. Lemma 2.2 and
Lemma 2.14, respectively. Then, there exists a unique solution u2G ∈ Vhp(Th,p) to
the two-grid DGFEM (8)–(9).
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Proof Given that Lemma 2.14 demonstrates Lipschitz continuity and strong mono-
tonicity of the semi-linear form ÃHP (·, ·), and

ÃHP (uHP , vHP ) = AHP (uHP ; uHP , vHP ) = FHP (vHP )

for all vHP ∈ VHP (TH ,P ), we can follow the proof of [32, Theorem 2.5] to show
that uHP is a unique solution of (8). Furthermore, as the fine grid formulation (9)
is an interior penalty discretization of a linear elliptic PDE, where the coefficient
µ(|∇huHP |) is a known function, the existence and uniqueness of the solution u2G
to this problem follows immediately; cf., for example, [33, 34]. �

3 Error analysis

In this section, we derive an a priori error bound for the two-grid DGFEM
(8)–(9). To this end, we first establish an a priori error bound for the coarse
mesh approximation defined by (8).

3.1 Coarse mesh a priori error bound

We first state and prove the following abstract error bound, derived in a similar
manner to [5, Lemma 4.8].

Lemma 3.1 Let u ∈ H1(Ω) be the weak solution to (1) and uHP ∈ VHP (TH ,P )
be the coarse mesh approximation defined by (8). Assuming that γHP is sufficiently
large, cf. Lemma 2.14, the following abstract error bound holds.

‖u− uHP ‖HP ≤
(
1 +

Ccont

Cmono

)
inf

vHP∈VHP (TH ,P )
‖u− vHP ‖HP

+
1

Cmono
sup

wHP∈VHP (TH ,P )\{0}

|ÃHP (u,wHP )− FHP (wHP )|
‖wHP ‖HP

.

Proof The proof follows almost identically to [5, Lemma 28], using the strong mono-
tonicity (11) and Lipschitz continuity (12) from Lemma 2.14. �

We now state the following hp–version a priori error bound for the coarse
mesh approximation defined by (8).

Theorem 3.2 Let TH be a coarse mesh, constructed by agglomerating elements from

a shape-regular fine mesh Th, satisfying Assumptions 2.6 and 2.10, with T ♯
H = {K}

an associated covering of TH consisting of d-simplices; cf. Definition 2.9. Let uHP ∈
VHP (TH ,P ) be the coarse mesh approximation defined by (8). If the analytical solu-
tion u ∈ H1(Ω) to (1) satisfies u|K ∈ HLK (K), LK ≥ 3/2, for K ∈ TH , such that

Eu|K ∈ HLK (K), where K ∈ T ♯
H with K ⊂ K; then,

‖u− uHP ‖2HP ≤ C3

∑

K∈TH

H2SK−2
K

P 2LK−2
K

(1 + GK(HK , PK))‖u‖2HLK (K),
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where SK = min(PK + 1, LK ),

GK(HK , PK) :=
PK + P 2

K

HK
max
F⊂∂K

σ−1
HP

∣∣∣
F
+

HK

PK
max
F⊂∂K

σHP |F

and C3 is a positive constant, independent on the discretization parameters, but
dependent on the constants mµ, Mµ, C1, and C2 from the monotonicity properties
of µ(·).

Proof Following the proof in [5], upon application of Corollary 2.13 we get

inf
vHP∈VHP (TH ,P )

‖u− vHP ‖HP

≤ ‖u− Πu‖2HP

≤
∑

K∈TH

(
‖∇(u− Πu)‖2L2(K) + 2σHP ‖(u− Πu)|K‖2L2(∂K)

)

≤ C
∑

K∈TH

H2SK−2
K

P 2LK−2
K

(
1 +

HK

PK
max
F⊂∂K

σHP |F
)
‖u‖2HLK (K). (14)

Employing integration by parts, recalling the fact that u is the analytical solution to
(1), µ ∈ C0(Ω× [0,∞)), and the bound (3), we deduce that

|ÃHP (u,wHP )− FHP (wHP )|

=

∣∣∣∣∣
∑

K∈TH

∫

∂K
µ(|∇u|)∇u · nKwHP ds

−
∑

F∈FH

∫

F
{{µ(|ΠL2(∇Hu)|)ΠL2(∇Hu)}} · [[wHP ]] ds

∣∣∣∣∣

=

∣∣∣∣∣∣

∑

F∈F
H

∫

F
{{µ(|∇Hu|)∇Hu− µ(|ΠL2(∇Hu)|)ΠL2(∇Hu)}} · [[wHP ]] ds

∣∣∣∣∣∣

≤ C1




∑

F∈FH

∫

F
σ−1
HP {{|∇Hu−ΠL2(∇Hu)|}} ds




1/2

‖wHP ‖HP .

By adding and subtracting Π(∇hu) we find

∑

F∈FH

∫

F
σ−1
HP {{|∇Hu−ΠL2(∇Hu)|}}2 ds

≤ 2
∑

K∈TH

(
max
F⊂∂K

σ−1
HP

∣∣∣
F

)(
‖∇u− Π(∇u)‖2L2(∂K) + ‖ΠL2(Π(∇u)−∇u)‖2L2(∂K)

)
.

Applying the inverse inequality from Lemma 2.8 to the second term, followed by
the approximation bounds stated in Corollary 2.13, together with the L2-stability of
ΠL2 , we get

∑

F∈F
H

∫

F
σ−1
HP {{|∇Hu−ΠL2(∇Hu)|}}2 ds
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≤ 2
∑

K∈TH

(
max
F⊂∂K

σ−1
HP

∣∣∣
F

)(
C′
I,2

H2SK−3
K

P 2LK−3
K

+C′
I,1CsCINV d

H2SK−3
K

P 2LK−4
K

)
‖u‖2HLK (K).

Combining (14) and the above bounds with Lemma 3.1 completes the proof. �

3.2 Two-grid a priori error bound

We now consider the derivation of an a priori error bound for the two-grid
DGFEM (8)–(9). To this end, we first recall the following a priori error bound
for the standard DGFEM approximation (5) of the quasilinear problem (1).

Lemma 3.3 Assuming that u ∈ C1(Ω) and u|κ ∈ H lκ(κ), lκ ≥ 2, for κ ∈ Th then
the solution uhp ∈ Vhp(Th,p) of (5) satisfies the error bound

‖u− uhp‖2hp ≤ C4

∑

κ∈Th

h2sκ−2
κ

p2lκ−3
κ

‖u‖2Hlκ (κ),

with 1 ≤ sκ ≤ min(pκ + 1, lκ), pκ ≥ 1, for κ ∈ Th, and C4 is a positive constant
independent of u, h, and p, but depends on the constants mµ, Mµ, C1, and C2 from
the monotonicity properties of µ(·).

Proof See [32]. �

Employing Theorem 3.2 and Lemma 3.3, we now deduce the following error
bound for the two-grid approximation defined in (8)–(9).

Theorem 3.4 Let TH be a coarse mesh, constructed by agglomerating elements from

a shape-regular fine mesh Th, satisfying Assumptions 2.6 and 2.10, with T ♯
H = {K} an

associated covering of TH consisting of d-simplices; cf. Definition 2.9. If the analytical
solution u ∈ H1(Ω) to (1) satisfies u|κ ∈ H lκ(κ), lκ ≥ 2 and u|K ∈ HLK (K),

LK ≥ 3/2, for K ∈ TH , such that Eu|K ∈ HLK (K), where K ∈ T ♯
H with K ⊂ K;

then, the solution u2G ∈ Vhp(Th,p) of (9) satisfies the error bounds

‖uhp − u2G‖2hp ≤ C4C5

∑

κ∈Th

h2sκ−2
κ

p2lκ−3
κ

‖u‖2Hlκ (κ)

+ C3C5

∑

K∈TH

H2SK−2
K

P 2LK−2
K

(1 + GK(HK , PK))‖u‖2HLK (K),

‖u− u2G‖2hp ≤ (1 + C5)C4

∑

κ∈Th

h2sκ−2
κ

p2lκ−3
κ

‖u‖2Hlκ (κ)

+ C3C5

∑

K∈TH

H2SK−2
K

P 2LK−2
K

(1 + GK(HK , PK))‖u‖2HLK (K),

where SK = min(PK + 1, LK ), for K ∈ TH , sκ = min(pκ + 1, lκ), for κ ∈ Th,

GK(HK , PK) :=
PK + P 2

K

HK
max
F⊂∂K

σ−1
HP

∣∣∣
F
+

HK

PK
max
F⊂∂K

σHP |F
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and C5 is a positive constant independent of u, h, H, p, and P , but depends on the
constants mµ, Mµ, C1, and C2 from the monotonicity properties of µ(·).

Remark 3.5 Assuming that P is of local bounded variation, we note that due to
the definition of σHP , and the fact that PK ≥ 1 for all K ∈ TH , we have that
GK(HK , PK) ≤ CPK , for some positive constant C, independent of mesh size and
polynomial degree. Therefore, we note that the terms in the second error bound
have the same order for the polynomial degree and mesh size in both the coarse
and fine mesh discretization parameters, which is analogous to the case when non-
agglomerated coarse meshes, i.e. coarse meshes consisting of standard element types,
are employed; cf. [1]

Proof By application of the triangle inequality, we get

‖u− u2G‖hp ≤ ‖u− uhp‖hp + ‖u2G − uhp‖hp;
hence, once the first bound stated in Theorem 3.4 has been established, then together
with Lemma 3.3, the second bound follows immediately.

For the first bound, we follow the proof in [1, Theorem 3.1]. From the definition
of the standard DGFEM formulation (5) and the fine grid approximation (9) we have
that

Ahp(uhp; uhp, vhp) = Ahp(uHP ; u2G, vhp) for all vhp ∈ Vhp(Th,p).
Therefore, letting φ = u2G − uhp ∈ Vhp(Th,p), from Lemma 2.2, we deduce that

Cc‖φ‖2hp ≤ Ahp(uhp; uhp, φ)−Ahp(uHP ; uhp, φ)

≤
∑

κ∈Th

∫

κ
|(µ(|∇uhp|)− µ(|∇uHP |))∇uhp||∇φ|dx

+
∑

F∈F
h

∫

F
{{|(µ(|∇huhp|)− µ(|∇huHP |))∇huhp|}}|[[φ]]| ds.

Adding and subtracting µ(|∇uHP |)∇uHP to both terms on the right-hand side, then
applying the triangle inequality, together with (2) and (3) gives

‖φ‖2hp

≤ C1 +Mµ

Cc



∑

κ∈Th

∫

κ
|∇(uhp − uHP )||∇φ| dx+

∑

F∈F
h

∫

F
{{|∇h(uhp − uHP )|}}|[[φ]]| ds




≤ C1 +Mµ

Cc






∑

κ∈Th

‖∇(u− uhp)‖2L2(κ) +
∑

F∈F
h

∫

F
σ−1
hp |{{|∇h(u− uhp)|}}|2 ds




1/2

+



∑

K∈TH

‖∇(u− uHP )‖2L2(K) +
∑

F∈F
h

∫

F
σ−1
hp |{{|∇h(u− uHP )|}}|2 ds




1/2

 ‖φ‖hp.

Therefore, applying a standard hp–version trace inequality, along with local bounded
variation of the mesh parameters, we deduce that
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‖u2G − uhp‖hp

≤
√
C5

2







∑

κ∈Th

‖∇(u− uhp)‖2L2(κ)




1/2

+




∑

K∈TH

‖∇(u− uHP )‖2L2(K)




1/2

 ,

where C5 is a positive constant independent of u, h, H , p, and P , but depends on
the constants mµ, Mµ, C1, and C2. Applying Lemma 3.3 and Theorem 3.2 completes
the proof. �

A numerical example validating these bounds can be found in our confer-
ence article [35].

4 A posteriori error estimation and two-grid
hp-adaptive refinement

We note that the existing a posteriori error bound [1, Theorem 3.2] still holds
for an agglomerated coarse mesh, as the only requirement on the coarse mesh
is the fact that VHP (TH ,P ) ⊂ Vhp(Th,p), which is still true in the current
setting. For completeness we reproduce the error bound here.

Theorem 4.1 Let u ∈ H1(Ω) be the analytical solution of (1), uHP ∈ VHP (TH ,P )
the numerical approximation obtained from (8), and u2G ∈ Vhp(Th,p) the numerical
approximation computed from (9); then, the following hp-a posteriori error bound
holds

‖u− u2G‖hp ≤ C6




∑

κ∈Th

(η2κ + ξ2κ) +
∑

κ∈Th

‖f −ΠL2f‖2L2(κ)




1/2

,

with a constant C6 > 0, which is independent of h, H, p, and P . Here, ΠL2 is the
L2-projection onto the fine grid finite element space Vhp(Th,p), the local fine grid
error indicators ηκ are defined, for all κ ∈ Th, by

η2κ = h2κp
−2
κ ‖ΠL2f +∇ · (µ(|∇uHP |)∇u2G)‖2L2(κ)

+ hκp
−1
κ ‖[[µ(|∇uHP |)∇u2G]]‖2L2(∂κ\Γ) + γ2h−1

κ p3κ‖[[u2G]]‖2L2(∂κ), (15)

and the local two-grid error indicators ξκ are defined, for all κ ∈ Th, by
ξ2κ = ‖(µ(|∇uHP |)− µ(|∇u2G|))∇u2G‖2L2(κ). (16)

For the two-grid DGFEM discretization defined by (8)–(9) it is necessary
to refine both fine and coarse meshes, together with their corresponding poly-
nomial degree vectors, in order to decrease the error between u and u2G with
respect to the energy norm ‖·‖hp. We note that, from Theorem 4.1, we have,
for each fine element κ ∈ Th, a local error indicator ηκ and a local two-grid
error indicator ξκ. The local error indicator ηκ is similar to the one which arises
within the analysis of the standard DGFEM discretization and, hence, repre-
sents the error arising from the linear fine grid solve (9); whereas, the local
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two-grid error indicator ξκ represents the error stemming from the approxima-
tion of the nonlinear coefficient µ(|∇uhp|) on the fine mesh by the nonlinear
coefficient evaluated with respect to the coarse grid solution uHP . To this
end, we can consider a modified version of the two-grid mesh refinement algo-
rithm [26, Algorithm 1 & Algorithm 2] to allow for a coarse mesh consisting
of agglomerated fine mesh elements.

Algorithm 4.2 The fine and coarse finite element spaces Vhp(Th,p) and
VHP (TH ,P ) are refined as follows.

1. Initial Step: Select an initial fine mesh Th and initial fine mesh polynomial
degree distribution p. Create a coarse mesh TH by element agglomeration/-
graph partitioning (e.g., by METIS [15]) and assign a polynomial degree
distribution P , such that VHP (TH ,P ) ⊆ Vhp(Th,p).

2. Solve (8)–(9) to determine uHP and u2G, respectively.
3. Select elements for refinement based on the local fine grid error indicators ηκ

and the local two-grid error indicators ξκ, from (15) and (16), respectively:
(a) Determine the set R(Th) ⊆ Th of potential elements to refine based on√

η2κ + ξ2κ using a standard refinement strategy, e.g., the fixed fraction
strategy.

(b) For all elements selected for refinement decided whether to perform
refinement on the fine or coarse mesh. For all κ ∈ R(Th):
• if λF ξκ ≤ ηκ refine the fine element κ, and
• if λCηκ ≤ ξκ refine the coarse element K ∈ TH , where κ ∈ Th(K).

4. Perform hp-refinement on the fine mesh Th using a standard refinement
method; see, for example, [36–39].

5. For elements marked for refinement in the coarse mesh TH determine
whether to perform h- or p-refinement; see, for example, [36–39].

6. Perform mesh smoothing of the fine mesh to ensure that for any coarse
element K ∈ Th marked for h-refinement that Th(K) contains at least 2d

fine mesh elements. Also, for any coarse mesh element K ∈ TH marked
for p-refinement, if there exists a fine mesh element κ ∈ Th(K) such that
pκ = PK do not perform p-refinement on K.

7. Perform hp-refinement on the coarse mesh.

Here, λF , λC ∈ (0,∞) are steering parameters selected such that λFλC ≤ 1.

Remark 4.3 For the purposes of the numerical experiments in the following section
the initial coarse mesh, in Step 2 above, is selected by agglomerating the fine mesh
into ⌈N/2d⌉ coarse elements, where N is the number of fine mesh elements, and
the initial polynomial degrees for all fine and coarse elements are set to the same
polynomial degree; i.e., for a polynomial degree p we set pκ = p for all κ ∈ Th and
PK = p for all K ∈ TH .

In order to perform refinement on the coarse element we need an algorithm
for h-refinement of agglomerated elements. The first potential algorithm is a
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näıve approach based on simply agglomerating the sub-elements on a coarse
element marked for refinement into smaller elements; cf. [40].

Algorithm 4.4 (Näıve (Unweighted) Coarse Refinement) For each K ∈ TH
marked for refinement partition the sub-patch Th(K) into 2d elements using graph
partitioning (e.g., by METIS [15]).

The standard graph partitioning algorithm subdivides the elements into
partitions containing a roughly equal number of elements. However, given that
we have information on the likely local error size for each fine mesh element,
it should be possible to refine the coarse mesh elements to equidistribute the
magnitude of the error indicators to the new elements. To this end, we note that
METIS provides a means of performing graph partitioning based on allocating
weights for each vertex, cf. [41]. Exploiting this procedure, we propose the
following alternative algorithm.

Algorithm 4.5 (Weighted Coarse Refinement) For each coarse element K ∈ TH
marked for refinement, we allocate some weight ωκ ∈ R to its fine sub-elements
κ ∈ Th(K) based on the error indicators; i.e, we set

ωκ = η2κ + ξ2κ.

We then refine the coarse element K ∈ TH as follows:

1. Construct an adjacency graph for Th(K), with a vertex Nκ for each element
κ ∈ Th(K), and an edge EF connecting the vertices Nκ,Nκ′ of each pair of
elements κ, κ′ which share a common face F ∈ FI

h (K) := {F ∈ FI
h : F =

∂κ ∩ ∂κ′, κ, κ′ ∈ Th(K)}.
2. Assign the weights ωκ to the vertex Nκ for each element κ ∈ Th(K).
3. Perform graph partitioning on the adjacency graph to partition the graph

into 2d sub-graphs such that the sum of the weights in each sub-graph is
(roughly) equal.

4. Construct the new refined elements from the sub-graphs.

Note, this algorithm is performed after fine mesh refinement; therefore, we
divide the error indicators ηκ and ξκ of a refined fine mesh element κ ∈ Th
between its new elements. To that end, we change the fine mesh refinement
algorithm to compute new effective error indicators:

Algorithm 4.6 We calculate the effective error indicators η′κ and ξ′κ on the fine
mesh after mesh refinement from ηκ and ξκ as follows.

for all κ ∈ Th do

if κ is marked for h-refinement then
Perform h-refinement, dividing the element into N children: κ1, . . . , κN
η′κi
← ηκ√

N
, for i = 1, . . . , N

ξ′κi
← ξκ√

N
, for i = 1, . . . , N
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(a) Th (gray) and TH (black) (b) Th(K), K ∈ TH

(c) Algorithm 4.4 (d) Algorithm 4.5

Fig. 1: Coarse element refinement example. (a) Fine mesh (gray) agglomer-
ated into 4 coarse elements (black), with shaded element K ∈ TH marked
for h-refinement; (b) The element K ∈ TH marked for h-refinement, the con-
stituent fine elements Th(K), and the adjacency graph for these fine elements.
(c) Algorithm 4.4. Graph partitioning of the adjacency graph, and the result-
ing coarse element refinement. (c) Algorithm 4.5. Graph partitioning of the
adjacency graph with vertex weights ωκ = η2κ+ξ2κ, κ ∈ Th(K), denoted by ver-
tex color (black = 0.5, white = 0), and the resulting coarse element refinement

else

η′κ ← ηκ
ξ′κ ← ξκ

end if

end for

Fig. 1 demonstrates Algorithms 4.4 & 4.5 for an example coarse element
refinement. Fig. 1(a) shows an example fine mesh Th with corresponding coarse
mesh TH constructed by agglomerating the fine mesh into four elements, and
highlights one coarse element K ∈ TH for h-refinement. In Fig. 1(b) we
take the constituent fine elements Th(K) of the element K ∈ TH marked
for h-refinement and create the matching adjacency graph for these elements.
Figs. 1(c) & 1(d) show how Algorithm 4.4 and Algorithm 4.5, respectively,
partition the adjacency graph into 2d = 4 sub-graphs, and the matching coarse
element refinement.
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5 Numerical experiments

In this section we perform a series of numerical experiments to demonstrate
the performance of the a posteriori error bound stated in Theorem 4.1, the hp-
adaptive mesh refinement strategy outlined in Algorithm 4.2, and the coarse
mesh refinement strategies presented in Algorithms 4.4 & 4.5, using both h-
and hp-adaptive mesh refinement. Based on numerical experience, we set the
interior penalty parameters γhp and γHP in (6) and (10), respectively, equal to
10. For the two steering parameters from Algorithm 4.2 we set λC = 1/2 and
λF = 1. The nonlinear equations are solved by employing a damped Newton
iteration [42, Sect. 14.4]. The solution of the resulting set of linear equations,
from either the fine mesh or at each step of the iterative nonlinear solver,
is computed using either the direct MUMPS solver [43], for two-dimensional
problems or an ILU preconditioned GMRES algorithm [44], for the three-
dimensional problems presented here. We also calculate effectivity indices by
dividing the error bound stated in Theorem 4.1, with the constant C6 set to
1, by the error computed in the DGFEM energy norm.

For comparison purposes, for each example presented below, in addition
to the h- and hp-version adaptive two-grid algorithms presented in Section 4,
we also perform h- and hp-adaptive refinement using the standard DGFEM
formulation (5).

5.1 Example 1: Smooth analytical solution

In this example, we let Ω be the unit square (0, 1)2 ⊂ R
2, define the nonlinear

coefficient by

µ(|∇u|) = 2 +
1

1 + |∇u|
, (17)

and select the forcing function f such that the analytical solution to (1) is
given by

u(x, y) = x(1 − x)y(1− y)(1 − 2y)e−20(2x−1)2.

In Fig. 2(a) we present the relative error measured in the energy norm
versus the third root of the number of degrees of freedom (in the fine finite
element space Vhp(Th,p)) for the standard DGFEM formulation (5), together
with the corresponding quantities computed based on employing the two-grid
DGFEM formulation (8)–(9) using both Algorithm 4.4 (TG Unweighted) and
Algorithm 4.5 (TG Weighted) for the coarse mesh refinement. Here, we per-
form both h- and hp-adaptive refinement for all methods (independently). We
observe that, for the problem at hand, when h-refinement is employed the
two two-grid methods lead to a slight increase in the error measured in the
DGFEM norm, relative to the standard DGFEM formulation, in the sense that
for a fixed number of degrees of freedom the latter is slightly superior. In the
hp-refinement setting, we note that exponential convergence is observed for
all three methods as the underlying finite element space is enriched, although
we notice that when unweighted coarse mesh refinement procedure, cf. Algo-
rithm 4.4, is employed within the two-grid method, then the norm of the error
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Fig. 2: Example 1. (a) Error in the DG norm with respect to the number of
degrees of freedom for the standard method and the two-grid methods, using
weighted and unweighted coarse mesh refinement, with h- and hp-refinement;
(b) Effectivity indices for the two-grid method with h- and hp-refinement;
(c) Comparison of the number of degrees of freedom on the coarse and fine
mesh for the two-grid methods

has a noticeably slower rate of convergence. In Fig. 2(b), we display the effec-
tivity indices calculated by dividing the error bound by the true error measured
in the energy norm for each of DGFEMs and refinement strategies employed.
We note that initially the effectivity indices drop before roughly stabilizing to
a constant, thus indicating that the a posteriori error bound overestimates the
true error by a roughly consistent amount.

Although Fig. 2(a) suggests that the two-grid methods perform worse than
the standard DGFEM, when considering the magnitude of the error measured
in the DGFEM norm relative to the number of degrees of freedom employed
in the fine finite element space Vhp(Th,p), this degradation is expected since
we are only solving a linearized version of the underlying numerical scheme
on Vhp(Th,p). However, as the coarse space VHP (TH ,P ) should contain con-
siderably fewer degrees of freedom than Vhp(Th,p), we expect the two-grid
method to be computationally cheaper as it only solves the nonlinear prob-
lem on VHP (TH ,P ). With this mind, in Fig. 2(c) we compare the number of
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Fig. 3: Example 1. Error in the DG norm with respect to the cumulative CPU
time for the standard method and the two-grid methods, using weighted and
unweighted coarse mesh refinement, with (a) h- and (b) hp-refinement

degrees of freedom in VHP (TH ,P ) and Vhp(Th,p) for both coarse mesh refine-
ment strategies, Algorithms 4.4 & 4.5, when both h- and hp-refinement are
employed. As expected, the number of degrees of freedom in the coarse mesh
is considerable lower compared to the fine mesh; furthermore, we notice that
both the unweighted, Algorithm 4.4, and weighted, Algorithm 4.5, coarse mesh
refinement algorithms result in a similar number of coarse mesh degrees of
freedom compared to the fine mesh.

To investigate this issue further in Fig. 3, we compare the relative error
computed in the energy norm with the cumulative computation time for both
the standard DGFEM and the two two-grid DGFEMs employing the differ-
ent coarse mesh refinement strategies, when both h- and hp-adaptive mesh
refinement is exploited. In the h-refinement setting the two two-grid DGFEMs
lead to around an order of magnitude decrease in the error measured in the
DGFEM norm, when compared to the standard DGFEM, for a given fixed
computation time. When hp-refinement is employed, the reduction in the
error in the two-grid DGFEM compared to the standard DGFEM, for a given
fixed amount of computation time, increases to roughly two orders of magni-
tude when the weighted coarse mesh refinement strategy, cf. Algorithm 4.5, is
employed. However, when the unweighted coarse mesh refinement algorithm is
employed within the two-grid DGFEM, cf. Algorithm 4.4, this improvement in
the error computed in the DGFEM norm decreases as refinement progresses;
this is caused by the noticeably slower rate of convergence observed in Fig. 2(a).
This result, along with the fact that both coarse mesh refinement algorithms
result in a broadly similar number of degrees of freedom on the coarse mesh,
suggest that the weighted Algorithm 4.5 coarse mesh refinement is a superior
refinement strategy in the hp-setting.

Finally, in Fig. 4 we show the fine and coarse meshes after 8 h- and
hp-adaptive refinements for the two-grid method using the weighted, cf. Algo-
rithm 4.5, coarse mesh refinement strategy, where the shading indicates the
polynomial degree for the hp-refinement case. We notice that the refinement
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Fig. 4: Example 1. Coarse and fine meshes after 8 (a)–(b) h- and (c)–(d) hp-
adaptive mesh refinements, respectively

is concentrated around the ‘hills’ in the analytical solution for both meshes,
with mostly p-refinement in the interior, as would be expect when employ-
ing the standard DGFEM. We note considerably less refinement in the coarse
hp-mesh compared to the fine one.

5.2 Example 2: Singular solution

In this example we consider the L-shaped domain Ω = (−1, 1)2 \ [0, 1) ×
(−1, 0] ⊂ R

2 and select the nonlinear coefficient to be

µ(|∇u|) = 1 + e−|∇u|2 .

By writing (r, ϕ) to denote the system of polar coordinates, we choose the
forcing function f and impose inhomogeneous boundary conditions such that
the analytical solution to (1) is given by

u(r, ϕ) = r
2/3 sin

(
2

3
ϕ

)
.

Note that u is analytic in Ω \ {0}, but ∇u is singular at the origin.
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Fig. 5: Example 2. (a) Error in the DG norm with respect to the number of
degrees of freedom for the standard method and the two-grid methods, using
weighted and unweighted coarse mesh refinement, with h- and hp-refinement;
(b) Effectivity indices for the two-grid method with h- and hp-refinement;
(c) Comparison of the number of degrees of freedom on the coarse and fine
mesh for the two-grid methods

In Fig. 5(a) we again present the comparison of the relative error mea-
sured in the DGFEM energy norm versus the third root of the number of
degrees of freedom in the fine space Vhp(Th,p) for the standard formulation
(5) and the two-grid formulation (8)–(9) using both coarse mesh refinement
strategies, Algorithm 4.4 and Algorithm 4.5, when h- and hp-refinement is
employed. Here, we note that for hp-refinement the two two-grid methods
again lead to a slight degradation in the error measured in the DGFEM norm,
for a fixed number of degrees of freedom, when compared to the standard
DGFEM. Additionally, we again observe that the two-grid DGFEM employ-
ing the weighted, cf. Algorithm 4.5, coarse mesh refinement strategy performs
slightly better than the corresponding scheme exploiting the unweighted, cf.
Algorithm 4.4, strategy. In the h-refinement setting, we actually observe the
opposite behaviour: namely, that the two two-grid methods lead to a reduction
in the error computed in the DGFEM norm, for a fixed number of degrees of
freedom, when compared to the standard DGFEM, which is quite unexpected.
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Fig. 6: Example 2. Error in the DG norm with respect to the cumulative CPU
time for the standard method and the two-grid methods, using weighted and
unweighted coarse mesh refinement, with (a) h- and (b) hp-refinement

Fig. 5(b) again shows the effectivity indices for both two-grid refinement strate-
gies using h- and hp-refinement; here, we observe that they are almost constant
for all meshes indicating that the a posteriori error bound overestimates the
true error in a roughly consistent manner. Fig. 5(c) again shows the coarse
space degrees of freedom increasing at a slower rate compared to the corre-
sponding quantity for the fine space for both two-grid DGFEMs employing
either h- or hp-mesh refinement strategies; indeed, both methods result in
a broadly similar number of coarse space degrees of freedom, although with
slightly more coarse space degrees of freedom in the weighted hp-refinement
case.

In Fig. 6 we again compare the relative error computed in the DGFEM
energy norm against the cumulative computation time for the standard
DGFEM and both two-grid methods utilizing weighted and unweighted refine-
ment of the coarse space. While we again notice a reduction in the DGFEM
norm of error, for a given fixed computation time, when the two two-grid meth-
ods are employed compared to the standard DGFEM, this reduction is smaller
than observed for the first example.

In Fig. 7 we show the coarse and fine meshes after 8 h- and hp-adaptive
mesh refinements for the two-grid method using the weighted Algorithm 4.5
coarse mesh refinement strategy. Here, we notice that for both coarse and fine
meshes that the h-refinement is concentrated around the singularity at the re-
entrant corner, with bands of p-refinement around this. We notice considerably
more refinement on the coarse mesh compared with the previous example,
caused by the method needing to resolve the singularity on both meshes.

5.3 Example 3: 3D singular solution

Finally, we consider a three-dimensional problem; to this end, we let Ω be the
Fichera corner (−1, 1)3 \ [0, 1)3 ⊂ R

3, use the nonlinearity (17) from the first
example and select f and a suitable inhomogeneous boundary condition such
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Fig. 7: Example 2. Coarse and fine meshes after 8 (a)–(b) h- and (c)–(d) hp-
adaptive mesh refinements, respectively

that the analytical solution to (1) is given by

u(x, y, z) = (x2 + y2 + z2)
q/2,

where q ∈ R. From [45] we note that for q ≥ −1/2 the solution satisfies u ∈
H1(Ω); in this case we select q = −1/4 as in [46]. We note that this gives a
singularity at the re-entrant corner.

In Fig. 8(a) we compare the relative error measured in the DGFEM norm
with the fourth root, cf. [46], of the number of degrees of freedom in Vhp(Th,p)
for each of three methods considered in the previous examples, when h- or
hp-refinement is employed. We again notice that for hp-refinement we obtain
exponential convergence, with a slightly slower rate when the two-grid methods
are employed compared to the standard DGFEM; in the h-refinement setting
the two two-grid methods lead to a reduction in the computed error, for a
fixed number of degrees of freedom, when compared the standard DGFEM.
Fig. 8(b) confirms that the a posteriori error estimate again overestimates
the error by a consistent amount in the sense that the effectivity indices for
the two-grid methods employing both coarse mesh refinement strategies are
roughly constant. Again, we observe that the coarse number of degrees of
freedom grows slower than the number of degrees of freedom present in fine
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Fig. 8: Example 3. (a) Error in the DG norm with respect to the number of
degrees of freedom for the standard method and the two-grid methods, using
weighted and unweighted coarse mesh refinement, with h- and hp-refinement;
(b) Effectivity indices for the two-grid method with h- and hp-refinement;
(c) Comparison of the number of degrees of freedom on the coarse and fine
mesh for the two-grid methods

space, with a broadly similar number of degrees of freedom for both coarse
mesh refinement strategies, cf. Fig. 8(c).

We finally compare the relative error measured in the energy norm against
the cumulative computation time taken for the standard DGFEM and the two
two-grid methods employing both coarse mesh refinement strategies, for h-
and hp-refinement; cf. Fig. 9. As for the previous example we notice a small
reduction in the error for a fixed computation time when the two grid methods
are employed compared with the standard DGFEM.

6 Concluding remarks

In this article, we have extended previous work on two-grid hp-version
DGFEMs for the numerical approximation of second-order quasilinear bound-
ary value problems of monotone type to the situation when general coarse
meshes containing polytopic elements constructed by the agglomeration of
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Fig. 9: Example 3. Error in the DG norm with respect to the cumulative CPU
time for the standard method and the two-grid methods, using weighted and
unweighted coarse mesh refinement, with (a) h- and (b) hp-refinement

fine mesh elements are employed. In particular, we have developed the a pri-

ori error analyis for the polytopic coarse mesh approximation and developed
algorithms for hp-adaptive refinement of the coarse mesh elements based on
a computable a posteriori error bound. This leads to fully adaptive black-box
solver which can be used for the numerical approximation of nonlinear PDEs
in an efficient manner. Indeed, our numerical experiments have highlighted
that the computed error in the proposed two-grid method is generally similar
in magnitude to the corresponding quantity computed based on employing a
standard DGFEM formulation; however, the need to only solve a nonlinear
system of equations on the coarse finite element space, with only a linear prob-
lem computed on the fine space, leads to significant reductions in the overall
computation time when the former approach is employed. We have also shown
that by weighting the refinement of the coarse mesh elements by the localized
a posteriori error indicators defined on the submesh partition that forms the
coarse element, we are able to reduce the error compared to both the number
of degrees of freedom in the fine finite element space and the overall compu-
tation time. Further extensions of this work include the application to PDE
problems with coefficients containing more general nonlinearities.
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