
Auton Agent Multi-Agent Syst (2009) 19:30–52
DOI 10.1007/s10458-007-9017-6

Models and methods for plan diagnosis

Nico Roos · Cees Witteveen

Published online: 10 October 2007
© Springer Science+Business Media, LLC 2007

Abstract We consider a model-based diagnosis approach to the diagnosis of plans. Here,
a plan performed by some agent(s) is considered as a system to be diagnosed. We introduce
a simple formal model of plans and plan execution where it is assumed that the execution of
a plan can be monitored by making partial observations of plan states. These observed states
are used to compare them with states predicted based on (normal) plan execution. Deviations
between observed and predicted states can be explained by qualifying some plan steps in
the plan as behaving abnormally. A diagnosis is a subset of plan steps qualified as abnormal
that can be used to restore the compatibility between the predicted and the observed partial
state. Besides minimum and subset minimal diagnoses, we argue that in plan-based diagno-
sis maximum informative diagnoses should be considered as preferred diagnoses, too. The
latter ones are diagnoses that make the strongest predictions with respect to partial states to
be observed in the future. We show that in contrast to minimum diagnoses, finding a (subset
minimal) maximum informative diagnosis can be achieved in polynomial time. Finally, we
show how these diagnoses can be found efficiently if the plan is distributed over a number
of agents.

Keywords Planning · Diagnosis · Complexity · Multi-agents

N. Roos
Department of Computer Science, Universiteit Maastricht, P.O. Box 616, 6200 MD Maastricht,
The Netherlands
e-mail: roos@cs.unimaas.nl

C. Witteveen (B)
Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology,
P.O. Box 5031, 2600 GA Delft, The Netherlands
e-mail: C.Witteveen@tudelft.nl

123

Auton Agent Multi-Agent Syst (2009) 19:30–52 31

1 Introduction

With a growing complexity of plans, the possibility that something goes wrong during their
execution increases correspondingly. No wonder then that attention has to be paid to the
development of robust plans. One way to enhance robustness is to perform plan diagnosis in
order to identify the causes of failures, to predict future failures and, if possible, to prevent
failures from occurring. Since there are a huge number of potential factors that might prevent
correct plan execution, it is not surprising that current approaches to plan diagnosis are rather
diverse. For example, a changing environment might be such an important disturbing factor,
preventing some parts of the plan to be executed by changing the preconditions of some
instances of actions occurring in the plan. Another important source of plan failures could
be attributed to the agent(s) controlling the actions prescribed in the plan by being unable to
perform some of the actions required or accidently changing some of the preconditions of
actions. In a broader, multi-agent perspective, one could even concentrate on incompatibili-
ties between different agents involved in the execution of a joint plan as a major factor that
could prevent parts of a joint plan from being executed correctly.

In this paper we want to specify a general framework for plan diagnosis where, in princi-
ple, the above mentioned aspects of plan diagnosis could be dealt with and the computational
properties of finding suitable plan diagnoses can be investigated. In particular, we hope to
find suitable diagnostic tasks that can be executed efficiently.

In developing such a framework it seems unavoidable to concentrate on some aspects of
plan diagnosis and to (temporarily) neglect others. In this paper, we concentrate on internal
failure sources and leave external failure sources such as the environment, failures of execut-
ing agents as in [2], or incompatibilities between agents as in [14,15] for future research. In
particular, we confine ourselves to the identification of failing actions as the only source of
plan failure. Our main motivation for this restriction is that if the plan is correctly specified,
errors in the plan execution process become manifest in the incorrect behavior of one or more
instances of actions.1 Whether or not we should be satisfied with the mere identification of
one or more of such failing actions, a diagnostic process that identifies a set of actions that can
be shown to be responsible for the abnormalities observed seems to be a useful analysis on
its own. In a multi-agent planning systems, for example, identification of such failing actions
can be used to identify incompatibilities between plans, to identify failing agents responsible
for executing plans or to identify incompatibilities between agents involved in the plans. In
the conclusion section we elaborate on the potential extensions of the framework to deal with
these questions.

Although the specification of a general framework for plan diagnosis is our first and
main objective, we also want to identify suitable (preference) criteria for choosing diagno-
ses in plan based diagnosis, to characterize the type of most preferred diagnosis in terms
of these criteria and to identify the computational complexity of finding these diagnoses. In
Model-Based Diagnosis (MBD), for example, size- and subset-minimal diagnoses are pre-
ferred. The underlying preference criterion is based on an intuitive acceptable assumption
concerning the default behavior of the system: we assume that for every component of the
system it is more likely that it behaves normally than abnormally. If we would prefer the
most likely diagnoses, it is not difficult to show that minimum diagnoses will be considered
as the most preferred ones. It is well-known that in general finding such minimum diagnoses
is hard.

1 Of course, some of these actions might not be specified in the plan.

123

32 Auton Agent Multi-Agent Syst (2009) 19:30–52

In our framework, we investigate another intuitive acceptable assumption concerning
the default behavior of a system and a preference relation based on it that can be used to
characterize another set of preferred diagnoses. This latter assumption states that it is more
likely that a faulty action will produce (directly or indirectly) incorrect results than correct
results. Based on this principle, we prefer diagnoses that are more precise (more informative)
in their predictions. This gives rise to maximum informative diagnoses as preferred diagnoses.
Hoping to find efficiently computable diagnostic tasks, we want to investigate the properties
of this diagnostic concept and the computational complexity of finding such diagnoses. This
last computational goal is also the reason for temporarily limiting our approach to determinis-
tic planning. This implies that we do not address approaches focussing on non-deterministic
planning like [1,8,12]. One justification is that in nondeterministic contexts even the simplest
diagnostic tasks are intractable, such as finding a discrepancy or recognizing a diagnosis for
such discrepancies.

As our third objective, we would like to investigate the merits of this framework for multi-
agent plan diagnosis. What we have in mind are situations where the plan is distributed over
a set of agents who are communicating with each other. Together the agents are capable
of predicting what will happen if the plan would be executed given some initial situation.
If something is wrong, their predictions will not correspond to observations. We want to
investigate the suitability of the above mentioned preferred diagnostic concepts in such a
distributed environment.

1.1 Results

The results obtained in this paper are threefold. First of all, we present a formal framework
for plan diagnosis that enables us to define exactly how observations of a plan in execution
can be used to derive an arbitrary plan diagnosis. We show that establishing a plan diagnosis
comes down to finding a subset of actions in a plan such that if these actions are qualified as
abnormal, the observed plan states are compatible with predicted plan states.
Second, with respect to preferred diagnoses, we point out that, like in MBD, in our framework
minimum diagnoses are also hard to find. But quite surprisingly, maximum informative diag-
noses can be found very efficiently. Moreover, every subset-maximal informative diagnosis
also turns out to be a size maximal, i.e., a maximum, informative diagnosis. Finally, combin-
ing the two preferred types of diagnoses, we show that maximal informative diagnoses that
are also subset-minimal diagnoses can be found in polynomial time, while on the other hand
the intersection between the set of minimum diagnoses and the set of maximal informative
diagnoses is sometimes empty.
Third, we extend the plan diagnosis framework to the multi-agent case where the plan is
distributed over several agents. We show that in such a distributed setting subset minimal
maximum diagnoses still can be computed very efficiently by a distributed label setting
and label propagating algorithm making them a suitable candidate for fast diagnosis in a
multi-agent setting.

1.2 Organization

In Sect. 2, we first discuss some related approaches to plan diagnosis. In Sect. 3 we intro-
duce a simple formal framework for representing states, actions and plans. Then, in Sect.
4, we introduce the main concepts of plan-based diagnosis by introducing qualifications as
the basis for characterizing diagnoses and we define the derivability relation between two
plan states. In Sect. 5, we formally define the notion of plan diagnosis and we introduce the

123

Auton Agent Multi-Agent Syst (2009) 19:30–52 33

concept of a maximum informative diagnosis as a preferred diagnosis. In Sect. 6 we discuss
some complexity results for preferred diagnoses and we present an efficient algorithm to find
minimal maximum informative diagnoses. In Sect. 7, we extend our framework to diagnosis
in a distributed environment and we discuss an efficient distributed algorithm that can be
used to find minimal maximum informative diagnoses. Section 8 concludes this paper with
a brief outlook to future research. Some proofs are given in the appendix.

2 Related research

In this section we briefly discuss some other approaches to plan diagnosis we already men-
tioned above.

Birnbaum et al. [2] apply MBD to planning agents relating health states of agents to out-
comes of their planning activities. They do not take into account abnormalities that can be
attributed to actions in a plan as a separate source of errors. In contrast to their approach, in
this paper we do not take into account abnormalities of the executing agents, but exclusively
focus upon the detection of abnormal actions in the plan. As we already remarked above,
we feel that such an approach focusing upon actions as the immediate factors underlying
abnormal plan behavior should precede more elaborate failure analyses.

Another approach that directly applies model-based diagnosis to plan execution has been
proposed in De Jonge et al. [13]. There, the authors focus on agents each having an individ-
ual plan, and where conflicts between these plans may arise (e.g., if they require the same
resource). Diagnosis is applied to determine those factors that are accountable for future
conflicts.

Kalech and Kaminka [14,15] apply social diagnosis in order to find the cause of an anoma-
lous plan execution. They consider hierarchical plans consisting of so-called behaviors. Such
plans do not prescribe a (partial) execution order on a set of actions. Instead, based on its
observations and beliefs, each agent chooses the appropriate behavior to be executed. Each
behavior in turn may consist of primitive actions to be executed, or of a set of other behaviors
to choose from. Social diagnosis then addresses the issue of determining what went wrong in
the joint execution of such a plan by identifying the disagreeing agents and the causes for their
selection of incompatible behaviors (e.g., belief disagreement, communication errors). This
approach might complement our approach when conflicts not only arise as the consequence
of faulty actions, but also as the consequence of different selections of sub-plans in a joint
plan.

Lesser et al. [3,11] also apply diagnosis to (multi-agent) plans. Their research concentrates
on the use of a causal model that can help an agent to refine its initial diagnosis of a failing
component (called a task) of a plan. As a consequence of using such a causal model, the
agent would be able to generate a new, situation-specific, plan that is better suited to pursue
its goal. While their approach in its ultimate intentions (establishing anomalies in order to
find a suitable plan repair) comes close to our approach, their approach to diagnosis concen-
trates on specifying the exact causes of the failure of one single component (task) of a plan.
Diagnosis is based on observations of a component without taking into account the conse-
quences of failures of such a component with respect to the remaining plan. In our approach,
instead, we are interested in applying MBD-inspired methods to detect plan failures. Such
failures are based on observations during plan execution and may concern individual compo-
nents of the plan. Furthermore, we do not only concentrate on identifying failing components
themselves, but also on the consequences of these failures for the future execution of plan
elements.

123

34 Auton Agent Multi-Agent Syst (2009) 19:30–52

3 Preliminaries

We consider plan-based diagnosis as a simple extension of the model-based diagnosis (MBD)
approach [4,5,17], where the model is not a description of an underlying physical system
but a plan of one or more agents. To keep this model simple and general, we will keep the
plan representation details minimal.2 The main features, however, of planning formalisms
like STRIPS [9] are covered in this framework.

3.1 States

By executing plans we change a part of the world. Therefore, before we discuss plans, we
need to introduce a simple state-based view on the world. We assume that for the planning
problem at hand, the world can be described by a set Var = {v1, v2, . . . , vn} of variables and
their respective value domains Di . A complete state of the world σ then is a value assign-
ment σ : V ar → ⋃n

i=1 Di to the variables. Slightly abusing terminology, we simply denote
a complete state by an n-tuple σ = (σ (v1), . . . , σ (vn)) ∈ D1 × D2 × · · · × Dn . A partial
state is an element π ∈ Di1 × Di2 ×· · ·× Dik , where 1 ≤ k ≤ n and 1 ≤ i1 < · · · < ik ≤ n.
We use V ar(π) to denote the set of variables {vi1 , vi2 , . . . , vik } ⊆ Var specified in π . The
value σ(v j) of variable v j ∈ V ar(π) will be denoted by π(v j). The value of a variable
v j ∈ Var not occurring in a partial state π is said to be undefined (or unpredictable) in π ,
denoted by ⊥. Including ⊥ in every value domain Di allows us to consider every partial state
π as an element of D1 × D2 × · · · × Dn .

Partial states π can be ordered with respect to their information content: Given values d
and d ′, we say that d ′ is at least as informative as d , abbreviated as d ≤ d ′, iff d = ⊥ or
d = d ′.3 The containment relation � between partial states is the point-wise extension of
≤: π is said to be contained in π ′, denoted by π � π ′, iff ∀v ∈ V ar [π(v) ≤ π ′(v)].

An important notion in plan diagnosis is the notion of compatibility between partial states.
Intuitively, two states π and π ′ are said to be compatible if they could characterize the same
state of the world, that is, if there exists a complete state σ such that π � σ and π ′ � σ .
Equivalently, this compatibility relation can also be expressed without making reference to
such a state σ , since the existence of such a state σ clearly implies that for every v ∈ V ar ,
either π(v) = π ′(v) or at least one of the values π(v) and π ′(v) is undefined:

Definition 1 (compatibility relation) Two partial states π and π ′ are said to be compatible,
denoted by π ≈ π ′, if ∀v ∈ V ar [π(v) ≤ π ′(v) or π ′(v) ≤ π(v)].
Finally, we need the concept of information fusion. If two partial states π1 and π2 are com-
patible, their information content can be fused to obtain a new partial state π = π1
 π2 that
contains them both: π = π1
 π2 holds iff ∀v ∈ V ar [π(v) = max≤{π1(v), π2(v)}]. Note
that this new fused state π combines the information about a possible common state σ the
two partial states π1 and π2 are characterizing.

3.2 Actions, plan operators and plan steps

In the preceding sections we used to term “actions” in a rather informal way. From now on,
we make a distinction between actions, plan operators and plan steps. First of all, an action
refers to an activity that results in some change of the (current) state of the world, such as

2 For an earlier version of this model, see [18].
3 In domain theory [10], the domain of variables is known as a flat domain.

123

Auton Agent Multi-Agent Syst (2009) 19:30–52 35

Fig. 1 Plan operators, states and
partial states

o

π0

π1

v1 v2 v3 v4

σ1

σ0

loading a vehicle or assembling components. A plan operator refers to a description of such
an action in a plan. More exactly, a plan operator o is a function mapping partial states to
partial states by replacing the values of a subset Vo ⊆ Var by other values (dependent upon
the values of another set V ′

o of variables. Hence, every plan operator o can be modeled as a
(partial) function fo : Di1 × · · · × Dik → D j1 × · · · × D jl , where 1 ≤ i1 < · · · < ik ≤ n
and 1 ≤ j1 < · · · < jl ≤ n. The set of variables whose value domains occur in dom(fo)

will be denoted by domV ar (o) = {vi1 , . . . , vik }. Likewise, the set of variables whose value
domains occur in ran(fo) will be denoted by ranV ar (o) = {v j1 , . . . , v jl }. Often it will be
convenient to extend the domain of such a function fo to apply fo on a partial state π such that
V ar(π) ⊇ domV ar (o). The result fo(π) then is defined as follows: Let π ′ be the restriction4

of π to domV ar (o). Then fo(π)(v) = fo(π
′)(v) if v ∈ ranV ar (o) and fo(π)(v) = π(v),

otherwise.
This functional specification fo constitutes the normal behavior of the plan operator o,

also denoted by f nor
o .

Example 1 Suppose there is a courier who has to pickup a package at some person’s home.
It is known that this person also has a car and a dog. The car is at the same address, but
the current location of the dog is unknown. Here, the world can be described by four vari-
ables: v1 (location of package), v2 (location of person’s home), v3 (location of the car), v4

(location of the dog). Figure 1 depicts two states σ0 and σ1 (the white boxes) of this world
each characterized by the values of the four variables v1, v2, v3 and v4. The partial states
π0 and π1 (the gray boxes) characterize a subset of variables in a (complete) state. The
pickup of the package can be modeled as a state change by a plan operator o modeling the
pickup. The domain of the plan operator o is the subset {v1, v2}, i.e., it requires the values
of the location of the package and the person’s home address, denoted by the arrows
pointing to o. The result of the pickup is a change in the location of the package. There-
fore, the range of o is the subset {v1}, which is denoted by the arrow pointing from o. Finally,
the dashed arrow denotes that the value of variable v2 is not changed by operator causing the
state change. �

A plan operator o may be used at several places in a plan. A specific occurrence of o is
called a plan step mapping a specific partial state into another specific partial state. A plan
step s as an occurrence of o then describes a specific function application of the function fo

specified by the operator o at a specific place in the plan. Therefore, given a set O of plan
operators, we consider a set S = inst (O) of instances of plan operators in O, called the set
of plan steps. A plan step will be denoted by a small roman letter si . The plan operator o

4 More precisely, π ′ is the unique partial state such that π ′ � π and V ar(π ′) = domV ar (o).

123

36 Auton Agent Multi-Agent Syst (2009) 19:30–52

Fig. 2 Plans and plan steps.
Each state characterizes the
values of four variables v1, v2, v3
and v4. States are changed by
application of plan steps si for
i = 1, 2, . . . , 6

s1 s2

s4s3

s5 s6

v1 v2 v3 v4

π1

π2

π3

π4

the instance si was instantiated from is denoted by o(si). If o(si) = o, the instance si is
said to be of type o. In that case, the function associated with si is fsi = fo. Likewise,
ranV ar (s) = ranV ar (o) and domV ar (s) = domV ar (o).

3.3 Plans and plan execution

A plan is a tuple P = 〈O, S,<〉 where S ⊆ inst (O) is a set of plan steps occurring in O and
(S,<) is a partial order (cf. [6]). The partial order relation < specifies an execution relation
between plan steps: for each s ∈ S it holds that s is executed immediately after all plan steps
s′ such that s′ < s have been finished. We will denote the transitive reduction of < by �,
i.e., � is the smallest subrelation of < such that the transitive closure �+ of � equals <.

Example 2 Figure 2 gives an illustration of a plan. Arrows relate the objects a plan step uses
as inputs and the objects it produces as its outputs to the plan step itself. In this plan, the
direct execution relation is specified as s1 � s3, s2 � s4, s4 � s5 and s4 � s6. �

Without loss of generality,5 we assume that every plan step s ∈ S takes a unit of time to
execute and the execution of the first plan step starts at time t = 0. Using this assumption and
the definition of the execution relation <, the time t at which a plan step s will be executed
is uniquely determined: Let depth P (s) be the depth of plan step s in plan F. Here, as usual,
depth P (s) = 0 if {s′ ∈ S |s′ � s} = ∅ and depth P (s) = 1 + max{depth P (s′) | s′ � s},
else. If the context is clear, we omit the subscript P . Then the time ts at which the plan step

5 That is, if we still assume that the duration of executing each plan step is known. Otherwise we would have
to deal with non-deterministic aspects.

123

Auton Agent Multi-Agent Syst (2009) 19:30–52 37

s is executed is ts = depth P (s) and s will be completed at time ts + 1. Let Pt denote the set
of plan steps s with depth P (s) = t .

Example 3 Consider again Fig. 2. In this plan, the depth of s1 and s2 is 0, the depth of s3

and s4 is 1, and the depth of s5 and s6 is 2. Therefore, P0 = {s1, s2}, P1 = {s3, s4} and
P2 = {s5, s6}. �

Given the plan state σ at some time t and the set Pt of plan steps to be executed at time t we
want to be sure that the next state σ ′ at time t + 1 is uniquely defined. There are two ways in
which the predictability of the next state might be affected by interacting plan steps: First of
all, the output of plan step s ∈ Pt might affect the input of another plan step s′ ∈ Pt . This might
happen whenever there are plan steps s, s′ ∈ Pt such that ranV ar (s) ∩ domV ar (s′) �= ∅. As
a consequence, the result of executing s′ is not uniquely defined. Secondly, if Pt contains two
plan steps s and s′ with overlapping ranges, i.e., if ranV ar (s) ∩ ranV ar (s′) �= ∅, the final
result of a variable v occurring in this intersection is not uniquely defined in σ ′. To guarantee
uniquely defined outcomes of plan execution, we therefore assume that such plan steps do
not occur together in an execution set Pt :

Deterninism Let P = 〈O, S,<〉 be a plan. Then for every s �= s′ ∈ S, (ranV ar (s) ∩
ranV ar (s′) �= ∅ or ranV ar (s) ∩ domV ar (s′) �= ∅) implies depth P (s) �= depth P (s′).

It is not difficult to see (and can be easily proven using the derivability relations to be dis-
cussed) that Determinism guarantees that a future plan state can be defined uniquely given a
plan and a currently uniquely defined plan state.

4 Qualifications, predictions and derivability relations

4.1 Plan qualifications

The correct execution of a plan step may fail either because of an inherent malfunctioning
or because of a malfunctioning of an agent responsible for executing the action, or because
of unknown external circumstances. In all these cases we would like to model the effects
of executing such failing plan steps. Therefore, we introduce a set of health modes Hs for
each plan step s. This set Hs contains at least the normal mode nor , the mode ab indicating
the most general abnormal behavior, and possibly several other specific fault modes. Let
o = o(s) be the plan operator of which s is an instance. The most general abnormal behavior
of plan step s is specified by the function f ab

s , where f ab
s (di1 , di2 , . . . , dik) = (⊥,⊥, . . . ,⊥)

for every partial state (di1 , di2 , . . . , dik) ∈ dom(fo). To simplify the discussion, in the sequel
we distinguish only the health modes nor and ab.

Let us assume, for the moment, that each plan step can be viewed as an independent
component of a plan. To each plan step s then a health mode hs ∈ {nor, ab} can be assigned
and the result is called a qualified plan. In establishing which part of the plan fails, we are
only interested in those plan steps qualified as abnormal. Therefore, we define a qualified
version PQ of a plan P = 〈O, S,<〉 as a tuple PQ = 〈O, S,<, Q〉, where Q ⊆ S is the
subset of plan steps qualified as abnormal (and therefore, S − Q is the subset of plan steps
qualified as normal).

Since a qualification Q corresponds to assigning the health mode ab to every plan step
in Q and since f ab

s (di1 , di2 , . . . , dik) = (⊥,⊥, . . . ,⊥) the results of anomalously behaving
plan steps are unpredictable. Note that a “normal” plan P corresponds to the qualified plan
P∅ and that in our context “undefined” is considered to be equivalent to “unpredictable”.

123

38 Auton Agent Multi-Agent Syst (2009) 19:30–52

4.2 Predicting results of executing plan steps

In order to find out whether or not some plan steps might be failing, we have to be able to
predict the effect of executing plan steps on some given partial state π0. In general, executing
a (qualified) plan P on a given initial state π0 will induce a sequence (π0, π1, . . . , , πk) of
states, where πt+1 is derived from πt by applying the set of plan steps Pt to σt . We call a
partial state π at a given time t a timed state, denoted by (π, t). To predict the final result
πk starting from π0, we will first define a direct derivability relation enabling us to predict
a next timed state (π ′, t + 1) using the current timed state (π, t). This direct derivability
relation takes into account the information available in the partial state π , the set Pt of plan
steps s that have to be executed at time t and the qualification of each of these plan steps. The
intuitive idea behind the definition of this direct derivability relation is very simple: we are
only capable of making an exact prediction about the results of executing a plan step s ∈ Pt

if (i) we know for each variable in the domain domV ar (s) its value6 and (ii) s is not qualified
as abnormal.

This idea leads to the following description of the relation between the predicted timed
state (π ′, t + 1) and the current state (π, t). For every variable v ∈ V ar , we distinguish the
following cases:
1. v does not occur in the range of a plan step s ∈ Pt . We predict its value π ′(v) to be the

same as its value in π , i.e., π(v) = π ′(v). This is a simple consequence of our assumption
to consider plan step executions as the only source of changes to be considered.

2. v occurs in the range of some plan step s ∈ Pt .
Thanks to Determinism, this plan step s is uniquely defined. We now distinguish the
following subcases:

(a) s is qualified as abnormal.
Then π ′(v) = ⊥, since every variable in the range of f ab

s is undefined.
(b) s is qualified as normal and domV ar (s) ⊆ V ar(π);

In this case, π ′(v) = f nor
s (π)(v). This means that if the plan step s does not fail

and we completely know all values of variables occurring in its domain, we are
able to predict the effect of the plan step by considering the effect of the function
application f nor

s on π . In this case we say that s is fully enabled in Pt ;
(c) s is qualified as normal, but for some v′ ∈ domV ar (s), π(v′) = ⊥;

Since we don’t have exact information about at least one value of a variable in the
domain of s, we are not able to predict the consequences of executing s in π . There-
fore, we consider π ′(v′) = ⊥ for all v′ ∈ ranV ar (s). Hence, since v ∈ ranV ar (s),
π ′(v) = ⊥.

This direct derivability relation can be defined in a more formal and concise way as
follows:

Definition 2 A timed state (π ′, t +1) is (directly) generated by execution of the Q-qualified
plan PQ from (π, t), abbreviated by (π, t) →Q;P (π ′, t + 1), iff for every v ∈ V ar the
following conditions hold:

1. if v �∈ ⋃
s∈Pt

ranV ar (s) then π ′(v) = π(v);
2. if v ∈ ⋃

s∈Pt
ranV ar (s) , let s be the unique plan step such that v ∈ ranV ar (s).

(a) If s is fully enabled in Pt and s �∈ Q then π ′(v) = f nor
s (π)(v),

6 Considering e.g., fs as a blackbox and a huge size of the domains of the variables involved, it is not feasible
to predict the effect of fs on all possible values of a variable v whose value is unknown.

123

Auton Agent Multi-Agent Syst (2009) 19:30–52 39

(b) else π ′(v) = ⊥.

It is easy to see that, thanks to Determinism, this direct derivability relation →Q;P is
well-defined and deterministic:

Proposition 1 Let PQ be a qualified plan and let (π, t) a timed state. Then (π, t) →Q;P

(π ′, t + 1) and (π, t) →Q;P (π ′′, t + 1) implies π ′′ = π ′.

Proof Suppose that the conditions stated in the proposition do hold and that, on the contrary,
there exists some v ∈ V ar such that π ′′(v) �= π ′(v). According to Definition 2, this can only
occur if there exist at least two plan steps s, s′ ∈ Pt ′ such that v ∈ ranV ar (s)∩ranV ar (s′) or
v ∈ ranV ar (s) ∩ domV ar (s′). Hence, by Determinism, we have depth P (s) �= depth P (s′).
But that immediately implies that s and s′ cannot both occur in Pt ′ ; contradiction. Therefore,
π ′′ = π ′. �

We extend this direct derivability relation to a general derivability relation in a straight-
forward way:

Definition 3 For arbitrary values of t ≤ t ′ we say that (π ′, t ′) is (directly or indirectly)
generated by execution of PQ from (π, t), denoted by (π, t) →∗

Q;P (π ′, t ′), iff the following
conditions hold:

1. if t = t ′ then π ′ = π ;
2. if t ′ = t + 1 then (π, t) →Q;P (π ′, t ′);
3. if t ′ > t + 1 then there must exists some state (π ′′, t ′ − 1) such that (π, t) →∗

Q;P
(π ′′, t ′ − 1) and (π ′′, t ′ − 1) →Q;P (π ′, t ′).

Note that (π, t) →∗
∅;P (π ′, t ′) denotes the normal execution of a normal plan P∅. Such

a normal plan execution will also be denoted by (π, t) →∗
P (π ′, t ′).

Using these definitions, it is not difficult to show that for every 0 ≤ t ≤ k, the timed
state (π ′, t), where (π, 0) →∗

Q;P (π ′, t), is uniquely defined if < satisfies the Determinism
requirement.

Example 4 Figure 3 gives an illustration of an execution of a plan with abnormal plan steps.
Suppose plan step s3 is abnormal and generates a result that is unpredictable (⊥). Given

the qualification Q = {s3} and the partially observed state π0 at time point t = 0, we predict
the partial states πi as indicated in Fig. 3, where (π0, t0) →∗

Q;P (πi , ti) for i = 1, 2, 3. Note
that since the value of v1 and of v5 cannot be predicted at time t = 2, the result of plan step
s6 and of plan step s8 cannot be predicted and π3 contains only the value of v3. �

5 Observations and diagnoses

To establish plan diagnosis, we need to make observations. Our framework provides a nat-
ural candidate for representing such observations: an observation obs(t) at time t is a timed
state (π, t) where π is a partial state. This implies that we do not require observations to
specify a complete state. Suppose we have an observation obs(t) = (π, t) and an observation
obs(t ′) = (π ′, t ′) at some later time t ′ > t ≥ 0 during the execution of a plan P . To indicate
that these observations pertain to P , we will use the triple 〈P, obs(t), obs(t ′)〉.

We would like to use this triple 〈P, obs(t), obs(t ′)〉 to infer the health modes of the plan
steps occurring in P . First, assuming a normal execution of P , we can easily predict the par-
tial state of the world at a time point t ′ given the observation obs(t): if all plan steps behave

123

40 Auton Agent Multi-Agent Syst (2009) 19:30–52

Fig. 3 Plan execution with an
abnormal plan step (s3) π3

s1 s2

s4
s3

s6 s8

t=0

t=1

t=2

t=3

π0

π1

π2

v1 v2 v3 v4 v5

s5

s7

normally, we predict the timed state (π ′
∅

, t ′) such that obs(t)→∗
P (π ′

∅
, t ′). Such a prediction

has to be compared with the actual observation obs(t ′) = (π ′, t ′) made at time t ′. It is easy
to see when the predicted state and the observed state match: in that case we should be able
to find a state σ such that both the observed state π ′ and the predicted state π ′

∅
are contained

in σ , that is, π ′ � σ and π ′
∅

� σ . By definition of compatibility (see Definition 1), such a
σ can only exist if π ′

∅
and π ′ are compatible states, i.e., if π ′ ≈ π ′

∅
holds.

If this is not the case, the execution of some plan steps must have gone wrong and we have
to determine a qualification Q such that the predicted state π ′

Q derived using Q is compatible
with π ′. Hence, we have the following straight-forward extension of the diagnosis concept
in MBD to plan diagnosis (cf. [5]):

Definition 4 Let P = 〈O, S,<〉 be a plan with observations obs(t) = (π, t) and obs(t ′) =
(π ′, t ′), where t < t ′ ≤ depth(P), and let obs(t)→∗

Q;P (π ′
Q, t ′) be a derivation using PQ .

Then Q is said to be a plan diagnosis of 〈P, obs(t), obs(t ′)〉 iff π ′ ≈ π ′
Q .

Example 5 Consider again Fig. 3 and suppose that we did not know that plan step s3 was
abnormal and that we observed obs(0) = ((d1, d2, d3, d4), 0) and obs(3) = ((d ′

1, d ′
3, d ′

5), 3).
Using the normal plan derivation relation starting with obs(0) we will predict a state π ′

∅
at

time t = 3 where π ′
∅

= (d ′′
1 , d ′′

2 , d ′′
3). If everything is ok, the values of the variables pre-

dicted as well as observed at time t = 3 should correspond, i.e., we should have d ′
j = d ′′

j
for j = 1, 3. If, for example, only d ′

1 would differ from d ′′
1 , then we could qualify s6 as

abnormal, since then the predicted state at time t = 3 using Q = {s6} would be π ′
Q = (d ′′

3)

and this partial state π ′
Q is compatible with the predicted state π ′

∅
. �

Remark 1 Note that for all variables in V ar(π ′)∩ V ar(π ′
Q), the qualification Q provides an

explanation for the observation π ′ made at time point t ′. Hence, for these variables the qualifi-
cation provides an abductive diagnosis [4]. For all observed variables in V ar(π ′)−V ar(π ′

Q),
no value can be predicted given the qualification Q. Hence, by declaring them to be unpredict-
able, possible conflicts with respect to these variables if a normal execution of all plan steps

123

Auton Agent Multi-Agent Syst (2009) 19:30–52 41

is assumed, are resolved. This corresponds with the idea of a consistency-based diagnosis
[17]. �

5.1 Preferred diagnoses

In almost every application, one assumes that normal behavior is the rule and not an excep-
tion. In plan diagnosis it also seems reasonable to assume that the likelihood that a plan step
fails is smaller than the likelihood that it behaves normally. So, assuming that plan steps fail
independently, it is not difficult to conclude that in order to explain a deviation from normal
behavior we should prefer, like in MBD, qualifications that do not contain more actions qual-
ified as abnormal than necessary. Hence, like in MBD, we prefer subset-minimal diagnoses
and especially minimum diagnoses among the set of minimal diagnoses. These subset- and
cardinality minimal notions can be easily defined in our framework as follows: Given a plan
with observations 〈P, (π, t), (π ′, t ′)〉, a qualification Q is said to be

1. a (subset) minimal plan diagnosis if for every plan diagnosis Q′ such that Q′ ⊆ Q, it
holds that Q = Q′.

2. a minimum plan diagnosis if for every plan diagnosis Q′, it holds that |Q| ≤ |Q′|.
Example 6 Consider the plan depicted in Fig. 4. Suppose obs(0) = (π0, 0) and obs(3) =
(π ′

3, 3) and π ′
3 equals π3 except that there is a deviation in the value of v2 at time t = 3

(as indicated by the black dot). Note that there are three possible minimal diagnoses that are
also minimum diagnoses : Q1 = {s1}, Q2 = {s3} and Q3 = {s6}. Let π ′

Qi
denote the state

derived at time t = 3 by using Qi as a qualification. Then V ar(π ′
Q1

) = ∅, V ar(π ′
Q2

) =
{v4, v5} and V ar(π ′

Q3
) = {v3, v4, v5}, so these partial states predicted differ in their infor-

mation content. �

Example 6 shows that, in general, minimum or minimal diagnoses might considerably
differ in their predictive power or preciseness. For example, if we take Q1 as a diagnosis,
the values of all variables predicted at time t = 3 will be undefined, while taking Q3 as
a diagnosis, only v1 and v2 are undefined. Intuitively then we would prefer more precise
diagnoses over less precise ones.

Like the underlying likelihood of failure principle that gives rise to a preference for size or
subset minimal diagnoses, we would like to point out a principle that underlies a preference
for most precise diagnoses. This principle is called the likelihood of failure propagation and
simply assumes that the likelihood that a failed step produces incorrect results (either directly
or indirectly) is larger than the likelihood that it produces correct results.7

The ramifications of this principle in our framework can be explained as follows: Let
P = 〈O, S,<〉 be a plan with observations obs(t) = (π, t) and obs(t ′) = (π ′, t ′), where
t < t ′, let Q ⊂ S be a qualification of P and let obs(t)→∗

Q;P (π ′
Q, t ′) be a derivation using

PQ .
The variables correctly predicted by PQ at time t ′ are those variables v ∈ V ar(π ′

Q) whose
values are compatible with the value of v in the observation π ′. Together they constitute the
set VQ = {v : v ∈ V ar(π ′

Q)∧(π ′(v) � π ′
Q(v))}. Clearly, this set VQ measures the predictive

power of the qualification Q.
Now consider the empty qualification V∅. This set specifies the predictive power of the

plan assuming that all plan steps are normal. From the definition of the derivability relation

7 In particular, this principle implies that we should consider the phenomenon of error masking to be an
unlikely event.

123

42 Auton Agent Multi-Agent Syst (2009) 19:30–52

Fig. 4 Plan execution with an
observation deviating from the
expected observation, as
indicated by the black dot π3

s1 s2

s4s3

s6 s8

t=0

t=1

t=2

t=3

π0

π1

π2

v1 v2 v3 v4 v5

s5

s7

π'3

we immediately derive that for every qualification Q, VQ ⊆ V∅. Clearly, the likelihood of
failure propagation principle now implies that a qualification Q1 that induces less variables
in V∅ to be undefined than another qualification Q2 does should be preferred above Q2. For,
any plan step s in a qualification Q that causes some variable v ∈ V∅ to become undefined
lowers the likelihood of Q. Hence, according to the likelihood of failure propagation princi-
ple, we should prefer a diagnosis Q1 above diagnosis Q2 if |VQ1 | > |VQ2 | and therefore, in
general, we would prefer those diagnoses Q that maximize their predictive content VQ .

If Q is a diagnosis, it is easy to see that VQ = V ar(π ′
Q): According to the definition of

VQ it suffices to show that V ar(π ′
Q) ⊆ VQ . Assume that for some v ∈ V ar(π ′

Q), v �∈ VQ .
Then we must have ⊥ �= π ′(v) �= π ′

Q(v) �= ⊥, contradicting the fact that Q is a diagnosis.
Hence V ar(π ′

Q) ⊆ VQ .
Hence, we conclude that for every diagnosis Q, its predictive content V ar(π ′

Q) is con-
tained in the set V∅ and therefore, we would aim at finding diagnoses that maximize
|V ar(π ′

Q)|, i.e., minimize the distance between V ar(π ′
Q) and V∅. We call such diagno-

ses maximum informative diagnoses. Likewise, a diagnosis Q is said to be a subset maximal
informative diagnosis if there exists no diagnosis Q′ such that V ar(π ′

Q) ⊂ V ar(π ′
Q′).

A surprising property of maximum informative diagnoses is that they all have the same
predictive content.8 That is, whenever two diagnoses Q1 and Q2 are both maximum infor-
mative diagnoses then V ar(πQ1) = V ar(πQ2). This result can be explained by introducing
the scope scopeP (s) of a plan step s. Intuitively, the scope of a plan step s contains all plan
steps s′ such that all variables v ∈ ranV ar (s′) will become undefined whenever s is qualified
as abnormal. This scope scope(s) (we will omit P if no confusion is possible) is inductively
defined as follows:

1. s ∈ scope(s) and

8 Given a plan P and observations obs(t) and obs(t ′).

123

Auton Agent Multi-Agent Syst (2009) 19:30–52 43

2. if there exist plan steps s′ and s′′ such that (i) depth P (s′) < depth P (s′′) and (ii)
ranV ar (s′) ∩ domV ar (s′′) �= ∅ then s′ ∈ scope(s) implies s′′ ∈ scope(s).

So if s is qualified as abnormal, all s′ ∈ scope(s) will set every variable in their range to ⊥.
Hence, extending the domain of a scope to sets of plan steps, we derive that Q ⊆ scope(Q′)
implies that VQ′ ⊆ VQ .

Now consider the set V dif = V ar(π ′
∅

) − V∅. This is the set of all variables whose pre-
dicted values do not correspond to observed values at time t ′. For every v ∈ V dif we can find a
unique last plan step s such that the value of v at time t ′ is set by s. Let Qdif be the set of these
plan steps s. It is easy to see that Qdif is a diagnosis, because all variables in V dif will be set
to ⊥ using Qdif . But Qdif has another important property: For every diagnosis Q and every
plan step s ∈ Qdif we should have that s ∈ scope(s′) for some s′ ∈ Q. For otherwise, Q
would fail to set some variable v ∈ V dif to undefined and therefore would not be a diagnosis.
Hence, for every diagnosis Q, Qdif ⊆ scope(Q) and therefore VQ is contained in VQdif .
But that immediately implies that Qdif is a maximum informative diagnosis and VQdif is the
(unique) maximum predictive content of such a diagnosis.

This result, of course, immediately implies that there is no difference between subset
maximal and maximum informative diagnoses. Hence it suffices to deal with the former
ones:

Definition 5 (maxi-diagnosis) Given plan observations 〈P, (π, t), (π ′, t ′)〉, a diagnosis Q
is said to be a maximally informative plan diagnosis, abbreviated maxi-diagnosis, if there
exists no diagnosis Q′ such that V ar(πQ) ⊂ V ar(πQ′).

Such maxi-diagnoses, however, are not always subset minimal diagnoses. By combin-
ing the two criteria, however, we obtain a qualification that is able to achieve compatibility
with the observations, being as exact in its predictions as possible, without considering too
many actions as behaving abnormally. We therefore define a minimal maximally-informative
diagnosis as follows:

Definition 6 (mini–maxi diagnosis) Given plan observations 〈P, (π, t), (π ′, t ′)〉, a diagno-
sis Q is said to be a minimal maximally informative plan diagnosis, abbreviated as mini-maxi
diagnosis, if (i) Q is a maxi-diagnosis and (ii) there exists no maxi-diagnosis Q′ such that
Q′ ⊂ Q.

We would like to point out that although the intersection of the set of minimal diagnoses
and the set of maximal informative diagnoses is nonempty, this result does not hold with
respect to the set of minimum diagnoses in the sense that there exist cases where no mini-
mum diagnosis is maximally informative and vice-versa. For an example, consider Fig. 5.
Here, the black dots in π3 denote values that are predicted incorrectly. It is easy to see that
while Q = {s3, s4} is a maxi diagnosis, it is not a minimum diagnosis: Q′ = {s1} is a unique
minimum diagnosis containing fewer plan steps. The diagnosis Q′ however, is not maximal
informative, because it causes v1 to become undefined in π3, while Q does not.

Now the question of course is, how difficult would it be to compute these mini–maxi
diagnoses?

6 Complexity results

In the preceding section we distinguished two types of preferred diagnoses: maximal infor-
mative diagnoses (maxi-diagnoses) and minimum diagnoses. Advantages of such maxi-diag-
noses as e.g., their predictive power, might easily be lost if it turns out that they are extremely

123

44 Auton Agent Multi-Agent Syst (2009) 19:30–52

Fig. 5 An example to show that
no minimum diagnosis is
maximal informative

π3

s1 s2

s4s3

s6 s8

t=0

t=1

t=2

t=3

π0

π1

π2

v1 v2 v3 v4 v5

s5

s7

π'3

difficult to compute. For example, although in MBD minimum diagnoses are preferred, actual
computations of diagnoses often aim at finding an approximation of them, since it is well-
known that computing minimum diagnoses, even in very simple cases, is computationally
hard.

As the first result, we have that, computationally minimum diagnoses in our plan-based
framework do not differ from minimum diagnoses in MBD:

Proposition 2 Finding minimum diagnoses in our plan-based framework is NP-hard.

Proof There is a polynomial reduction from the well-known NP-complete Minimum Cover
problem to the minimum plan diagnosis problem. See the appendix for the details. �

This at least shows that our framework does not trivialize such computations. As a corollary
from the proof of this result, we note that finding a minimum plan diagnosis is already hard
for plans with constant depth, more exactly from depth 2 on. Moreover, it follows that finding
a minimum diagnosis is also hard for plans with plan steps having at most 3 elements in their
range and domain.

Surprisingly, however, finding maxi-diagnoses and even finding subset minimal maxi-
diagnoses is tractable. We will first give an intuitive description of an efficient procedure to
find a (mini-) maxi diagnosis and then give a polynomial algorithm for finding a mini-maxi
diagnosis.

Suppose we have plan observations 〈P, (π, t), (π ′, t ′)〉. To determine a maxi-diagnosis,
we first determine the disagreement set V dif of all those variables whose values are defined
in both the observed state π ′ and the predicted state π ′

∅
at time t ′, but differ:

V dif = {v | v ∈ V ar(π ′
∅

) ∩ V ar(π ′) ∧ (π ′
∅

(v) �= π ′(v))}.

123

Auton Agent Multi-Agent Syst (2009) 19:30–52 45

Next, we collect all plan steps s at time t ′−1 such that there exists a variable v ∈ ranV ar (s)∩
V dif . By the determinism requirement, two different plan steps s and s′ occurring in some set
Pt cannot have a variable in common in their range, hence for every v ∈ V dif there is at most
one plan step sv ∈ Pt ′−1 such that v ∈ ranV ar (s). Then we remove all variables v that occur
in the range of the plan steps just selected from the disagreement set V dif . For i = 2, 3, . . .,
we iteratively select new plan steps at times t ′ − i having a variable in their range that also
occurs in the disagreement set and we remove these plan steps until the disagreement set is
empty. It can be shown that this procedure generates the set Qmax = {sv | v ∈ V dif } where
sv is the latest plan step in the plan causing the value v to occur in the disagreement set. It
can be easily proven that this qualification Qmax is a maxi-diagnosis.

In order to obtain a mini–maxi diagnosis instead of just a maxi diagnosis, we have to
refine this procedure slightly using the earlier defined notion of the scope of a plan step.

Note that in the above procedure to generate a maxi-diagnosis, if we simply add a set Si

of new plan steps belonging to Pt ′−i to the already selected set of plan steps S, some of the
plan steps s′ ∈ S might occur in scope(s) for some s ∈ Si . Hence, adding such a plan step s
makes these previously added plan steps s′ superfluous. Therefore, at each iteration step, we
must remove such redundant plan steps s′ to obtain a mini-maxi diagnosis.

The following algorithm specifies an iterative procedure to obtain a mini–maxi diagnosis9

Qmax :

Algorithm 1 Algorithm to compute mini–maxi diagnoses
Require: plan observations 〈P, (π, t), (π ′, t ′)〉
Ensure: a mini–maxi informative diagnosis Qmax

Let V = V dif and let Qmax = ∅;
i := 0
while D �= ∅ do

i := i + 1;
Si := {s ∈ Pt ′−i | ∃v ∈ V [v ∈ ranV ar (s)]};
Qi := {s′ ∈ Qmax | ∃s ∈ Si [s′ ∈ scope(s)]};
Qmax := (Qmax − Qi) ∪ Si ;
V := V − ⋃

s∈Qmax
ranV ar (s)

end while
return Qmax

Example 7 Consider again the plan execution depicted in Fig. 4. Given obs(0) and obs(3) and
a deviation in the value of v2 at time t = 3, we determine the disagreement set: V dif = {v2}.
After selecting s6 as a plan step to be included in the diagnosis, the disagreement set is empty.
Hence, Q = {s6} is a maxi-diagnosis. �

Although mini–maxi diagnoses can be found efficiently, finding minimum cardinality
maxi-diagnoses instead of mini–maxi-diagnoses constitutes an NP-hard problem. To show
this, it suffices to reuse the reduction we applied to prove the hardness of finding minimum
diagnoses. It is not difficult to see that this reduction from the NP-complete min-cover prob-
lem creates plan diagnosis instances where the disagreement set contains all variables. Hence,
every diagnosis is a maxi-diagnosis by definition and therefore finding a maxi-diagnosis of
minimum size comes down to finding a minimum diagnosis.

9 Note that this algorithm finds one mini–maxi diagnosis.

123

46 Auton Agent Multi-Agent Syst (2009) 19:30–52

7 Distributed plans and mini–maxi diagnoses

In real life, most plans are performed by more than one agent. That is, although there is
a virtual global plan, often the plan is distributed over many actors, each knowing only a
subset of the plan steps to be performed and the connections (dependencies) of their part of
the plan with others. We would like to investigate the consequences of such distributed plans
for diagnosing plan failures, especially with respect to finding mini-maxi diagnoses. In this
section we will show that in a distributed setting mini-maxi diagnoses can be also computed
in an efficient way, although the algorithm used significantly differs from the centralized
version presented above.

7.1 Agents and plan distributions

Suppose that we have a plan P = 〈O, S,<〉 and instead of having one agent knowing all
plan steps to be performed there is a set A = {A1, A2, . . . , An} of agents each knowing
only a subset of plans steps occurring in P . Let Si denote the subset of plan steps to be
known by agent Ai and let us further assume that {S1, . . . , Sn} is a partitioning of S. We
furthermore assume that each agent Ai for each input v of a plan step s belonging to its set Si

knows exactly whether v occurs in the range of another plan step belonging to Si and if not,
whether s is an initial plan step or which other agent A j should provide an input value for
v. Conversely, every agent Ai is also aware of the variables v (s)he has to provide to another
agent A j . We also assume that if there exist plan steps s � s′ such that s ∈ Si and s′ ∈ S j

for some i �= j then agent Ai will inform agent A j when s has been completed.
With this information and some minor modifications in the plan derivability relation (for

each agent) as provided by Definition 2, it should be clear that given some initial observation
at time t , the agents together are able to predict the value of each variable v ∈ V ar at time
t ′, given a partial state obtained at time t .

7.2 Distributed diagnosis

We consider a plan P = 〈O, S,<〉 with observations obs(t) and obs(t ′). The main idea of
establishing a mini–maxi diagnosis in a distributed environment is somewhat more involved
than in a centralized environment. Comparing the process with its centralized variant, in a
distributed setting the main difficulty is that we cannot enforce any ordering on the com-
putations of the set of agents. Therefore, instead of a backward addition of plan steps to
the qualification, i.e., starting with adding plan steps in Pt ′−1 then Pt ′−2 and so on as done
in the centralized algorithm, we have to use both a backward and a forward “qualifying”
process. The “backward process” is mimicked by a local label setting process, where plan
steps are given a preliminary label. In a subsequent “forward” label propagating
process, plan steps acquire their definite label. Among the possible label values, there is
one particular value that signifies a fault mode of the plan step s. These plan steps are
announced by the agents and we will argue that the set of these plan steps constitutes a
mini–maxi diagnosis.

We will use the following five values of the labels of a plan step: maybe faulty (mf),
maybe healthy (mh), faulty (f), healthy (h) and no information propagating (no). Only the
last three values are definite and the first two are preliminary labels. At the beginning of
the procedure, no plan step s ∈ Si has a label value. At the end of the procedure every
plan step is qualified as either h, no or f . An agent Ai stops processing as soon as every
plan step s ∈ Si has acquired a definite label and it announces all those plan steps it has

123

Auton Agent Multi-Agent Syst (2009) 19:30–52 47

qualified as faulty (f). We will now discuss the label setting and the label propagating
procedures for an agent Ai into more detail.

7.2.1 Label setting phase

As long as there is a plan step s having no label value, agent Ai finds a label for s based on
local information about s and the values of its input and output variables. First, we check
whether there is some v ∈ ranV ar (s) ∩ V dif that is not changed by any other plan step s′
before time t ′. If so, then s must be fully enabled. We distinguish two cases: If s occurs in
Pt , all its input values are observed at time t and therefore it must be qualified. Hence, we
set l(s) = f . Else, s is dependent upon the output of other plan steps and s may need to be
qualified. Hence, we set l(s) = mf . This label mf signifies that the definite label may change
to f if no other plan step s′ preceding s is found that has the status f , or it may change to
l(s) = no if such a plan step is found.

If s does not directly produce a value of a variable in V dif , then its label will be set to h,
mh or no. It will be set to h if s is fully enabled in Pt , it will be set to mh if s is fully enabled
in Pt ′′ for some time t ′′ with t < t ′′ < t ′, and it will be set to no otherwise.

After the label setting phase, it is not difficult to see that the set of plan steps having
a label with value mf or f constitutes a maximal informative diagnosis. We use the label
propagation phase to construct a mini–maxi diagnosis.

7.2.2 Label propagating phase

For each plan step s ∈ Si having a preliminary label l(s) = mh or l(s) = mf we know that
such a plan step must have predecessors s′ in the plan P . Those predecessors might belong to
Si or to the set of plan steps of another agent. Such plan steps s will receive their definite label
by inspecting the labels of their predecessors. Then the definite label value is set according
to the following intuitive label propagation rules:

Here, ∀x (∃x) means that all (some) plan steps in the set of predecessors of s have the label
value x . We simply assume that agents will able to retrieve the labels of these predecessors
of plan step s and update the labels of s accordingly.

For each agent this label propagating procedure will stop after a finite number of steps:
First of all, at the end of the label setting procedure, all plan steps s in Pt will have their def-
inite label values. By the propagating rules, next all plan steps in Pt+1 will get their definite
labels and finally, all plan steps in Pt ′ will obtain their definite label values. Moreover, during
the label setting procedure, every plan step that directly contributes to the value of a variable
in the disagreement set is labeled f or mf . The label mf is only changed to f if no direct or
indirect predecessors of s have a label value mf or f . This clearly ensures that the final set
of plan steps assigned to f is a minimal diagnosis. Hence, the resulting set is a mini–maxi
diagnosis.

Example 8 Consider the plan as given in Fig. 6 and assume that for every plan step s there
is a separate agent A responsible for it. In the label setting phase each agent determines the
label of its plan step (See Fig. 6a). In the label propagation phase, the values of the labels of
all plan steps that occur as predecessors of a plan step are propagated and the resulting final
labels are given in Fig. 6b. Then each agent having a plan step qualified as f announces the
identity of the plan step. Here the result is a mini-maxi diagnosis consisting of two plan steps
marked as f .

123

48 Auton Agent Multi-Agent Syst (2009) 19:30–52

h h

nomf

mf mf

v1 v2 v3 v4

π0

π1

π2

π3

no

mh

h h

nof

no f

v1 v2 v3 v4

π0

π1

π2

π3

no

h

v5 v5a b

Fig. 6 An example of the results of the label setting (a) and the label propagating (b) procedures in the
distributed diagnosis algorithm

Table 1 Label propagation rules Labels of Current Definite

predecessors of s preliminary label s label s

∃ f mf no

∃ f mh no

∃no mf no

∃no mh no

∃mf mf no

∃mf mh no

∀h mh h

∀h mf f

8 Conclusion

We have presented a simple formal framework to specify an executable plan and we have
defined the notion of a diagnosis using partial observations of a plan in execution. We based
our analysis of plans and observations upon a model-based diagnosis approach and con-
sidered a plan as a description of a system that can be observed and can be used to make
predictions about its (future) behavior.

Using this framework, we derived a definition for a plan diagnosis as a set of abnormally
qualified plan steps that are able to derive a partial plan state compatible with an observed
partial plan state. In contrast to model-based diagnosis, where minimal and minimum diag-
noses are aimed for, we have shown that minimality alone not always leads to the results
we prefer. In order to make powerful predictions about future plan states, we argued that
maximal informative diagnoses offer a valuable alternative.

We showed that in contrast to minimum diagnosis, a minimal maximum informative diag-
nosis can be found efficiently, although maximum informative diagnoses of minimum size
are difficult to compute.

123

Auton Agent Multi-Agent Syst (2009) 19:30–52 49

Finally, we extended our approach to diagnosis in a distributed setting, showing that
mini-maxi diagnoses can be computed very efficiently in such environments, too.

Current work can be extended in several ways. We mention three possible extensions:
First of all, we could improve our current notion of diagnosis by taking into account the
difference between plan operators and plan steps. In some cases it could be useful to make
a distinction between establishing diagnoses at the plan step level and diagnoses at the plan
operator level. For example, if instances of a driving action (i.e., plan steps) pertain to a plan
operator that refers to the use of one single vehicle and all these instances are qualified as
being abnormal, there is sufficient reason to believe that the vehicle itself (the plan operator)
is faulty. Such a distinction requires the inclusion of causal rules linking different plan steps
to each other. By means of such causal rules the number of plan steps qualified as abnormal
often can be significantly reduced. Secondly, going beyond plan operators, we could improve
the diagnostic model to include a model of the executing agent(s) that is involved in executing
one or more plan steps. In particular we need to consider cases where the agent might evolve
through several abnormal states. We suspect the resulting model to be related to diagnosis
in Discrete Event Systems [7,16]. Thirdly, we might investigate several relaxations of our
current framework and the computational properties of (mini–maxi) diagnoses in these relax-
ations. For example, one interesting variant could be allowing for a more careful propagation
of unknown values of variables in the domain of plan operators. Here, some variables in
the range of the plan operator still might be defined, although some variables in the domain
are undefined. Another variant could be a careful extension to non-deterministic aspects of
plan step execution by introducing sets of values of variables in the range of plan operators,
whenever some values of variables in their domain are undefined. It would be certainly inter-
esting to investigate the properties of mini-maxi diagnoses in such variants, but we suspect
their efficient computability property to be lost.

Acknowledgements We would like to thank the anonymous reviewers for pointing out some mistakes in
the original version, for their very useful comments on the subjects discussed in this paper, and for their
suggestions for possible extensions. This research is supported by the Technology Foundation STW, applied
science division of the Dutch Science Foundation (NWO) and the technology programme of the Ministry of
Economic Affairs (the Netherlands). Project DIT5780: Distributed Model Based Diagnosis and Repair.

A Appendix: Some proofs of propositions

A.1 Proof of Proposition 2

Proof We show that the decision-variant of the minimum plan diagnosis problem: Given
plan observations 〈P, (π, t), (π ′, t ′)〉, and a positive integer K , does there exist a diagnosis
of size K ? is an NP-complete problem by reducing the following NP-complete Minimum
Cover problem to it:

Given a set E , some set C ⊆ 2E and an integer K , does there exist a subset C ′ ⊆ C (a
cover) with |C ′| ≤ K such that every element of E belongs to at least one member of
C ′?

Note that without loss of generality, we may assume that K < |E |. The reduction is a
fairly standard one. Consider an instance (E, C, K) of the Minimum Cover problem, where
E = {e1, e2, . . . , en}. We construct the following instance (〈P, (π, t), (π ′, t ′)〉, K ′), of the
minimum diagnosis problem (decision variant) with P = 〈O, S,<〉 as follows: Let V =

123

50 Auton Agent Multi-Agent Syst (2009) 19:30–52

{vi, j | c j ∈ C, ei ∈ c j } be the set of variables. For each c j ∈ C , we define a plan step sc j ∈ S
with DomV ar (sc j) = ranV ar (sc j) = {vi, j | ei ∈ c j }. Furthermore, for every ei ∈ E , we
create a plan step sei with DomV ar (evi) = ranV ar (evi) = {vi, j | ei ∈ c j }. The action per-
formed by each plan step is simply to copy the value of the variables occurring in its domain
to the corresponding variable in its range. Note that every plan step is range-restricted as
required. Due to the concurrency requirement, we have to be careful in ordering the actions,
since the value of a variable might not be affected at the same time by more than one action.
Therefore we order the plan steps as follows: every plan step sc j has to precede every plan
step sei . This defines the plan P (See Fig. 7 for an example of this construction). Finally, let
K ′ = K and consider the following observations:

obs(0) = {(1, 1, . . . , 1), 0)}

obs(2) = {(2, 2, . . . , 2), 2)}
Let us consider the intuition behind this reduction. In the initial timed state (π, 0), every

variable vi, j has the value 1, while at time t = 2 the value (2) of every variable vi, j disagrees
with the prediction that it will be 1, if it is assumed that no action will fail. We ask for the
existence of a diagnosis Q containing K or fewer plan steps. Clearly, such a diagnosis has to
predict that every value of a variable vi, j will be undefined at time t = 2. This means that we
have to find K or fewer plan steps that can be qualified as abnormal and thereby induce the
values of all variables to be undefined at time t = 2. It is not difficult to see that such a solution
exists iff there are K or fewer plan steps chosen from the set {sc j | c j ∈ C} that are qualified
as abnormal. This can be seen as follows: suppose we have a qualification Q′ containing a
plan step sei . In that case there exists an action sc j such that domV ar (sei)∩ranV ar (sc j) �= ∅.
But that implies that the set (Q′ − sei) ∪ sc j is also a diagnosis. Hence, we can exchange

v1,1 v1,3 v2,1 v2,2 v3,2 v4,2 v4,3

sc1 sc2 sc3

se1 se2 se3 se4

Fig. 7 A reduction from a min-cover instance (S, C, K) with S = {e1, e2, e3, e4} and C = {c1, c2, c3},
where c1 = {e1, e2}, c2 = {e2, e3, e4} and c3 = {e1, e4} to the minimum plan diagnosis problem

123

Auton Agent Multi-Agent Syst (2009) 19:30–52 51

all plan steps sei by plan steps sc j to obtain a diagnosis as subset of the set {sc j | c j ∈ C}
without increasing the cardinality of the diagnosis.

Consider now a diagnosis Q ⊆ {sc j | c j ∈ C}. Then, since every vi, j occurs in the range
of the plan step sei , at least one of the inputs vi, j ′ of sei should be undefined. By the construc-
tion of the plan, this implies that for every sei there exists at least one sc j with ei ∈ c j such
that sc j ∈ Q. But then it follows immediately that Q is a diagnosis of 〈P, obs(0), obs(2)〉
exactly if the set C ′ = {c j | sc j ∈ Q} is a cover of C . �

A.2 Correctness of the algorithm to compute mini-maxi diagnoses

We will prove that the algorithm indeed computes a maxi-diagnosis.

Proposition 3 Given a plan observation 〈P, (π, t), (π ′, t ′)〉, the problem to find a mini-maxi
diagnosis can be solved in polynomial time using the algorithm for computing mini-maxi
diagnoses.
Proof It is not difficult to see that for every v ∈ V dif there exists a plan step s ∈ P such
that v occurs in ranV ar (s). Hence, the algorithm always terminates. Obviously, if Step 3.3
is omitted and Step 3.4 is changed into Qmax := Qmax ∪ Si , we are simply computing
a maxi-diagnosis Q according to the definition. Since in Step 3.4, only plan steps s′ are
removed that belong to the scope scope(s) of plan steps s just added to the set Qmax , it is
not difficult to see that the final qualification Omax computed by the algorithm is a diagnosis.
Since Qmax is a subset of the maxi-diagnosis Q, it easily follows from the definition of the
derivation relation that π ′

Q � π ′
Qmax

, implying that V ar(π ′
Q) ⊆ V ar(π ′

Qmax
). Since Q is

a maxi-diagnosis, this immediately implies that V ar(π ′
Q) = V ar(π ′

Qmax
) and, therefore,

Qmax is a maxi diagnosis, too.
To show that Qmax is a subset-minimal diagnosis, let obs(t ′ − i) denote the observation

predicted using the empty qualification ∅ at time t ′ − i for i = 0, . . . , t ′ − t . It is easy to
prove by induction over i that the following invariant holds for i = 0, . . . , t ′ − t :

For every i , Qmax is a minimal diagnosis for the plan Pi = ⋃i
j=o Pt ′− j with observa-

tions obs(t ′ − i) and obs(t ′).

Since the algorithm halts when Pi contains all plan steps between time t and time t ′, the
minimality of Qmax follows.

Finally, the algorithm is clearly polynomial. Suppose there are m variables and n plan
steps. Each of the sets Si , Qi , Qmax and D can be determined in O(m × n2)-time. Since
t ′ − t ≤ n, it follows that the algorithm halts in O(m × n3)-time. �

References

1. Bertoli, P., Cimatti, A., Pistore, M., & Traverso, P. (2002). Plan validation for extended goals under partial
observability (preliminary report). In Proceedings of the AIPS 2002 Workshop on Planning via Model
Checking, pp. 14–22, Toulouse, France.

2. Birnbaum, L., Collins, G., Freed, M., & Krulwich, B. (1990). Model-based diagnosis of planning failures.
In AAAI 90, pp. 318–323.

3. Carver, N., & Lesser, V. R. (2003). Domain monotonicity and the performance of local solutions strate-
gies for cdps-based distributed sensor interpretation and distributed diagnosis. Autonomous Agents and
Multi-Agent Systems, 6(1), 35–76.

4. Console, L., & Torasso, P. (1990). Hypothetical reasoning in causal models. International Journal of
Intelligence Systems, 5, 83–124.

123

52 Auton Agent Multi-Agent Syst (2009) 19:30–52

5. Console, L., & Torasso, P. (1991). A spectrum of logical definitions of model-based diagnosis. Compu-
tational Intelligence, 7, 133–141.

6. Cox, J. S., Durfee, E. H., & Bartold, Th. (2005). A distributed framework for solving the multiagent
plan coordination problem. In AAMAS ’05: Proceedings of the fourth international joint conference on
Autonomous agents and multiagent systems, pp. 821–827, New York, NY, USA, 2005. ACM Press.

7. Debouk, R., Lafortune, S., & Teneketzis, D. (2000). Coordinated decentralized protocols for failure diag-
nosis of discrete-event systems. Journal of Discrete Event Dynamical Systems: Theory and Application,
10, 33–86.

8. Eiter, T., Erdem, E., & Faber, W. (2004). Diagnosing plan execution discrepancies in a logic-based action
framework. Technical report INFSYS RR-1843-04-03, TU-Wien.

9. Fikes, R. E., & Nilsson, N. (1971). Strips: A new approach to the application of theorem proving to
problem solving. Artificial Intelligence, 5, 189–208.

10. Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M., & Scott, D. S. (2003). Continu-
ous Lattices and Domains. In Encyclopedia of Mathematics and its Applications, Vol. 93, Cambridge
University Press.

11. Horling, B., Benyo, B., & Lesser, V. (2001). Using self-diagnosis to adapt organizational structures. In
Proceedings of the 5th International Conference on Autonomous Agents, pp. 529–536. ACM Press.

12. Jensen, R. M., & Veloso, M. M. (1999). OBDD-based universal planning: Specifying and solving plan-
ning problems for synchronized agents in non-deterministic domains. Lecture Notes in Computer Science,
1600, 213–228.

13. de Jonge, F., & Roos, N. (2004). Plan-execution health repair in a multi-agent system. In Proceedings
of the 23rd Workshop of the UK Planning and Scheduling Special Interest Group (PLANSIG 2004), pp.
33–44, Cork, Ireland.

14. Kalech, M., & Kaminka, G. A. (2003). On the design of social diagnosis algorithms for multi-agent teams.
In IJCAI-03, pp. 370–375.

15. Kalech, M., & Kaminka, G. A. (2005). Diagnosing a team of agents: Scaling-up. In Proceedings of the
Fourth International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-05), pp.
249–255, ACM Press.

16. Pencolé, Y., Cordier, M., & Rozé, L. (2001). Incremental decentralized diagnosis approach for the super-
vision of a telecommunication network. In Twelfth International Workshop on Principles of Diagnosis Ð
DXÕ01. San Sicario, Italy, pp. 151–158.

17. Reiter, R. (1987). A theory of diagnosis from first principles. Artificial Intelligence, 32, 57–95.
18. Witteveen, C., Roos, N., van der Krogt, R. P. J., & de Weerdt, M. M. (2005). Diagnosis of single and

multi-agent plans. In Proceedings of the Fourth International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS-05), pp. 805–812, ACM Press.

123

	Models and methods for plan diagnosis
	Abstract
	1 Introduction
	1.1 Results
	1.2 Organization

	2 Related research
	3 Preliminaries
	3.1 States
	3.2 Actions, plan operators and plan steps
	3.3 Plans and plan execution

	4 Qualifications, predictions and derivability relations
	4.1 Plan qualifications
	4.2 Predicting results of executing plan steps

	5 Observations and diagnoses
	5.1 Preferred diagnoses

	6 Complexity results
	7 Distributed plans and mini--maxi diagnoses
	7.1 Agents and plan distributions
	7.2 Distributed diagnosis

	8 Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

