Skip to main content
Log in

A formal framework for connective stability of highly decentralized cooperative negotiations

  • Published:
Autonomous Agents and Multi-Agent Systems Aims and scope Submit manuscript

Abstract

Multiagent cooperative negotiation is a promising technique for modeling and controlling complex systems. Effective and flexible cooperative negotiations are especially useful for open complex systems characterized by high decentralization (which implies a low amount of exchanged information) and by dynamic connection and disconnection of agents. Applications include ad hoc network management, vehicle formation, and physiological model combination. To obtain an effective control action, the stability of the negotiation, namely the guarantee that an agreement will be eventually reached, is of paramount importance. However, the techniques usually employed for assessing the stability of a negotiation can be hardly applied in open scenarios. In this paper, whose nature is mainly theoretical, we make a first attempt towards engineering stable cooperative negotiations proposing a framework for their analysis and design. Specifically, we present a formal protocol for cooperative negotiations between a number of agents and we propose a criterion for negotiation stability based on the concept of connective stability. This is a form of stability that accounts for the effects of structural changes on the composition of a system and that appears very suitable for multiagent cooperative negotiations. To show its possible uses, we apply our framework for connective stability to some negotiations taken from literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amigoni F., Beda A., Gatti N. (2006). Combining multi-sensor rate-adaptive pacing algorithms via multiagent negotiation. IEEE Transactions on Information Technology in Biomedicine 10(1): 11–18

    Article  Google Scholar 

  2. Amigoni F., Dini M., Gatti N., Somalvico M. (2003). Anthropic agency: A multiagent system for physiological processes. Artificial Intelligence in Medicine 27(3): 305–334

    Article  Google Scholar 

  3. Antsaklis P.J. (1994). Defining intelligent control. Report of the IEEE control systems society task force on intelligent control. IEEE Control Systems Magazine 14(3): 58–66

    Google Scholar 

  4. Astrom, K., Albertos, P., Blanke, M., Isidori, A., Schaufelberger, W., & Sanz, R. (2000). Control of Complex Systems. Springer Verlag

  5. Bak P., Nerrelykke S.F., Shubik M. (1999). Dynamics of money. Physical Review E 60(3): 2528–2532

    Article  Google Scholar 

  6. Bingam, J., & Du, L. (2003). Cooperative negotiation in a multi-agent system for real-time load balancing of a mobile cellular network. In Proceedings of the international joint conference on autonomous agents and multi agent systems (AAMAS), pp. 568–575. Melbourne, Australia.

  7. Binmore K., Rubinstein A., Wolinsky A. (1986). The nash bargaining solution in economic modeling. The Rand Journal of Economics 17(2): 176–188

    Article  MathSciNet  Google Scholar 

  8. Clearwater S.H. (1996). Market-based control: A paradigm for distributed resource allocation. Hackensack, USA: World Scientific Publishing.

    Google Scholar 

  9. Conry S.E., Kuwabara K., Lesser V.R., Meyer R.A. (1991). Multistage negotiation for distributed constraint satisfaction. IEEE Transaction on Systems, Man and Cybernetics 21(6): 1462–1476

    Article  MATH  Google Scholar 

  10. Ehtamo H., Hämäläinen R.P., Heinskanen P., Teich J., Verkama M., Stanley Z. (1999). Generating Pareto solutions in a two-party setting: Constraint proposal methods. Management Science 45(12): 1697–1709

    Article  Google Scholar 

  11. Ehtamo H., Kettunen E., Hämäläinen R.P. (2001). Searching for joint gains in multiparty negotiations. European Journal of Operational Research 130(1): 54–69

    Article  MATH  MathSciNet  Google Scholar 

  12. Faratin P., Sierra C., Jennings N.R. (1998). Negotiation decision functions for autonomous agents. Robotic Autonomous Systems 24(3–4): 159–182

    Article  Google Scholar 

  13. Fatima, S., Wooldridge, M., & Jennings, N. (2004). Optimal negotiation of multiple issues in incomplete information settings. In Proceedings of the international joint conference on autonomous agents and multi agent systems (AAMAS), pp. 1080–1087. New York, USA.

  14. Fishwick P.A. (1992a). An integrated approach to system modeling using a synthesis of artificial intelligence, software engineering and simulation methodologies. ACM Transaction on Modeling and Computer Simulation 2(4): 307–330

    Article  MATH  Google Scholar 

  15. Fishwick P.A. (1992b). A multimodel methodology for qualitative model engineering. ACM Transaction on Modeling and Computer Simulation 2(1): 52–81

    Article  MATH  Google Scholar 

  16. Gatti, N. (2004). A connective stability analysis of complex system simulation and control via multiagent systems. In E. Onaindia & S. Staab (Eds.), Proceedings of the second starting AI Researchers’ symposium (STAIRS 2004), Frontiers in Artificial Intelligence and Applications, pp. 26–37. Amsterdam, The Netherlands: IOS Press.

  17. Gatti, N., & Amigoni, F. (2004). A cooperative negotiation protocol for physiological model combination. In Proceedings of the international joint conference on autonomous agents and multi agent systems (AAMAS), pp. 656–663. New York, USA.

  18. Gatti, N., & Amigoni, F. (2005a). An approximate Pareto optimal cooperative negotiation model for multiple continuous dependent issues. In Proceedings of the international conference on agent intelligent technologies (IAT), Vol. IAT, pp. 565–571. Compiègne, France.

  19. Gatti, N., & Amigoni, F. (2005b). A decentralized bargaining protocol on dependent continuous multi-issue for approximate Pareto optimal outcomes. In Proceedings of the international joint conference on autonomous agents and multi agent systems (AAMAS), pp. 1213–1214. Utrecht, The Netherland.

  20. Grujic L.T., Martynyuk A.A., Ribbens-Pavella M. (1987). Large-Scale Systems Stability under Structural and Singular Perturbations. Berlin, Germany: Springer-Verlag

    MATH  Google Scholar 

  21. Heiskanen P. (1999). Decentralized method for computing Pareto solutions in multiparty negotiations. European Journal of Operational Research 117(3): 578–590

    Article  MATH  Google Scholar 

  22. Inalhan, G., Stipanovic, D. M., & Tomlin, C. J. (2002). Decentralized optimization, with application to multiple aircraft coordination. InProceedings of the IEEE conference on decision and control, Vol. 1, pp. 1147–1155. Las Vegas, USA.

  23. Jennings N. (2001). An agent-based approach for building complex software systems. Communications of the ACM 44(4): 35–41

    Article  MathSciNet  Google Scholar 

  24. Kalai E., Smorodinsky M. (1975). Other solutions to Nash’s bargaining problem. Econometrica 43(3): 513–518

    Article  MATH  MathSciNet  Google Scholar 

  25. Khalil, H. K. (1996). Nonlinear systems. Prentice Hall.

  26. Kraus S. (2001). Strategic negotiation in multiagent environments. Cambridge, USA: The MIT Press

    MATH  Google Scholar 

  27. Lasalle, J., & Lefschetz, S. (1961). Stability by Lyapunov’s direct method. Academic Press.

  28. Mailler, R., Lesser, V. R., & Horling, B. (2003). Cooperative negotiation for soft real-time distributed resource allocation. In Proceedings of the international joint conference on autonomous agents and multi agent systems (AAMAS), pp. 576–583. Melbourne, Australia.

  29. Meyer, D. A. (1997). Towards the global: Complexity, topology and chaos in modeling, simulation and computation. In Proceedings of the international conference on complex systems (ICCC), pp. 397–409. Nashua, NH, USA.

  30. Modi P.J., Shen W., Tambe M., Yokoo M. (2005). ADOPT: Asynchronous distributed constraint optimization with quality guarantees. Artificial Intelligence Journal 161, 149–180

    Article  MathSciNet  MATH  Google Scholar 

  31. Nash J.F. (1950). The bargaining problem. Econometrica 18(2): 155–162

    Article  MathSciNet  Google Scholar 

  32. Palm R. (2004). Synchronization of decentralized multiple-model systems by market-based optimization. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics 34(1): 665–671

    Article  MathSciNet  Google Scholar 

  33. Parsons S., Wooldridge M. (2002). Game theory and decision theory in multi-agent systems. Autonomous Agents and Multi-Agent Systems 5(3): 243–254

    Article  MathSciNet  Google Scholar 

  34. Pedrycz W. (1996). Fuzzy multimodels. IEEE Transactions on Fuzzy Systems 4(2): 139–148

    Article  Google Scholar 

  35. Rubinstein A. (1982). Perfect equilibrium in a bargaining model. Econometrica 50(1): 97–109

    Article  MATH  MathSciNet  Google Scholar 

  36. Siljak D.D. (1972). Stability of large scale systems under structural perturbations. IEEE Transactions on Systems, Man and Cybernetics 2(2): 657–663

    Article  MATH  MathSciNet  Google Scholar 

  37. Srinivasan, V., Nuggehalli, P., Chiasserini, C., & Rao, R. (2003). Cooperation in wireless ad hoc networks. In Proceedings of the joint conference of the IEEE computer and communications societies (INFOCOM), Vol. 2, pp. 808–817. San Francisco, USA.

  38. Voos, H. (1999). Market-based algorithms for optimal decentralized control of complex dynamic systems. In Proceedings of the IEEE conference on decision and control, Vol. 4, pp. 3295–3296. Phoenix, USA.

  39. Voos, H., & Litz, L. (2000). Market-based optimal control: A general introduction. In Proceedings of the IEEE American control conference (ACC), Vol. 5, pp. 3398–3402. Chicago, USA.

  40. Weiss G. (1999). Multiagent systems: A modern approach to distributed artificial intelligence. USA, The MIT Press

    Google Scholar 

  41. Weymark J.A. (1998). Welfarism on economic domains. Mathematical Social Science 36(3): 251–268

    Article  MATH  MathSciNet  Google Scholar 

  42. Zitzler E., Thiele L. (1999). Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation 3(4): 257–271

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Amigoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amigoni, F., Gatti, N. A formal framework for connective stability of highly decentralized cooperative negotiations. Auton Agent Multi-Agent Syst 15, 253–279 (2007). https://doi.org/10.1007/s10458-007-9011-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10458-007-9011-z

Keywords

Navigation