
ADOPT-ing: Unifying Asynchronous Distributed Optimizati on with
Asynchronous Backtracking

Marius C. Silaghi
Florida Institute of Technology
MSILAGHI @FIT.EDU

Makoto Yokoo
Kyushu University
YOKOO@IS.KYUSHU-U.AC.JP

Abstract
This article presents an asynchronous algorithm for solving Distributed Constraint Optimization problems

(DCOPs). The proposed technique unifies asynchronous backtracking (ABT) and asynchronous distributed
optimization (ADOPT) where valued nogoods enable more flexible reasoning and more opportunities for
communication, leading to an important speed-up. While feedback can be sent in ADOPT by COST messages
only to one predefined predecessor, our extension allows forsending such information to any relevant agent.
The concept of valued nogood is an extension by Dago and Verfaille of the concept of classic nogood that
associates the list of conflicting assignments with a cost and, optionally, with a set of references to culprit
constraints.

DCOPs have been shown to have very elegant distributed solutions, such as ADOPT, distributed asyn-
chronous overlay (DisAO), or DPOP. These algorithms are typically tuned to minimize the longest causal
chain of messages as a measure of how the algorithms will scale for systems with remote agents (with large
latency in communication). ADOPT has the property of maintaining the initial distribution of the problem.
To be efficient, ADOPT needs a preprocessing step consistingof computing a Depth-First Search (DFS) tree
on the constraint graph. Valued nogoods allow for automatically detecting and exploiting the best DFS tree
compatible with the current ordering. To exploit such DFS trees it is now sufficient to ensure that they exist.
Also, the inference rules available for valued nogoods helpto exploit schemes of communication where more
feedback is sent to higher priority agents. Together they result in an order of magnitude improvement.

1. Introduction

Distributed Constraint Optimization (DCOP) is a formalismthat can model problems distributed due to their
nature. These are problems where agents try to find assignments to a set of variables that are subject to
constraints. The reason for the distribution of the solvingprocess comes from the assumption that only
a subset of the agents has knowledge of each given constraint. Nevertheless, in DCOPs it is assumed that
agents try to maximize their cumulated satisfaction by the chosen solution. This is different from other related
formalisms where agents try to maximize the satisfaction ofthe least satisfied among them (Yokoo, 1993). It
is also different from formalisms involving self-interested agents (which wish to maximize their own utility
individually).

The application of distributed constraint optimization framework to modeling and solving multi-agent
meeting scheduling problems is detailed in (Modi & Veloso, 2005; Franzin, Rossi, E.C., & Wallace, 2004;
Maheswaran, Tambe, Bowring, Pearce, & Varakantham, 2004; Sultanik, Modi, & Regli, 2006). The appli-
cation to Distributed Generator Maintenance is described in (Petcu & Faltings, 2006a). An application to oil
pipelines is described in (Marcellino, Omar, & Moura, 2007), while an application to traffic light scheduling
is described in (Walsh, 2007). These problems have in commonthe fact that some constraints are originally
distributed among involved agents and are difficult to centralize due to privacy or due to other structural
issues.

Submitted to JAAMAS on 5/07.

Several synchronous and asynchronous distributed algorithms have been proposed for solving DCOPs in a
distributed manner. Since a DCOP can be viewed as a distributed version of the common centralized Weighted
Constraint Satisfaction Problems (WCSPs /Σ-VCSP) (Bistarelli, Fargier, Montanari, Rossi, Schiex, & Ver-
faillie, 1996; Bistarelli, Montanari, & Rossi, 1995; Schiex, Fargier, & Verfaillie, 1995; Bistarelli, Montanari,
Rossi, Schiex, Verfaillie, & Fargier, 1999), it is normal that successful techniques for WCSPs were ported to
DCOPs. However, the effectiveness of such techniques has tobe evaluated from a different perspective (and
using different measures) as imposed by the new requirements. Typically research has focused on techniques
in which reluctance is manifested toward modifications to the distribution of the problem (modification ac-
cepted only when some reasoning infers it is unavoidable forguaranteeing that a solution can be reached).
This criteria is widely believed to be valuable and adaptable for large, open, and/or dynamic distributed
problems. It is also perceived as an alternative approach toprivacy requirements (Silaghi & Faltings, 2002;
Wallace & Silaghi, 2004; Yokoo, Suzuki, & Hirayama, 2002; Silaghi & Mitra, 2004).

A synchronous algorithm, synchronous branch and bound, wasthe first known distributed algorithm for
solving DCOPs (Hirayama & Yokoo, 1997). Stochastic versions have also been proposed (Zhang & Wit-
tenburg, 2002). From the point of view of efficiency, a distributed algorithm for solving DCOPs is typically
evaluated with regard to applications to agents on the Internet, namely, where latency in communication is
significantly more time consuming than local computations (in most algorithms). A common measure that
represents this assumption well is given by the number of cycles of a simulator that lets each agent in turn
process all the messages that it receives (Yokoo, Durfee, Ishida, & Kuwabara, 1992). Within the mentioned
assumption, for real solvers this measure is shown to be equivalent to the longest causal chain of sequential
messages, as used in (Silaghi, Sam-Haroud, & Faltings, 2001c). However, we also provide results computed
in a scenario simulating random latency in communication. Sometimes, local computation time is also fac-
tored into the evaluation metric by weighting the computation associated with each constraint check as a
fraction (e.g., between one tenth and one millionth) of the latency of a message (Yokoo et al., 1992; Silaghi
& Faltings, 2004; Chechetka & Sycara, 2006). The current value of this fraction for the Internet is around
one thousand, estimating approximately10−4seconds/constraint-check and 0.5 seconds/message. The tech-
nological trend predicts improvements of the computational speeds of machines (reducing the duration of
constraint-checks), while communication latencies are stable, being close to the physical limit set by the
speed of light (Neystadt & Har’El, 1997). Therefore, the fraction is expected to be reduced even further in
the future, reducing the relevance of constraint checks.

From the point of view of this measure, a very efficient currently existing DCOP solver is DPOP (Petcu
& Faltings, 2005b, 2005a), which is linear in the number of variables. However, that algorithm generally has
message sizes and local computation costs that are exponential in the induced width of a chosen depth-first
search tree of the constraint graph of the problem. This clearly invalidates the assumptions that lead to the
acceptance of the number of cycles as an efficiency measure. Some of the agents are also very disadvantaged
in DPOP with respect to their privacy (Greenstadt, Pearce, Bowring, & Tambe, 2006). Effort is currently
directed toward reducing these drawbacks (Petcu & Faltings, 2006b).

Two other algorithms competing as efficient solvers of DCOPsare the asynchronous distributed optimiza-
tion (ADOPT) and the distributed asynchronous overlay (DisAO). DisAO works by incrementally joining the
sub-problems owned by agents found in conflict (Mailler & Lesser, 2004). ADOPT can be described as a
parallel version of (Iterative Deepening) A* (Silaghi, Landwehr, & Larrosa, 2004). While DisAO is typically
criticized for its significant abandon of the maintenance ofthe local distribution of the problem at the first
conflict (and expensive local computations invalidating the above assumptions as for DPOP (Davin & Modi,
2005; Maheswaran et al., 2004; Ali, Koenig, & Tambe, 2005)),ADOPT can be criticized for its strict message
pattern that only provides reduced reasoning opportunities. ADOPT works with orderings on agents dictated
by some Depth-First Search tree on the constraint graph, andallows cost communication from an agent only
to its parent node.

It is easy to construct huge problems whose constraint graphs are forests and which can be easily solved
by DPOP (in linear time), but are unsolvable with the other known algorithms. It is also easy to construct
relatively small problems whose constraint graph is full and therefore require unacceptable (exponential)

space with DPOP, while being easily solvable with algorithms like ADOPT, e.g., for the trivial case where all
tuples are optimal with cost zero.

In this work we address the aforementioned critiques of ADOPT, showing that it is possible to define a
message scheme based on a type of nogoods, calledvalued nogoods(Dago & Verfaillie, 1996; Dago, 1997),
which besides automatically detecting and exploiting the DFS tree of the constraint graph coherent with
the current order, help to exploit additional communication leading to significant improvement in efficiency.
The examples given of additional communication are based onallowing each agent to send feedback via
valued nogoods to several higher priority agents in parallel. The usage of nogoods is a source of much
flexibility in asynchronous algorithms. A nogood specifies aset of assignments that conflict with existing
constraints (Stallman & Sussman, 1977). A basic version of the valued nogoods consist of associating each
nogood with a cost, namely a cost limit violated due to the assignments of the nogood. Valued nogoods that
are associated with a list of culprit constraints produce important efficiency improvements. Each of these
incremental concepts is described in the following sections.

We start by defining the general DCOP problem, followed by introduction of the immediately related
background knowledge consisting of the ADOPT algorithm anduse of Depth-First Search trees in optimiza-
tion. In Section 2.4 we also describe valued nogoods together with the simplified version of valued global
nogoods. In Section 3 we present our new algorithm that unifies ADOPT with the older Asynchronous Back-
tracking (ABT). The algorithm is introduced by first describing the goals in terms of new communication
schemes to be enabled. Then the data structures needed for such communication are explored together with
the associated flow of data. Finally the pseudo-code and the proof of optimality are provided before dis-
cussing other existing and possible extensions. Several different versions mentioned during the description
are compared experimentally in the last section.

2. Background and Preliminaries

Now we introduce in more detail the distributed constraint optimization problems, the ABT and ADOPT
algorithms, as well as the theory behind the versions of valued nogoods used in this work.

2.1 Distributed Constraint Optimization

Constraint Satisfaction Problems (CSPs) are described by asetX of n variables and a setC of m constraints
on the possible combinations of assignments to these variables with values from their domains,D. A common
extension of the CSP framework for modeling applications tominimization of time, space, or number of
resources is known as Weighted CSP (Bistarelli et al., 1996,1999; Larrosa, 2002).

Definition 1 (WCSP (Larrosa, 2002; Bistarelli et al., 1996))A Weighted CSP is defined by a triplet of sets
(X, D, C) and a boundB. X andD are defined as in CSPs. In contrast to CSPs,C={c1, ..., cm} is a set of
functions,ci : Di1×...×Dimi

→ IN∞ wheremi is the arity ofci.
Its solution isǫ∗ = argmin

ǫ∈D1×...×Dn

∑m

i=1 ci(ǫ|Xi
), if

∑m

i=1 ci(ǫ ∗ |Xi
) < B, whereXi = Di1×...×Dimi

.

The specification of the boundB in the above definition is common only to a few versions (Larrosa, 2002),
and other articles use its default valueB = ∞ (Bistarelli et al., 1999)1. WCSPs are an important instance
of more general frameworks, such as Valued CSPs (VCSPs) and Semiring CSPs (SCSPs) (Bistarelli et al.,
1999) that we do not address here2. A framework equivalent to WCSPs, where each violation of a constraint
of the CSP is associated with a cost, is calledΣ−V CSP (Schiex et al., 1995). Other equivalent frameworks
are known, such as the Partial CSPs of (Freuder & Wallace, 1992). Distributed Constraint Optimization
Problems, the problems addressed in this work, are a generalization of WCSPs.

1. DCOP definitions could also include it to help specify branch and bound solvers.
2. Algorithmic ideas presented in this paper could be easilyreused with a fuzzy version of DCOP (with a + replaced by a MIN in the

definition of the optimal solution), where the goal would be to minimize the highest unsatisfaction among agents.

Submitted to JAAMAS on 5/07.

Definition 2 (DCOP) A distributed constraint optimization problem (DCOP), is defined by a set of agents
A1, A2, ..., An, and a setX of variables,x1, x2, ..., xn. Each agentAi has a set ofki functionsCi =
{c1

i , ..., c
ki

i }, cj
i : Xi,j → IR+, Xi,j ⊆ X , where onlyAi knowsCi. We assume thatxi can only take values

from a domainDi = {1, ..., d}.
Denoting with ǫ an assignment of values to all the variables in X, the problemis to find

argmin
ǫ

∑n

i=1

∑ki

j=1 cj
i (ǫ|Xi,j

).

For simplification and without loss of generality, one typically assumes thatXi,j ⊆ {x1, ..., xi}.

By ǫ|Xi,j
we denote the projection of the set of assignments inǫ on the set of variables inXi,j .

Our idea can be easily applied to general weighted CSPs. For example, our simulator of the ADOPT-ing
algorithm for DCOPs (presented later) is a solver of weighted CSPs. This solver receives a WCSP as input
and returns an optimal solution (after converting the WCSP to a DCOP in an intermediary step). This solver
is parametrized with a random number generator that decidesthe latencies of each message. For constant
latencies (the implementation based on rounds), a centralized forward checking-like paradigm is obtained.
Namely, each new assignment of a variablexk is followed in the next step by cost inferences on the domain
of all variablesxj , j > k (which in their turn are then immediately backward propagated in the following
round to the variablexk, and to other earlier variables).

Reducing general DCOPs to the used framework. With the aforementioned definition of DCOPs one
often says that each agentAi controls one variable,xi, since it knows all constraints betweenxi and previous
variablesxj , j < i. There exist several common extensions to this definition ofDCOPs providing for several
variables per agent, and for agents that hold constraints involving only variables that they do not control.
While non-trivial optimizations are possible when considering such frameworks (Yokoo & Hirayama, 1998;
Silaghi & Faltings, 2004), any solution for the version discussed here can be easily applied to those cases.

• The case of several variables per agent can be addressed by aggregating all variables of an agent into
a new variable, which can take as value any tuple allowed by the constraints between the original
variables. Another straightforward solution is to replaceeach original agent by several new agents,
one for each variable (where the original agents act under several false names (Modi, Shen, Tambe, &
Yokoo, 2005)).

• The case of agents holding constraints involving only variables that they do not control can be modeled
by adding a new variable for each such constraint, adding it to that constraint (with a total relation),
assigning it to be controlled by the corresponding agent, and then applying one of the approaches
mentioned for several variables per agent.

Example 2.1Consider a problem with 3 variablesx1, x2, andx3 and 3 constraintsc12 (betweenx1 andx2),
c23 (betweenx2 andx3), andc31 (betweenx3 andx1), where Alice knowsc12, Bob knowsc23, and Carol
knowsc31.

This problem can be modeled as a DCOP with 4 agents. Alice usestwo agents,A1 andA2 (typically
called pseudo-agents in ADOPT). Bob uses the agentA3 and Carol uses an agentA4. The new variablex4

of the agentA4 is involved in a ternary constraintc431 with x1 andx3. The constraintc431 is constructed
such that its projection onx1 andx2 is c31.

2.2 DFS-trees

The primal graph of a DCOP is the graph having the variables inX as nodes and having an arc for each pair
of variables linked by a constraint (Dechter, 2003). A Depth-First Search (DFS) tree associated with a DCOP
is a spanning tree generated by the arcs used for first visiting each node during some Depth-First Traversal
of its primal graph. DFS trees were first successfully used for distributed constraint satisfaction problems
in (Collin, Dechter, & Katz, 2000). The property exploited there is that separate branches of the DFS-tree are
completely independent once the assignments of common ancestors are decided. Two examples of DFS trees
for a DCOP primal graph are shown in Figure 1.

x1 x3

x4

x2 x5

x3

x1

x2

x5 x4

x5

x3

x1

x2

x4

a) b) c)

Figure 1: For a DCOP with primal graph depicted in (a), two possible DFS trees (pseudo-trees) are (b) and
(c). Interrupted lines show constraint graph neighboring relations not in the DFS tree.

Nodes directly connected to a node in a primal graph are said to be itsneighbors. In Figure 1.a, the
neighbors ofx3 are{x1, x4, x5}. Theancestorsof a node are the nodes on the path between it and the root
of the DFS tree, inclusively. In Figure 1.b,{x3, x5} are ancestors ofx2. x3 has no ancestors. If a variable
xi is an ancestor of a variablexj , thenxj is a descendantof xi. For example, in Figure 1.b,{x1, x2} are
descendants ofx5.

2.3 ADOPT and ABT

ADOPT. ADOPT (Modi et al., 2005) is an asynchronous complete DCOP solver, which is guaranteed to
find an optimal solution. Here, we only show a brief description of ADOPT. Please consult (Modi et al., 2005)
for more details. First, ADOPT organizes agents into a Depth-First Search (DFS) tree, in which constraints
are allowed between a variable and any of its ancestors or descendants, but not between variables in separate
sub-trees.

ADOPT uses three kinds of messages: VALUE, COST, and THRESHOLD. A VALUE message com-
municates the assignment of a variable from ancestors to descendants that share constraints with the sender.
When the algorithm starts, each agent takes a random value for its variable and sends appropriate VALUE
messages. A COST message is sent from a child to its parent, which indicates the estimated lower bound of
the cost of the sub-tree rooted at the child. Since communication is asynchronous, a cost message contains
a context, i.e., a list of the value assignments of the ancestors. The THRESHOLD message is introduced
to improve the search efficiency. An agent tries to assign itsvalue so that the estimated cost is lower than
the given threshold communicated by the THRESHOLD message from its parent. Initially, the threshold is
0. When the estimated cost is higher than the given threshold, the agent opportunistically switches its value
assignment to another value that has the smallest estimatedcost. Initially, the estimated cost is 0. Therefore,
an unexplored assignment has an estimated cost of 0. A cost message also contains the information of the
upper bound of the cost of the sub-tree, i.e., the actual costof the sub-tree. When the upper bound and the
lower bound meet at the root agent, then a globally optimal solution has been found and the algorithm is
terminated.

ABT. Distributed constraint satisfaction problems are specialcases of DCOPs where the constraintscj
i can

return only values in{0,∞}. The basic asynchronous algorithm for solving distributedconstraint satisfaction
problems is asynchronous backtracking (ABT) (Yokoo, Durfee, Ishida, & Kuwabara, 1998). ABT uses a
total priority order on agents where agents announce new assignments to lower priority agents usingok?

Submitted to JAAMAS on 5/07.

greenyellowred

x4

x3x1 x2

Figure 2: MIN resolution on valued global nogoods

messages, and announce conflicts to lower priority agents usingnogoodmessages. New dependencies created
by dynamically learned conflicts are announced usingadd-link messages. An important difference between
ABT and ADOPT is that, in ABT, conflicts (the equivalents of cost) can be freely sent to any higher priority
agent.

ABT performs a kind of forward checking. Immediately after avariable is instantiated, after the latency
of a message, all future variables are immediately checked for values consistent with that assignment (as
their controlling agents receive the new assignment in parallel). Therefore ABT has a transparent look-
ahead behavior implicit in its asynchronism and feedback mechanisms. This explanation is experimentally
confirmed by the fact that explicit forward checking does notimprove over ABT (Meseguer & Jiménez,
2000).

2.4 Cost of nogoods

Previous flexible algorithms for solving distributed constraint satisfaction problems exploit the inference
power of nogoods (e.g., ABT, AWC, ABTR (Yokoo et al., 1992, 1998; Silaghi, Sam-Haroud, & Faltings,
2001b))3. A nogood¬N stands for a setN of assignments that was proven impossible, by inference, using
constraints. IfN = (〈x1, v1〉, ..., 〈xt, vt〉) wherevi ∈ Di, then we denote byN the set of variables assigned
in N , N = {x1, ..., xt}.

2.4.1 VALUED GLOBAL NOGOODS

In order to apply nogood-based algorithms to DCOP, one redefines the notion of nogoods as follows. First,
we attach a value to each nogood obtaining avalued global nogood. These are a simplified version of
Dago&Verfaille’s valued nogoods introduced next, and are basically equivalent to the content of COST mes-
sages in ADOPT.

Definition 3 (Valued Global Nogood) A valued global nogood has the form[c, N], and specifies that the
(global) problem has cost at leastc, given the set of assignmentsN for distinct variables.

Example 2.2For the graph coloring problem in Figure 2 (assume it has a constraint x1 6=x4 with weight
10), a possible valued global nogood is[10, {(x1, r), (x4, r)}]. It specifies that ifx1=r andx4=r then there
exists no solution with a cost lower than10.

Given a valued global nogood [c, (〈x1, v1〉, ..., 〈xt, vt〉)], one can infer aglobal cost assessment (GCA)
for the valuevt from the domain ofxt given the assignmentsS = 〈x1, v1〉, ..., 〈xt−1, vt−1〉. This GCA is
denoted(vt, c, S) and is semantically equivalent to an applied valued global nogood (i.e., the inference):

(〈x1, v1〉, ..., 〈xt−1, vt−1〉)→ (〈xt, vt〉 has costc).

3. Other algorithms, like AAS, exploit generalized nogoods(i.e., extensions of nogoods to sets of values for a variable), and the
extension of the work here for that case is suggested in (Silaghi, 2002).

Remark 1 Given a valued global nogood[c, N] known to some agent, that agent can infer the GCA(v, c, N)
for any valuev from the domain of any variablex, wherex is not assigned inN , i.e.,x 6∈ N .

For example, ifA3 knows a valued global nogood[10, {(x1, r), (x2, y)}], then it can infer for the valuer
of x3 the GCA(r, 10, {(x1, r), (x2, y)}).

Proposition 1 (min-resolution) Given a minimization WCSP, assume that we have a set of GCAs ofthe form
(v, cv, Nv) that has the property of containing exactly one GCA for each valuev in the domain of variablexi

and that for allk andj, the assignments for variablesNk ∩Nj are identical in bothNk andNj . Then one
can resolve a new valued global nogood:[minv cv,∪vNv].

Example 2.3For the graph coloring problem in Figure 2 (weighted constraints are not shown),x1 is colored
red (r),x2 yellow (y) andx3 green (g). Assume that the following valued global nogoods are known for each
of the values{r, y, g} of x4:

(r): [10, {(x1, r), (x4, r)}], obtaining forx4 the GCA(r, 10, {(x1, r)})

(y): [8, {(x2, y), (x4, y)}], obtaining forx4 the GCA(y, 8, {(x2, y)})

(g): [7, {(x3, g), (x4, g)}], obtaining forx4 the GCA(g, 7, {(x3, g)})

By min-resolution on these GCAs, one obtains the valued global nogood[7, {(x1, r), (x2, y), (x3, g)}], mean-
ing that given the coloring of the first 3 nodes, there is no solution with (global) cost lower than 7.

Min-resolution can be applied to valued global nogoods:

Corollary 1.1 AssumeS is a set of nogoods associated with the variablexi, such that for each[cv, Sv]
in S, ∃〈xi, v〉 ∈ Sv. If S contains exactly one global valued nogood[cv, Sv] for each valuev in
the domain of variablexi of a minimization WCSP, then one can resolve a new valued global nogood:
[minv cv,∪v(Sv \ 〈xi, v〉)].

2.4.2 DAGO AND VERFAILLE’ S VALUED NOGOODS

We would like to allow free sharing of nogoods between agents. The operator for aggregating the weights of
constraints in DCOPs is+, which is not idempotent (i.e., in generala+a 6= a). Therefore a constraint cannot
be duplicated and implied constraints cannot be added straightforwardly without modifying the semantic of
the problem (which was possible with distributed CSPs (Schiex et al., 1995; Bistarelli et al., 1999))4. Two
solutions are known. One solution is based on DFS trees (usedby ADOPT), while the second is based on
justifications. We will use both of them.

Remark 2 (DFS sub-trees)Given two GCAs(v, c′v, S′
v) and(v, c′′v , S′′

v) for a valuev in the domain of vari-
able xi of a minimization WCSP, if one knows that the two GCAs are inferred from different constraints,
then one can infer a new GCA:(v, c′v + c′′v , S′

v ∪ S′′
v). This is similar to what ADOPT does to combine cost

messages coming from disjoint problem sub-trees (Modi, Tambe, Shen, & Yokoo, 2002; Collin et al., 2000).

This powerful reasoning can be applied when combining a nogood obtained from the local constraints
with a valued nogood received from other agents (and obtained solely by inference from other agents’ con-
straints). When a DFS tree of the constraint graph is used forconstraining the message pattern as in ADOPT,
this powerful inference applies, too.

The question is how to determine that the two GCAs are inferred from different constraints in a more
general setting. This can be done by tagging cost assessments with the identifiers of the constraints used to
infer them (the justifications of the cost assessments).

Definition 4 A set of references to constraints(SRC) is a set of identifiers, each for a distinct constraint.

4. The aggregation method for fuzzy CSPs (a kind of VCSPs) (Schiex et al., 1995) is MIN, being idempotent. Therefore inferred
global valued nogoods can be freely added in that framework.

Submitted to JAAMAS on 5/07.

Note that several constraints of a given problem description can be composed in one constraint (in a
different description of the same problem).5

SRCs help to define a generalization of the concept ofvalued global nogoodnamedvalued nogood(Dago
& Verfaillie, 1996; Dago, 1997).

Definition 5 (Valued Nogood) A valuednogoodhas the form[R, c, N] whereR is a set of references to
constraints having cost at leastc, given a set of assignments,N , for distinct variables.

Valued nogoods are generalizations of valued global nogoods. Valued global nogoods are valued nogoods
whose SRCs contain the references of all the constraints.

Once we decide that a nogood [R, c, (〈x1, v1〉, ..., 〈xi, vi〉)] will be applied to a certain vari-
able xi, we obtain a cost assessment tagged with the set of references to constraintsR6, denoted
(R, vi, c, (〈x1, v1〉, ..., 〈xi−1, vi−1〉)).

Definition 6 (Cost Assessment (CA))A cost assessment of variablexi has the form(R, v, c, N) whereR is
a set of references to constraints having cost with lower bound c, given a set of assignmentsN for distinct
variables where the assignment ofxi is set to the valuev.

As for valued nogoods and valued global nogoods, cost assessments are generalizations of global cost
assessments.

Remark 3 Given a valued nogood[R, c, N] known to some agent, that agent can infer the CA(R, v, c, N)
for any valuev from the domain of any variablex, wherex is not assigned inN , i.e., wherex 6∈ N .

For example, denoting byJ4,7 the reference to the constraint between variablesx4 andx7, if A6 knows
the valued nogood[{J4,7}, 10, {(x2, y), (x4, r)}], then it can infer the CA({J4,7}, b, 10, {(x2, y), (x4, r)})
for the valueb of x6.

We can now detect and perform the desired powerful reasoningon valued nogoods and/or CAs coming
from disjoint sub-trees, mentioned in Remark 2.

Proposition 2 (sum-inference (Dago & Verfaillie, 1996; Dago, 1997)) A set of cost assessments of type
(Ri, v, ci, Ni) for a valuev of some variable, where∀i, j : i 6= j ⇒ Ri ∩ Rj = ∅, and the assignment
of any variablexk is identical in allNi wherexk is present, can be combined into a new cost assessment.
The obtained cost assessment is(R, v, c, N) such thatR=∪iRi, c=

∑
i(ci), andN=∪iNi.

Example 2.4For the graph coloring problem in Figure 3,x1 is colored red,x2 yellow,x3 green, andx4 red.

red

red yellow green

x4

x3x2x1

x6x5

c4,7

x7

c4,5 c4,6

Figure 3: SUM-inference resolution on CAs

Let the justification referring a set of constraints including ci,j andcj,k be denotedJi,j,k. Assume that the
following valued nogoods are known for(x4, r):

5. For privacy, a constraint can be represented by several constraint references and several constraints of an agent canbe represented
by a single constraint reference.

6. This is called avalued conflict listin (Silaghi, 2002).

• [{J4,5,2}, 5, {(x2, y), (x4, r)}] obtaining CA({J4,5,2}, r, 5, {(x2, y)})

• [{J4,6,1}, 7, {(x1, r), (x4, r)}] obtaining CA({J4,6,1}, r, 7, {(x1, r)})

• [{J4,7,2}, 9, {(x2, y), (x4, r)}] obtaining CA({J4,7,2}, r, 9, {(x2, y)})

Also assume that based onx4’s constraint withx1, one has obtained for〈x4, r〉 the following valued nogood:

• [{J1,4}, 10, {(x1, r), (x4, r)}] obtaining CA({J1,4}, r, 10, {(x1, r)})

Then, by sum-inference on these CAs, one obtains forx4 the CA
[{J1,4, J4,5,2, J4,6,1, J4,7,2}, r, 31, {(x1, r), (x2, y)}], meaning that given the coloring of the first 2
nodes, coloringx4 in red leads to a cost of at least 31 for the constraints{J1,4, J4,5,2, J4,6,1, J4,7,2}.

Remark 4 (sum-inference for valued nogoods)Sum inference can be similarly applied to any set of val-
ued nogoods with disjoint SRCs and compatible assignments.The result of combining a set of nogoods
[Ri, ci, Si] is [∪i Ri,

∑
i ci,∪iSi]. This can also be extended to the case where assignments are generalized

to sets (Silaghi, 2002).

The min-resolution proposed for GCAs translates straightforwardly for CAs as follows.

Proposition 3 (min-resolution (Dago & Verfaillie, 1996; Dago, 1997))Assume that we have a set of cost
assessments forxi of the form(Rv, v, cv, Nv) that has the property of containing exactly one CA for each
valuev in the domain of variablexi and that for allk and j, the assignments for variablesNk ∩ Nj are
identical in bothNk and Nj . Then the CAs in this set can be combined into a new valued nogood. The
obtained valued nogood is[R, c, N] such thatR=∪iRi, c= mini(ci) andN=∪iNi.

Example 2.5For the graph coloring problem in Figure 2,x1 is colored red,x2 yellow, andx3 green. Assume
that the following valued nogoods are known for the values ofx4:

(r): [{J1,4}, 10, {(x1, r), (x4, r)}] obtaining CA({J1,4}, r, 10, {(x1, r)})

(y): [{J2,4}, 8, {(x2, y), (x4, y)}] obtaining CA({J2,4}, y, 8, {(x2, y)})

(g): [{J3,4}, 7, {(x3, g), (x4, g)}] obtaining CA({J3,4}, g, 7, {(x3, g)})

By min-resolution on these CAs, one obtains the valued global nogood
[{J1,4, J2,4, J3,4}, 7, {(x1, r), (x2, y), (x3, g)}], meaning that given the coloring of the first 3 nodes
there is no solution with cost lower than 7 for the constraints{J1,4, J2,4, J3,4}.

As with valued global nogoods, the min-resolution could be applied directly to valued nogoods:

Corollary 3.1 (min-resolution on nogoods)From a set of valued nogoods[Rv, cv, Sv)] (such that
∃v, 〈xi, v〉 ∈ Sv) containing exactly one valued nogood for each valuev in the domain of variablexi of
a minimization problem, one can resolve a new valued nogood:[∪v Rv, minv cv,∪v(Sv \ 〈xi, v〉)].

3. ADOPT with nogoods

We now present a distributed optimization algorithm whose efficiency is improved by exploiting the increased
flexibility brought by the use of valued nogoods. The algorithm can be seen as an extension of both ADOPT
and ABT, and will be denoted Asynchronous Distributed OPTimization with inferences based on valued
nogoods (ADOPT-ing).

As in ABT, agents communicate withok? messages proposing new assignments of the variable of the
sender,nogoodmessages announcing a nogood, andadd-link messages announcing interest in a variable.
As in ADOPT, agents can also usethreshold messages, but their content can be included inok? messages.

For simplicity we assume in this algorithm that the communication channels are FIFO (as enforced by
the Internet transport control protocol). Attachment of counters to proposed assignments and nogoods can
also be used to ensure this requirement (i.e., older assignments and older nogoods for the currently proposed
value are discarded).

Submitted to JAAMAS on 5/07.

6

1

2

3

4

5

6

1

2

3

4

5

4

2

3

1

5

6 6

1

2

3

4

5

6

1

2

3

4

5

a) b) c) d) e)

Figure 4: Feedback modes in ADOPT-ing. a) a constraint graphon a totally ordered set of agents; b) a
DFS tree compatible with the given total order; c) ADOPT-p: sending valued nogoods only to
parent (graph-based backjumping); d) ADOPT-d, ADOPT-D , and ADOPT-Y : sending valued
nogoods to any ancestor in the tree; e) ADOPT-aand ADOPT-A : sending valued nogoods to
any predecessor agent.

3.1 Exploiting DFS trees for Feedback

In ADOPT-ing, agents are totally ordered as in ABT,A1 having thehighest priorityand An the lowest
priority. Thetargetof a valued nogood is the position of the lowest priority agent among those that proposed
an assignment referred by that nogood. Note that the basic version of ADOPT-ing does not maintain a DFS
tree, but each agent can send messages with valued nogoods toany predecessor and the DFS tree is discovered
dynamically. We also propose hybrid versions that can exploit an existing DFS tree. We have identified two
ways of exploiting such an existing structure. The first is byhaving each agent send its valued nogood only
to its parent in the tree. The obtained algorithm is roughly equivalent to the original ADOPT. The other way
is by sending valued nogoods only to ancestors. This later hybrid approach can be seen as a fulfillment of
a direction of research suggested in (Modi et al., 2005), namely communication of costs to higher priority
parents.

The versions of ADOPT-ing described in this article are differentiated using the notationADOPT-
DON. D shows the destinations of the messages containing valued nogoods. D has one of the values
{p, a, A, d, D, Y } wherep stands forparent, a andA stand forall predecessors, while d, D andY stand for
all ancestors in a DFS tree. The difference between the upper and lower case versions isfurther explained
in Section 3.2.Y is asD but for a dynamically discovered DFS tree.O marks the optimization criteria used
by sum-inference in selecting a nogood when the alternatives have the same cost. For now we use a single
criterion, denotedo, which consists of choosing the nogood whose target has the highest priority.N specifies
the type of nogoods employed and has possible values{n, s}, wheren specifies the use of valued global
nogoods (without SRCs) ands specifies the use of valued nogoods (with SRCs).

The different schemes are described in Figure 4. The total order on agents is described in Figure 4.a
where the constraint graph is also depicted with dotted lines representing the arcs. Each agent (representing
its variable) is depicted with a circle. A DFS tree of the constraint graph which is compatible to this total
order is depicted in Figure 4.b. ADOPT gets such a tree as input, and each agent sends COST messages
(containing information roughly equivalent to a valued global nogood) only to its parent. As mentioned
above, the versions of ADOPT-ing that replicate this behavior of ADOPT when a DFS tree is provided are

called ADOPT-p , where p stands forparentand the underscores stand for any legal value defined above
for O andN respectively. Sometimes the underscores are dropped to improve readability. This method of
announcing conflicts based on the constraint graph is depicted in Figure 4.c and is related to the classic
Graph-based Backjumping algorithm (Dechter, 1990; Hamadi& Bessière, 1998).

In Figure 4.d we depict the nogoods exchange schemes used in ADOPT-d , ADOPT-D and ADOPT-
Y where, for each new piece of information, valued nogoods areseparately computed to be sent to each of
the ancestors in the currently known DFS tree. These schemesare enabled by valued nogoods and are shown
by experiments to bring large improvements. As for the initial version of ADOPT, the proof shows that the
only mandatory nogood messages for guaranteeing optimality in this scheme are the ones to the parent agent.
However, agents can infer from their constraints valued nogoods that are based solely on assignments made
by shorter prefixes of the ordered list of ancestor agents. The agents try to infer and send valued nogoods
separately for all such prefixes.

Figure 4.e depicts the basic versions of ADOPT-ing, when a chain of agents is used instead of a DFS
tree (ADOPT-a and ADOPT-A), and where nogoods can be sent to all predecessor agents. The dotted
lines show messages, which are sent between independent branches of the DFS tree, and which are expected
to be redundant. Experiments show that valued nogoods help to remove the redundant dependencies whose
introduction would otherwise be expected from such messages. The only mandatory nogood messages for
guaranteeing optimality in this scheme are the ones to the immediately previous agent (parent in the chain).
However, agents can infer from their constraints valued nogoods that are based solely on assignments made
by shorter prefixes of the ordered list of all agents. As in theother case, the agents try to infer and send
valued nogoods separately for all such prefixes. Note that the original ADOPT can also run on any chain of
the agents, but our experiments show that its efficiency decreases by 20% when it does not know the shortest
DFS tree compatible with the current order, and is an order ofmagnitude less efficient than any of these
two variants of ADOPT-ing. When no DFS tree is known in advance, ADOPT-Y slightly improves on
ADOPT-A as it dynamically detects a tree with reduced depth.

3.2 Differentiating ADOPT-a and ADOPT-d from ADOPT-A and AD OPT-D

The valued nogood computed for a prefixA1, ..., Ak ending at a given predecessorAk may not be different
from the one of the immediately shorter prefixA1,, Ak−1. Sending that nogood toAk may not affect the
value choice ofAk, since the cost of that nogood applies equally to all values of Ak according to Remark 3.
Exceptions appear in the case where such nogoods cannot be composed by sum-inference with some valued
nogoods ofAk. The versions ADOPT-D and ADOPT-A correspond to the case where optional nogood
messages are only sent when the target of the payload valued nogood is identical to the destination of the
message. The versions ADOPT-dand ADOPT-a correspond to the case where optional nogood messages
are sent to all possible destinations each time that the payload nogood has a non-zero cost. In other words, in
those versionsnogoodmessages are sent even when the target of the transported nogood is not identical to
the destination agent but has a higher priority. From this point of view ADOPT-Y works like ADOPT-D
but on the dynamically found DFS tree.
Example 3.6Consider the DCOP whose DFS tree is depicted in Figure 4. Assume that the next nogoods are
inferred byA6:

[1] For the prefix of predecessor agents{A1}: [{J6,1}, 2, (x1 = 2)]

[2] For the prefix of predecessor agents{A1, A2, A3}: [{J6,1, J6,3}, 3, (x1 = 2)(x3 = 2)]

With ADOPT-a, nogood [1] is sent to{A1, A2}, and nogood [2] to{A3, A4, A5}. With ADOPT-A, nogood
[1] is sent toA1, and nogood [2] to its targetA3 and to the predecessor agentA5.
Example 3.7Consider the DCOP whose DFS tree is depicted in Figure 5. Assume that the next nogoods are
inferred byA7:

[1] For the prefix of ancestor agents{A1}: [{J7,1}, 2, (x1 = 2)]

[2] For the prefix of ancestor agents{A1, A3, A6}: [{J7,1, J7,6}, 3, (x1 = 2)(x6 = 2)]

Submitted to JAAMAS on 5/07.

1

2

4

5

3

6

7

Figure 5: The constraint graph for a problem with 7 agents.

Nogood [1] can be used in inferences by all three ancestor agents{A1, A3, A6}. Nogood [2] can be used
only byA6. In this situation, with ADOPT-d the agentA7 sends nogood [1] toA1 andA3, and nogood [2]
to A6. With ADOPT-D,A7 sends nogood [1] only toA1, and nogood [2] to its target (and parent)A6.

3.3 Dynamic Discovery of Compatible DFS Tree in ADOPT-Y

Let us now assume that at the beginning, the agents only know the address of the agents involved in their
constraints (their neighbors), as in ABT. Finding a DFS treeof a constraint graph is different from the minimal
cycle cutset problem, whose distributed solutions have been studied in the past (Jagota & Dechter, 1997). We
address the problem of computing a DFS treecompatiblewith a given total order on nodes, namely where
the parent of a node precedes that node in the given total order. However, not any given total order on the
variables is compatible with a DFS tree of the constraint graph. Given an agreed total order on agents that
unknowingly happens to be compatible with a DFS tree, it is relatively simple (less thann rounds) to find
the compatible DFS tree. When a compatible DFS tree does not exist, our technique adds a small set of arcs
(total constraints) that keep the problem equivalent to theoriginal one and then returns a DFS tree compatible
with the new graph.

procedure initPreprocessing() do
1.1 ancestors← neighboringpredecessors;

foreachAj in ancestors do
1.2 send DFS(ancestors) to Aj ;

1.3 parent← last agent inancestors;

when receiveDFS(induced) fromAt do
1.4 if (predecessors ininduced) 6⊆ ancestors then
1.5 ancestors← ancestors ∪ (predecessors ininduced);

foreachAj in ancestors do
1.6 send DFS(ancestors) to Aj ;

1.7 parent← last agent inancestors;

Algorithm 1: Procedures of agentAi during preprocessing for dynamic discovery of DFS tree.

Preprocessing for computing the DFS tree Algorithm 1 can be used for preprocessing the distributed
problem. Each agent maintains a list with itsancestors and starts executing the procedureinitPreprocess-
ing. The first step consists of initializing itsancestors list with the neighboring predecessors (Line 1.1). The
obtained list is broadcast to the known ancestors using a dedicated message namedDFS(Line 1.2). On receiv-
ing aDFSmessage fromAt, an agent discards it when the parameter is a subset of its already known ancestors
(Line 1.4). Otherwise the new ancestors induced because ofAt are inserted in theancestors list (Line 1.5).

The new elements of the list are broadcast to all interested ancestors, namely ancestors that will have these
new elements as their ancestors (Line 1.6). The parent of an agent is the last ancestor (Lines 1.3,1.7).

Lemma 4 Algorithm 1 computes a DFS tree compatible with a problem equivalent to the initial DCOP.

Proof. Let us insert in the initial constraint graph of the DCOP a newtotal constraint (constraint allowing
everything) for each link between an agent and its parent computed by this algorithm, if no constraint existed
already. A constraint allowing everything does not change the problem therefore the obtained problem is
equivalent to the initial DCOP. Note that the arcs between each agent and its parent define a tree.

Now we can observe that there exists a DFS traversal of the graph of the new DCOP that yields the
obtained DFS tree. Take three agentsAi, Aj , andAk such thatAi is the obtained parent of bothAj andAk.
Our lemma is equivalent to the statement that no constraint exists between sub-trees rooted byAj andAk

(given the arcs defining parent relations).
Let us assume (trying to refute) that an agentAj′ in the sub-tree rooted byAj has a constraint with an

agentAk′ in the sub-tree rooted byAk. Symmetry allows us to assume without loss of generality that Ak′

precedesAj′ . ThereforeAj′ includesAk′ in its ancestors list and sends it to its parent, which propagates it
further to its parent, and so on to all ancestors ofAj′ . Let Aj′′ be the highest priority ancestor ofAj′ having
lower priority thanAk′ . But thenAj′′ will set Ak′ as its parent (Lines 1.3,1.7), makingAk′ an ancestor of
Aj′ . This contradicts the assumption thatAk′ andAj′′ are in different sub-trees ofAi. �

Note that for any given total order on agents, Algorithm 1 returns a single compatible DFS tree. This
tree is built by construction, adding only arcs needed to fit the definition of a DFS tree. The removal of any
of the added parent links leads to breaking the DFS-tree property, as described in the proof of the Lemma.
Therefore, we infer that Algorithm 1 obtains the smallest DFS tree compatible with the initial order.

Remark 5 The trivial approach to using the DFS construction algorithm as a preprocessing technique also
requires the detection of the termination, to launch ADOPT-D or ADOPT-d when the preprocessing ter-
minates. Some of our techniques can be viewed as efficient ways to avoid such detection.

The preprocessing algorithm terminates, and the maximal casual chain of messages it involves has a
length of at mostn. That is due to the effort required to propagate ancestors from the last agent to the first
agent. All messages travel only from low priority agents to high priority agents, and therefore the algorithm
terminates after the messages caused by the agents in leavesreach the root of the tree7.

Lemma 5 If the total order on the agents is compatible with a known DFStree of the initial DCOP, then
all agent-parent arcs defined by the result of the above algorithm correspond to arcs in the original graph
(rediscovering the DFS tree).

Proof. Assume (trying to refute) that an obtained agent-parent relation,Ai–Aj , corresponds to an arc that
does not exist in the original constraint graph (for the lowest priority agentAi obtaining such a parent). The
parentAk of Ai in the known DFS tree must have a higher or equal priority thanAj ; otherwiseAi (havingAk

in hisancestors) would chose it as the parent in Algorithm 1 (Lines 1.3, 1.7).If Ak andAj are not identical,
it means thatAi has no constraint withAj in the original graph (otherwise, the known DFS would not be
correct). Therefore,Aj was received byAi as an induced link from a descendantAt which had constraints
with Aj (all descendants being defined by original arcs due to the assumption). However, if such a link
exists between a descendantAt andAj , then the known DFS tree would have been incorrect (since in aDFS
pseudo-tree all predecessor neighbors of one’s descendants must be ancestors of oneself). This contradicts
the assumption and proves the Lemma. �

Remark 6 If one knows that there exists a DFS tree of the initial constraint graph that is compatible with
the order on agents, then the parent of each agent in that treeis its lowest priority predecessor neighbor.

7. Or roots of the forest.

Submitted to JAAMAS on 5/07.

The agent can therefore compute its parent from the beginning without any message. This is at the basis
of our implementation of ADOPT-D, ADOPT-d and ADOPT-p , where we know that the input order is
compatible with a DFS tree (being the same order as the one used by ADOPT) but we do not bother providing
the tree to the solver.

Dynamic detection of DFS trees Intuitively, detecting a DFS tree in a preprocessing phase has three po-
tential weaknesses which we can overcome. The first drawbackis that it necessarily adds a preprocessing of
up ton sequential messages. Second, it uses all constraints up-front while some of them may be irrelevant,
at least for initial assignments of the agents (and shorter trees can be used to speed up search in the initial
stages). Third, trivial DFS tree detection may also requirean additional termination detection algorithm.
Here we show how we address these issues in one of our next techniques.

Therefore, we propose to build a DFS tree only for the constraints used so far in the search. Therefore,
agents in ADOPT-Y do not start initializing theirancestors with all neighboring predecessors, but with the
empty set. Neighboring predecessors are added to theancestors list only when the constraint defining that
neighborhood is actually used to increase the cost of a valued nogood8. On such an event, the newancestor
is propagated further as on a receipt of new induced ancestors with aDFS message in Algorithm 1. The
handling ofDFS messages is also treated as before. The dynamic detection isrun concurrently with the
search and integrated with the search, thus circumventing the mentioned weaknesses of the previous version
based on preprocessing. The payload of theDFSmessages is attached tonogoodmessages.

Another problem consists of dynamically detecting the children nodes and how descendants are currently
grouped in sub-trees by the dynamic DFS tree. In our solution, Ai groups agentsAk andAt in the same sub-
tree if it detects that its own descendants in the received lists of induced links fromAk andAt do intersect.
This is done as follows. A check is performed each time there is a new descendant agentAu in the lists of
induced links received from a descendantAk. If Au was not a previously known descendant ofAi, thenAu

is inserted in the sub-tree ofAk. Otherwise, the previous sub-tree containingAu is merged with the sub-tree
containingAk. Also, a new sub-tree is created for each agent from which we receive a nogood and that was
not previously known as a descendant. The data structure employed by an agentAi for this purpose consists
of a vector ofn integers, calledsubtrees. subtrees[j] holds the ID of the sub-tree containingAj , or 0 if Aj

is not currently considered to be a descendant ofAi. Each agent generates a different unique ID (positive
number) for each of its sub-trees (e.g., by incrementing a counter).

Remark 7 If agents start ADOPT-Y by inserting all their predecessor neighbors in theirancestors list, the
algorithm becomes equivalent to ADOPT-D after less thann rounds.

3.4 Data Structures

Besides theancestors andsubtrees structures of ADOPT-Y, each agentAi stores itsagent-view(received
assignments) and itsoutgoinglinks (agents of lower priority thanAi and having constraints onxi). The
instantiation of each variable is tagged with the value of a separate counter incremented each time the as-
signment changes. To manage nogoods and CAs,Ai uses matricesl[1..d], h[1..d], ca[1..d][i+1..n],th[1..i],
lr[i+1..n] andlastSent[1..i-1] whered is the domain size forxi. crt val is the current valueAi proposes for
xi. These matrices have the following usage:

• l[k] stores a CA forxi = k, which is inferred solely from the local constraints between xi and prior
variables.

• ca[k][j] stores a CA forxi = k, which is obtained by sum-inference from valued nogoods received
from Aj .

• th[k] stores nogoods coming viathreshold/ok? messages fromAk.

• h[v] stores a CA forxi=v, which is inferred fromca[v][j], l[v] and th[t] for all t andj.

8. More exactly, when a message is sent to that neighboring agent.

l[v]

local

constraints

<k

OK

THRESHOLD: th[k]

NOGOOD

view

h[v]

lr[j] NOGOOD
la

st
S

e
n
t[

k
]

m
in

-r
e
so

lu
ti

o
n

ca[v][j]

th[k]

<k

<k

Figure 6: Schematic flow of data through the different data structures used by an agentAi in ADOPT-ing.

• lr[k] stores the last valued nogood received fromAk.

• lastSent[k] stores the last valued nogood sent toAk.

The names of the structures were chosen by following the relation of ADOPT with A* search (Silaghi,
2003a; Silaghi et al., 2004). Thus,h stands for the “heuristic” estimation of the cost due to constraints
maintained by future agents (equivalent to theh() function in A*) andl stands for the part of the standard
g() function of A* that is “local” to the current agent. Here, as in ADOPT, the value forh() is estimated
by aggregating the costs received from lower priority agents. Since the costs due to constraints of higher
priority agents are identical for each value, they are irrelevant for the decisions of the current agent. Thus,
the functionf() of this version of A* is computed combining solelyl andh. We currently store the result of
combiningh andl in h itself to avoid allocating a new structure forf().

The structureslr andth store received valued nogoods, andca stores intermediary valued nogoods used
in computingh. The reason for storinglr, th andca is that change of context may invalidate some of the
nogoods inh while not invalidating each of the intermediary componentsfrom whichh is computed. Storing
these components (which is optional) saves some work and offers better initial heuristic estimations after a
change of context. The cost assessments stored inca[v][j] of Ai also maintain the information needed for
threshold messages, namely the heuristic estimate for the valuev of the variablexi at successorAj (to be
transmitted toAj if the valuev is proposed again).

The arraylastSent is used to store at each indexk the last valued nogood sent to the agentAk. The
array lr is used to store at each indexk the last valued nogood received from the agentAk. Storing them
separately guarantees that in case of changes in context, they are discarded at the recipient only if they are
also discarded at the sender. This property guarantees thatan agent can safely avoid retransmitting toAk

messages duplicating the last sent nogood, since if it has not yet been discarded fromlastSent[k], then the
recipients have not discarded it fromlr[k] either.

3.5 Data flow in ADOPT-ing

The flow of data through these data structures of an agentAi is illustrated in Figure 6. Arrows⇐ are
used to show a stream of valued nogoods being copied from a source data structure into a destination data
structure. These valued nogoods are typically sorted according to some parameter such as the source agent,
the target of the valued nogood, or the valuev assigned to the variablexi in that nogood (see Section 3.4).

Submitted to JAAMAS on 5/07.

The+ sign at the meeting point of streams of valued nogoods or costassessments shows that the streams are

combined using sum-inference. The
+
⇐ sign is used to show that the stream of valued nogoods is addedto the

destination using sum-inference, instead of replacing thedestination. When computing a nogood to be sent
to Ak, the arrows marked with<k restrict the passage to allow only those valued nogoods containing solely
assignments of the variables of agentsA1, ..., Ak. Our current implementation recomputes the elements ofh
andl separately for each target agentAk by discarding the previous values.

when receiveok?(〈xj , vj〉, tvn) do
2.1 integrate(〈xj , vj〉);
2.2 if (tvn no-null and has no old assignment)then
2.3 k:=target(tvn); // thresholdtvn as common cost;
2.4 th[k]:=sum-inference(tvn,th[k]);

2.5 check-agent-view();

when receiveadd-link (〈xj , vj〉) fromAj do
2.6 addAj to outgoinglinks;
2.7 if (〈xj , vj〉) is old,sendnew assignment toAj ;

when receivenogood(rvn, t, inducedLinks) fromAt do
2.8 insert new predecessors frominducedLinks in ancestors, on change making sure interested predeces-

sors will be (re-)sentnogoodmessages; //needed only in ADOPT-Y;
2.9 foreachnew assignmenta of a linked variablexj in rvn do

2.10 integrate(a); // counters show newer assignment;

2.11 lr[t]:=rvn;
2.12 if (an assignment inrvn is outdated)then
2.13 if (some new assignment was integrated now)then
2.14 check-agent-view();

2.15 return;

2.16 foreachassignmenta of a non-linked variablexj in rvn do
2.17 sendadd-link (a) toAj ;

2.18 foreachvaluev of xi such that rvn|v is not∅ do
2.19 vn2ca(rvn, i, v)→ rca (a CA for the value v ofxi);
2.20 ca[v][t]:=sum-inference(rca,ca[v][t]);
2.21 updateh[v] and retract changes toca[v][t] if h[v]’s cost decreases;

2.22 check-agent-view();

Algorithm 2: Receiving messages ofAi in ADOPT-ing

3.6 ADOPT-ing pseudo-code and proof

The pseudo-code for the procedures in ADOPT-ing is given in Algorithms 2 and 3. To extract the cost of a
CA, we introduce the functioncost(), wherecost((R, v, c, N)) returns c. Themin resolution(j) function
applies the min-resolution over the CAs associated with allthe values of the variable of the current agent,
but uses only CAs having no assignment from agents with lowerpriority thanAj . More exactly, it first re-
computes the arrayh using only CAs inca and l that contain only assignments fromA1, ..., Aj , and then
applies min-resolution over the obtained elements ofh. In the current implementation, we recomputel and
h at each call tomin resolution(j). An optimization is possible here, reusing the result9 of computing
min resolution(k − 1) in the computation ofmin resolution(k) for k < parent by adding only nogoods

9. From applying Step 2 of Remark 8.

onxk to it. Experiments show that this brings minor 4% improvements in simulator time (local computations)
on hard problems.

Thesum inference() function used in Algorithm 3 applies the sum-inference to its parameters when-
ever this is possible (it detects disjoint SRCs). Otherwise, it selects the nogood with the highest cost or the
one whose lowest priority assignment has the highest priority (this has been previously used in (Bessiere,
Brito, Maestre, & Meseguer, 2005; Silaghi et al., 2001b)). The functionvn2ca(vn, i) transforms a valued
nogoodvn in a cost assessment forxi. Its inverse is functionca2vn. If vn has no assignment forxi, then
a cost assessment can be obtained according to Remark 3. The functionvn2ca(vn, i, v) translatesvn into a
cost assessment for the valuev of xi, using the technique in Remark 3 if needed. The functiontarget(N)
gives the index of the lowest priority variable present in the assignment of nogoodN . As with file expansion,
when “*” is present in an index of a matrix, the notation is interpreted as the set obtained for all possible
values of that index (e.g., ca[v][*] stands for{ca[v][t] | ∀t}). Given a valued nogoodng, the notationng|v
stands for vn2ca(ng) whenng’s value forxi is v, and∅ otherwise.

3.6.1 PSEUDO-CODE

This sub-section explains line by line the pseudocode in Algorithms 2 and 3. Each agentAi starts by call-
ing the init() procedure in Algorithm 3, which at Line 3.1 initializes l with valued nogoods inferred from
local (unary) constraints. The agent assignsxi to a value with minimal local cost,crt val (Line 3.2), an-
nouncing the assignment to lower priority agents inoutgoinglinks (Line 3.3). Theoutgoinglinksof an agent
Ai initially holds the address of the agents enforcing constraints that involve the variablexi. The agents
answer to any received message with the corresponding procedure in Algorithm 2: “when receiveok?,”
“when receivenogood,” and “when receiveadd-link .”

When a new assignment of a variablexj is learned fromok? or nogoodmessages, valued nogoods
based on older assignments for the same variables are discarded (Lines 2.1,2.10) by calling the function
integrate()in Algorithm 3. Within this function, all valued nogoods (cost assignments) stored by the agent
are verified and those that contain an old assignment ofxj , which is no longer valid, are deleted (Line 3.17).
Any discarded element ofca is recomputed fromlr. Namely, if a cost assessmentca[v][t] is deleted in
this process whilelr[t] remains valid, the agent attempts to apply the nogood inlr[t] to the valuev and the
obtained cost assessment is copied inca[v][t] (Line 3.18). This application of the nogoodlr[t] to v is possible
either if it containsxi = v or if it contains no assignment for the variablexi of the current agent (Remark 3).
Eventually the new assignment is stored in the agent-view (Line 3.19).

Further, when anok? message is received, it is checked for valid threshold nogoods (Line 2.2). The target
k of any such nogood, i.e., the position of the owner of the lowest priority variable, is extracted at Line 2.3 with
a procedure calledtarget, to detect the place where the nogood should be stored. The newly received threshold
nogood is stored atth[k] by sum-inference with the current nogood found there (Lines2.4,3.21). If no nogood
is found inth[k], the new nogood is simply copied there (Line 3.20). If a nogood is already stored inth[k],
but its SRC intersects the one in the new nogood, then the behavior depends on the version of ADOPT-ing.
Our pseudo-code illustrates the versions ADOPT-o , where the valued nogoods with the highest cost are
retained (Line 3.22). In case of a tie, the one with the smallest target is maintained (Line 3.23) (Bessiere
et al., 2005; Silaghi et al., 2001b).

After receiving a new value, like in ABT, thecheck-agent-viewprocedure is used to select a value or detect
nogoods (Line 2.5). In this procedure, the agent first tries to compute a nogood for each of its predecessors
(Line 3.4). For each such destination, a separate nogood is computed inl for each valuev by considering
only local constraints with that target agent and with its predecessors. Then, by considering these nogoods
of l and all cost assessments inca based only on assignments from the target agent and its predecessors, new
elements ofh are computed by sum-inference (Line 3.5). The order of the steps used in this computation
is important for correctness and is described in detail later, in Remark 8. If all values ofxi have non-
zero cost nogoods inh (Line 3.6), then all elements ofh are combined via min-resolution and a nogood
vn is obtained for the currently targeted destination (Line 3.7). However, the nogoodvn is sent only if
it is different from the last nogood sent to that same agent (Line 3.8). Repeating its sending would be

Submitted to JAAMAS on 5/07.

redundant since the recipient holds it in itslr vector. A further restriction is set with ADOPT-A, ADOPT-
D , and ADOPT-Y where the nogood is sent only if the lowest priority variableinvolved in it is the same
as the one controlled by the destination (Line 3.9). The nogood is always sent to the parent in the DFS tree
(with ADOPT-d , ADOPT-D , and ADOPT-Y) which is the immediate predecessor with ADOPT-aand
ADOPT-A . With ADOPT-Y , when a nogood is sent for the first time to an agentAk

10, Ak is added to
the list ancestors (Line 3.10). After the nogood is sent (Line 3.11), it is stored in lastSent to help avoid
immediate retransmission (Line 3.12). If some change was recently made to theancestors list, the change
is propagated at Line 3.13 to all the ancestors that had not already been notified withnogoodmessages at
Line 3.11.

The second part of thecheck-agent-viewprocedure deals with selecting opportunistically a value with the
smallest estimated cost (Line 3.14), as common in ADOPT and ABT. We used the common mathematical
notationargminv(f(v)) to denote a computation that returns the valuev minimizing the functionf(v)
passed as the parameter (herecost(h[v])). In case of a tie with the old value ofxi, our implementation
of argmin prefers to maintain the old value. If the value selected forxi is different from the old value
(Line 3.15), the new value is sent to all agents inoutgoing links (Line 3.16).

Whennogoodmessages are received, in the ADOPT-Yversion we first insert new received induced
links into ancestors (Line 2.8). If the set ofancestors was changed by this operation, we set a flag to
make sure thatcheck-agent-viewis eventually called and will propagate the change to all current ancestors.
The agent checks if the transported nogood has newer assignments than the ones it already knows. A new
assignment can reach an agent as part of a nogood before the correspondingok? message. This can be
handled in two ways:

i The original solution of ADOPT and ABT (Yokoo et al., 1998; Modi et al., 2005) is to consider any
assignment in a nogood that is different from the assignmentknown for that variable as being invalid.
Assignments are re-announced after each received valid message. Therefore, later retransmission11 of
the nogood triggered by this scheme is guaranteed to correctly deliver each nogood eventually.

ii The other scheme identifies new assignments innogoodmessages as such, and validates the nogoods
on their first reception. The mechanism was used in several versions of ABT (Silaghi & Faltings,
2004). It works by letting each agent maintain a separate counter for each variable. The counter is
incremented when the assignment is changed and tags each sent assignment. Each agent stores the last
value of the counter it sees for each variable. An agent detects a new assignment by comparing its tag
with the previously seen value of that counter. Once detected (Line 2.9), new assignments in nogoods
are integrated as on the arrival of theirok? message (Line 2.10).12

The last nogood received from some agentAj is stored inlr[j] (Line 2.11), such that it would not be lost
as long as it is stored byAj in its lastSent (otherwise deadlocks could occur).13 If some assignment in a
nogood is considered old at Line 2.12 (with any mentioned scheme) the handling of the nogood is stopped
and the nogood is discarded (Line 2.15). However, if some newassignment was integrated at Line 2.10, then
the rest of the processing normally executed onok? messages is performed by calling thecheck-agent-view
procedure at Lines 2.13,2.14.

If a received nogood contains a variable not previously involved in constraints with the variable of the
agent (Line 2.16), anadd-link message is sent to the agent owning that variable (Line 2.17)to announce the
creation of a new link between the two agents (Line 2.6) and torequest updates on the values of that variable
(Line 2.7). In ADOPT-ing, the assignment received in the nogood is attached to theadd-link message. This
allows the owner of that variable to spare a message by not sending this assignment toAi if the assignment
is still valid.

10. Because the corresponding constraint increases for thefirst time the cost of the computed nogood.
11. Assuming no mechanism is used to block immediate retransmission of nogoods, such as ourlastSent structure.
12. Assignments having the same value are considered identical, even if their tag differs (allowing for re-using old nogoods).
13. Note that with the first scheme (i), where assignments arenot tagged with counters, ADOPT-ing should not delete old nogoods from

lr (which is done with the second scheme), but checks them whenok? messages are received.

An agent can receive a nogood where its variable is not present and therefore where the nogood can be
applied to all its values. Valid nogoods are projected on allvalues ofAi (Lines 2.18,2.19), and the result
is added to the corresponding cost assessments inca using the sum-inference procedure (Line 2.20). It is
possible that by the quirks of the impact of disjoint SRCs on sum-inference, the addition of a new nogood
leads to the decrease of the cost of the obtained cost assessment for the corresponding value. We prefer to
enforce a monotonic behavior by withdrawing changes toca in such situations (Line 2.21). For this purpose,
the evaluation of the modification of the cost is done by computing h as when messages are prepared for the
parent in the DFS tree (or immediate predecessor). After integrating the new nogood,check-agent-viewis
called at Line 2.22 to infer new nogoods and to select the bestvalue ofxi.

3.6.2 PROOF

Received nogoods are stored in matriceslr andth (Algorithm 2). Ai always sets itscrt val to the index
with the lowest CA cost in vectorh (preferring the previous assignment in case of ties). On each change
that propagates toh, and for each ancestorAj (or higher priority agent in versions not using DFS trees), the
elements ofh are recomputed separately by min-resolution(j) to generate new nogoods forAj . The simul-
taneous generation and use of multiple nogoods is already known to be useful for the constraint satisfaction
case (Yokoo & Hirayama, 1998).

The threshold valued nogoodtvn delivered withok? messages sets a common cost on all values of the
receiver (see Remark 3), effectively setting a threshold oncosts below which the receiver does not change its
value. This achieves the effect of THRESHOLD messages in ADOPT.

The procedure described in the following remark is used in the proof of termination and optimality.

Remark 8 The order of combining CAs to geth at Line 3.5 matters. To computeh[v]:

1. a) When maintaining DFS trees, for each valuev, CAs are combined separately for each sets of agents
defining a DFS sub-tree of the current node:
tmp[v][s]=sum-inferencet∈s(ca[v][t]).
b) Otherwise, with ADOPT-a and ADOPT-A , we act as if we have a single sub-tree:
tmp[v]=sum-inferencet∈[i+1,n](ca[v][t]).

2. CAs from step 1 (a or b) are combined:
In case (a) this means:∀v, s; h[v]=sum-inference∀s(tmp[v][s]).
Note that the SRCs in each term of this sum-inference are disjoint and therefore we obtain a valued
nogood with cost given by the sum of the individual costs obtained for each DFS sub-tree.

For case (b) we obtain h[v]=tmp[v].
This makes sure that at quiescence the cost ofh[v] is at least equal to the total cost obtained at the
next agent.

3. Add l[v]: h[v]=sum-inference(h[v], l[v]).

4. Add threshold: h[v]=sum-inference(h[v], th[*]).

Note that method (a) at Step 1 can be applied only to ADOPT-Y, ADOPT-D , and ADOPT-d , while
method (b) can be applied to all versions. Experiments show that, when applicable, method (a) works only
slightly (i.e. 1%) better than method (b).

Lemma 6 (Infinite Cycle) At a given agent, assume that the agent-view no longer changes and that its array
h (used for min-resolution and for deciding the next assignment) is computed only using cost assessments that
are updated solely by sum-inference. In this case the costs of the elements of itsh cannot be modified in an
infinite cycle due to incoming valued nogoods.

Submitted to JAAMAS on 5/07.

Proof. Valued nogoods that are updated solely by sum-inference have costs that can only increase (which
can happen only a finite number of times). For a given cost, modifications can only consist of modifying
assignments to obtain lower target agents, which again can happen only a finite number of times. Therefore,
after a finite number of events, the cost assessments used to infer h will not be modified any longer and
thereforeh will no longer be modified. �

Corollary 6.1 If ADOPT-ing uses the procedure in Remark 8, then for a given agent-view, the elements of
the arrayh for that agent cannot be modified in an infinite cycle.

Remark 9 Sincelr contains the last received valued nogoods via messages other thanok? messages, which
change the agent-view, that array is updated by assignment with recently received nogoods without sum-
inference. Therefore, it cannot be used directly to inferh.

Note that with the described procedure, a newly arriving valued nogood can decrease the cost of certain
elements ofh (even if it does not decrease the cost of any of the elements from whichh is computed). This
is because, while increasing the cost of some element inca, it can also modify its SRC and therefore forbid
its composition by sum-inference with other cost assessments.

Remark 10 (Obtaining Monotonic Increase) One can avoid the undesired aforementioned effect, where
incoming nogoods decrease costs of elements inh. Namely, after a newly received valued nogood is added
by sum-inference to the corresponding element ofca[v] for some valuev, if the cost ofh[v] decreases, then
the old content ofca[v] can be restored. Each new valued nogood is used for updatinglr. On each change to
some element inca, one has to add toca the elements found inlr and coming from children in the DFS tree
(if they do not lead to a decrease in the cost ofh). Experiments show that this technique can bring a small
improvement of up to 2% in the number of cycles.

Intuitively, the convergence of ADOPT-ing can be noticed from the fact that valued nogoods can only
monotonically increase valuation for each subset of the search space, and this has to terminate since such
valuations can be covered by a finite number of values. If agentsAj , j<i no longer change their assignments,
valued nogoods can only monotonically increase atAi for each value inDi: costs of the nogoods only
increase since they only change by sum-inference.

Lemma 7 ADOPT-ing terminates in finite time.

Proof. Given the list of agentsA1, ..., An, define the suffix of lengthm of this list as the lastm agents. Then
the result follows immediately by induction for an increasingly growing suffix (increasingm), assuming the
other agents reach quiescence.

The basic case of the induction (for the last agent) follows from the fact that the last agent terminates in
one step if the previous agents do not change their assignments.

Let us now assume that the induction assertion is true for a suffix of k agents. Based on this assumption,
we now prove the induction step, namely that the property is also true for a suffix ofk+1 agents: For each
assignment of the agentAn−k, the remainingk agents will reach quiescence, according to the assumption of
the induction step; otherwise, the assignment’s CA cost increases. By construction, costs for CAs associated
with the values ofAn−k can only grow (see Remark 10). Even without the technique in Remark 10, costs for
CAs associated with the values ofAn−k will eventually stop being modified as a consequence of Lemma6.
After values are proposed in turn and the smallest cost reaches its highest estimate, agentAn−k selects the
best value and reaches quiescence. The other agents reach quiescence according to the assumption of the
induction step. �

Lemma 8 The last valued nogoods sent by each agent additively integrate the non-zero costs of the con-
straints of all of the agent’s successors (or descendants inthe DFS tree when a DFS tree is maintained).

procedure init do
3.1 h[v] := l[v]:=initialize CAs from unary constraints;
3.2 crt val=argminv(cost(h[v]));
3.3 sendok?(〈xi, crt val〉,∅) to all agents in outgoinglinks;

procedurecheck-agent-view()do
3.4 for every Aj with higher priority thanAi (respectively ancestor in the DFS tree, when one is main-

tained)do
3.5 for every(v ∈ Di) updatel[v] and recomputeh[v];

// with valued nogoods using only instantiations of{x1, ..., xj};
3.6 if (h has non-null cost CA for all values ofDi) then
3.7 vn:=min resolution(j);
3.8 if (vn 6= lastSent[j]) then
3.9 if ((target(vn)== j) or (j is parent/immediate predecessor))then

3.10 addj to ancestors (updating parent);// for ADOPT-Y;
3.11 sendnogood(vn,i,ancestors) to Aj ;
3.12 lastSent[j] = vn;

3.13 on new ancestors, sendnogood(∅,i,ancestors) to each ancestorAh not yet announced;

3.14 crt val=argminv(cost(h[v]));
3.15 if (crt val changed)then
3.16 sendok?(〈xi, crt val〉, ca2vn(ca[crt val][k]), i)

to eachAk in outgoinglinks;

procedure integrate(〈xj , vj〉) do
3.17 discard elements inca, th, lastSent andlr based on other values forxj ;
3.18 uselr[t] |v to replace each discardedca[v][t];
3.19 store〈xj , vj〉 in agent-view;

function sum-inference(vng1, vng2)
3.20 if either vng1 or vng2 has cost 0then

return the other one;

3.21 if vng1 and vng2 have disjoint SRCsthen
return the result of applying sum-inference on them;

3.22 if vng1 and vng2 have different coststhen
return the one with lower cost;

3.23 if vng1 and vng2 have different targetsthen
return the one with smaller target;

return vng1;

Algorithm 3: Procedures ofAi in ADOPT-ing

Proof. At quiescence, each agentAk has received the valued nogoods describing the costs of eachof its
successors (or descendants in the DFS tree when a DFS tree is maintained).

The lemma results by induction for an increasingly growing suffix of the list of agents (in the order used
by the algorithm): It is trivial for the last agent.

Assuming that it is true for agentAk, it follows that it is also true for agentAk−1 since addingAk−1’s
local cost to the cost received from its children in the tree (Ak for ADOPT-A) will be higher (or equal when
removing zero costs) than the result of addingAk−1’s local cost to that of any descendants of those children.
Respecting the order in Remark 8 guarantees that this value is obtained (according to the assumption of the
induction step, costs from children will be higher than the ones from their descendants and prevail at Step

Submitted to JAAMAS on 5/07.

1, and therefore the result of Step 2 is the sum of the costs of the children). Therefore, the sum between the
local cost and the last valued nogood coming from its children defines the last valued nogood sent byAk−1.
�

Theorem 9 ADOPT-ing returns an optimal solution.

Proof. We prove by induction on an ever increasing suffix of the list of agents that this suffix converges to a
solution that is optimal for the union of the sub-problems ofthe agents in that suffix.

The induction step is immediate for the suffix composed of theagentAn alone. Assume now that it is
true for the suffix starting withAk. Following the previous two lemmas, one can conclude that atquiescence,
Ak−1 knows exactly the minimal cumulated cost of the problems of its successors for its chosen assignment,
and therefore knows that this cumulated cost cannot be better for any of its other values.

SinceAk−1 has selected the value leading to the best sum of costs (between its own local cost and the
costs of all subsequent agents), it follows that the suffix ofagents starting withAk−1 converged to an optimal
solution for the union of their sub-problems. �

The space complexity is basically the same as for ADOPT. The SRCs do not change the space complexity
of the nogoods. The largest space is required by the data structure used for storing potential payloads of future
(equivalents of) THRESHOLD messages.

Theorem 10 The space complexity of an agent in ADOPT-ing is O(dn2).

Proof. In an agent,Ai, the space for storing theoutgoing links, and the agent view (assignments) is
linear inn, having at most one link and one assignment per agent. Six data structures in ADOPT-ing store
valued nogoods (l[1..d], ca[1..d][i+1..n], th[1..i], h[1..d], lr[i+1..n], lastSent[1..i-1]). Therefore the space
complexity is given by the complexity of the largest of them,ca, which stores O(dn) cost assessments that
can be sent as threshold nogoods.

Each valued nogood contains a list of up ton assignments and a list of up ton SRCs, its space being
linear inn. Therefore the total space requirement for an agent is O(dn2). �

The space complexity for using the simulator of ADOPT-ing asa centralized WCSP solver is given by the
sum of all the spaces of then agents, which is O(dn3). The simulator also maintains the queues oftraveling
messages, which can be compacted such that only the last sentmessage is stored for each channel (Silaghi,
Sam-Haroud, & Faltings, 2000). There are O(n2) bidirectional channels, each of them requiring at most a
valued nogood (for an optimized simulator); therefore their total size is O(n3), being smaller than the sum of
the sizes of the agents.

We expect that one can further optimize the space of a centralized implementation by abandoning the
message-passing paradigm of the simulator and by sharing the ca data structures of the agents, directly
storing each inferred valued nogood at its final position in the structureca. Additional improvements in space
complexity are possible by simply discarding theca storage in favor of more compact aggregations of its
nogoods (whereh and the structure forf() mentioned in Section 3.4 are used alone withoutca, integrating
incoming nogoods directly inh), with a total space complexity of O(dn2). However, some nogoods would
be lost and may have to be recomputed, and threshold nogoods would no longer be available.

3.7 Optimizing valued nogoods

Both for the versions of ADOPT-ing using DFS trees, as well asfor the version that does not use such DFS
trees, if valued nogoods are used for managing cost inferences, then a lot of effort can be saved at context
switching by keeping nogoods that remain valid (Ginsberg, 1993). The amount of effort saved is higher if
the nogoods are carefully selected (to minimize their dependence on assignments for low priority variables,
which change more often). We compute valued nogoods by minimizing the index of the least priority variable
involved in the context. At sum-inference with intersecting SRCs, we keep the valued nogoods with lower
priority target agents only if they have better costs. Nogoods optimized in a similar manner were used in

X2

X1

X3

<>(#3)

<>(#3)

{0,1}

{0}

{0}

X0{0,1}

<>(#4)

<>(#2)

Figure 7: A DCOP with four agents and four inequality constraints. For example, the fact that the cost
associated with not satisfying the constraintx0 6= x1 is 4 is denoted by the notation (#4).

several previous distributed CSP techniques (Bessiere et al., 2005; Silaghi et al., 2001b). A similar effect is
achieved by computing minresolution(j) with incrementally increasing j and keepingnew nogoods only if
they have higher cost than previous ones with lower targets.

3.8 Example

Next we detail and contrast the executions of ADOPT-Yos, ADOPT-Aos, and ADOPT-aos illustrating the
different types of inferences involved in them. The main description follows the run of ADOPT-Aos while
describing differences with ADOPT-Yos and ADOPT-aos when they occur. Take the problem in Figure 7, a
trace of which is shown in Figure 8. Identical messages sent simultaneously to several agents are grouped
by displaying the list of recipients on the right hand side ofthe arrow. In our implementation, we decide to
maintain a single reference for each agent’s secret constraints. In our next description, the notation which
refers to the constraints of the agentAi in a SRC isJi. In the messages of Figure 8, SRCs are represented
as Boolean values in an array of sizen. A value at indexi in the array of SRCs set toT signifies that the
constraints ofAi are used in the inference of that nogood (i.e.,Ji is part of the justification of the valued
nogood).

Initialization. The agents start selecting values for their variables and announce them to interested lower
priority agents. There are no constraints betweenx3 andx2. Similarly, there is no constraint betweenx0 and
x2; therefore, the first exchanged messages areok? messages sent byA0 to both successorsA1 andA3 and
which propose the assignmentx0=0. Concurrently,A1 sendsok? messages toA2 andA3 proposingx1=0.
These are messages 1 and 2 in Figure 8. The messages in Figure 8are grouped by their cycle in the simulator
based on rounds (i.e., assuming constant communication latency and no cost for local computations). The
simulator with asynchronous cycles can yield different traces function of the random latencies.

Handling data structures for ok? messages. On the receipt of theok? messages, the agents update their
agent-view with the new assignment. Each agent tries to generate valued nogoods for each prefix of its list
of predecessor agents, such as:{A0}, {A0, A1}, {A0, A1, A2}. A1 receives the assignment ofx0 and infers
a valued nogood based on its constraint (x0 6= x1). It is stored as cost assessment in its structurel, before
being integrated inh. h[1] = l[1] = [{J1}, 4, 〈x0, 0〉]. l[1] (andh[1]) have cost 0 whilel[0] andh[0] have
cost 4. ThereforeA1 switches the value ofx1 to 1 and announces it toA2 andA3 via message 3.A1 cannot
compute any valued nogood to send toA0.

Submitted to JAAMAS on 5/07.

1. A0 ok?〈x0, 0〉 → A1, A3

2. A1 ok?〈x1, 0〉 → A2, A3

3. A1 ok?〈x1, 1〉 → A2, A3

4. A2 nogood[|F, F, T, F |,3, 〈x1, 0〉] → A1

5. A3 nogood[|F, F, F, T |,2, 〈x0, 0〉] → A0, A2

6. A3 nogood[|F, F, F, T |,5, 〈x0, 0〉〈x1, 0〉] → A1, A2

7. A0 ok?〈x0, 1〉 → A1, A3

8. A2 nogood[|F, F, F, T |,2, 〈x0, 0〉] → A0

9. A2 nogood[|F,F, T, T |, 5, 〈x0, 0〉〈x1, 0〉] → A1

10. A2 add-link〈x0, 0〉 → A0

11. A2 nogood[|F,F, T, T |, 8, 〈x0, 0〉〈x1, 0〉] → A1

12. A3 nogood[|F, F, F, T |,2, 〈x0, 0〉] → A2

13. A0 ok?〈x0, 1〉 → A2

14. A1 ok?〈x1, 0〉 → A2, A3

15. A2 nogood[|F, F, F, T |,2, 〈x0, 0〉] → A0, A1

16. A2 nogood[|F,F, T, T |, 5, 〈x0, 0〉〈x1, 0〉] → A1

17. A2 nogood[|F, F, T, F |,3, 〈x1, 0〉] → A1

18. A3 nogood[|F, F, F, T |,3, 〈x1, 0〉] → A1, A2

19. A1 nogood[|F,T, F, T |, 3, 〈x0, 1〉] → A0

20. A1 nogood[|F,T, T, T |, 4, 〈x0, 1〉] → A0

21. A1 ok?〈x1, 1〉 → A2, A3

22. A2 nogood[|F,F, T, T |, 6, 〈x1, 0〉] → A1

23. A0 ok?〈x0, 0〉 → A1

24. A0 ok?〈x0, 0〉threshold [|F,F, F, T |, 2, 〈x0, 0〉]→ A2, A3

25. A3 nogood[|F, F, F, T |,2, 〈x0, 0〉] → A0, A2

26. A2 nogood[|F, F, F, T |,2, 〈x0, 0〉] → A0, A1

27. A1 nogood[|F,T, F, T |, 2, 〈x0, 0〉] → A0

Figure 8: Trace of ADOPT-Aos on the problem in Figure 7. Horizontal lines separate groups of messages
with the same logic clock (i.e., messages that are part of thesame round in a simulator based on
rounds).

After the agentA2 gets message 2, it computes inl[0] a valued nogood with cost 3 (conflict withx1 6= x2).
This valued nogood is copied inh[0] andlastSent[1] before being sent toA1 via message 4. No nogood can
be computed forA0.

Remark 11 (ADOPT-Aos vs ADOPT-Yos) In ADOPT-Yos this message would also include the current list
of knownancestors which here contains onlyA1.

WhenA3 gets message 1, it tries to separately infer nogoods for the prefixes of the set of agents:{A0},
{A0, A1}, and{A0, A1, A2}. For the set{A0} it detects a conflict with its constraintx3 6= x0 from which it
infers a valued nogood stored as cost assessment inl[0], copied toh[0] andlastSent[0] before being sent to
A0 via message 5. For the set{A0, A1}, the computed nogood is identical with the one forA0 and its target
does not coincide withA1, the last agent of the corresponding set. Therefore ADOPT-Aos sends no message
to A1. Message 5 is also sent toA2 according to the rule that an agent always attempts to send nogoods to its
predecessor, to ensure optimality. Its nogood is stored byA3 in lastSent[2].

Remark 12 (ADOPT-Aos vs ADOPT-aos)Note that message 5 is not sent toA1, as would be the case with
the version ADOPT-aos.

Remark 13 (ADOPT-Aos vs ADOPT-Yos) With ADOPT-Yos, message 5 would not be sent toA2, since the
current parent ofA3 would beA0.

After receiving the assignment in message 2,A3 detects a new conflict with its constraintx1 6= x3. From
its two constraintsA3 infers a new valued nogood, stored in itsl[0] and h[0], and sent toA1 andA2 via
message 6. Note that a nogood is not sent toA0 as the nogood to be sent is identical to the last nogood sent
to that destination (as recorded inlastSent[0]).

Remark 14 (ADOPT-Aos vs ADOPT-Yos) With ADOPT-Yos,A1 would become the parent ofA3 at this
stage due to the non-zero cost of the constraint betweenx3 andx1. A3’s known ancestors would become
A0,A1, and this list would be sent with all nogood messages.

Handling data structures for nogoods. As a result of getting the nogood in message 5 fromA3, the agent
A0 stores that nogood inlr[3], copies it toca[0][3] (which was empty), and copies it further inh[0]. Since
now the cost ofh[0] is 2,A0 decides to switch to its next value, 1. This assignment is announced via message
7.

After receiving message 5,A2 registers that nogood in itslr[3], ca[0][3] andh[0]. Computing a nogood
for A0, the nogood of message 5 is stored inlastSent[0] and sent toA0 via message 8. AgentA2 also
computes a nogood for destinationA1, where it can also use the local constraint withx1 which yields forl[0]
a nogood with cost 3. Combiningl[0] with ca[0][3] by sum-inference,A2 infers a nogood, which it stores
in h[0] and lastSent[0] before sending it toA1 via message 9.A2 detects a new variable in the nogood in
message 6, and sends anadd-link message toA0 asking to be notified of changes to the assignmentx0 = 0.
The nogood in message 6 replaces the one stored inlr[3]. Since the new nogood cannot be combined by
sum-inference with the old nogood inca[0][3] but has a higher cost, it also replaces that cost assessment and
leads to the computation by sum-inference of message 11 to besent toA1.

In the following we skip the details of changes to data structures that are similar to steps that have already
been presented. When the new assignment ofx1 in message 3 is received at agentA3, the old nogoods
based onx1 are discarded from itsl[0]. To send a nogood toA0, a newl[0] is computed based solely on the
constraintx0 6= x3. Nogoods computed for the other prefixes of agents do not differ from this one since the
constraint withx1 is satisfied. This nogood with cost 2 is sent via message 12 to the agentA2. Note that the
nogood does not need to be sent toA0 because it is not different from the one just sent earlier (via message
5) and recorded inlastSent[0]. After getting message 7,A1 deletes its nogoods inl[0] andca[0][3], infers
a new valued nogood inl[1] with cost 4, and switches to the value 0 (announced via message 14).

Use oflr data structure. Let us assume thatA2 receives message 12 before message 3, which is possible
and allows us to illustrate better the usage of thelr structure. On receiving message 12, agentA2 stores it in
lr[0]. However,A2 does not propagate it further toca[0][3] since the current cost assessment had a higher
cost and cannot be combined by sum-inference with the new one(sharing the reference to the constraints of
A3). WhenA2 receives message 3, it deletes itsca[0][3] and l[0], which are based on the older value of
x1, and useslr[3]. After copyinglr[3] through itsca[0][3] andh[0] data structures where all other nogoods
were empty, it passes it further toA0 and toA1 via message 15 (storing it atlastSent[0] andlastSent[1]).
SinceA0’s value forx0 is different from the one in theadd-link message 10,A0 answers toA2 with the
message 13.

Now A2 receives message 14 and computes a new local nogoodl[0] with cost 3 that is combined by sum-
inference with the nogood received in message 12 to generatethe nogood in message 16. No change appears
in the nogood computed specially for the targetA0. However, afterA2 also receives message 13 it discards
the nogood received via message 12 (which was based on an outdated assignment) and infers itsh[0] solely
based onl[0]. The result is sent toA1 with message 17. After receiving the two assignments in messages 13
and 14 (in this order) the agentA3 infers from its constraintx3 6= x1 a valued nogood sent toA1 andA2 via
message 18.

Min-resolution. Now our example encounters the first nontrivial min-resolution. When agentA1 receives
message 18, it stores that nogood inlr[3] and ca[0][3]. No other nogood is stored inca at this point (the
nogood received with message 15 inca[0][1] has already been invalidated by the new assignment inmessage
7). The only other nogood held byA1 at this moment is the one inl[1] = [{J1}, 4, 〈x0, 1〉], which is due
to its constraint withx0. l[1] is copied inh[1] while ca[0][3] is copied inh[0]. The two are combined via
min-resolution to generate the nogood in message 19 (also stored inlastSent[0]).

min resolution([{J3}, 3, 〈x1, 0〉], [{J1}, 4, 〈x0, 1〉])→ [{J1, J3}, 3, 〈x0, 1〉〈x1, 0〉]

Message 16 is discarded at its destination because its assignment forx0 is no longer valid. On the arrival of
message 17 (which is concurrent with messages 16 and 18) its nogood is stored inlr[2] andca[0][2]. Now,

Submitted to JAAMAS on 5/07.

when computing the updated nogood to be sent toA0, h[0] is computed by sum-inference onca[0][2] and
ca[0][3] obtaining [{J2, J3}, 6, 〈x1, 0〉].

sum inference([{J2}, 3, 〈x1, 0〉], [{J3}, 3, 〈x1, 0〉])→ [{J2, J3}, 6, 〈x1, 0〉]

The obtained valued nogood has a higher cost than the one forh[1], causing the agent to switch the assignment
of x1 to 1 (announced via message 21). When min-resolution is applied on the two nogoods inh[0] andh[1],
the obtained nogood is sent toA0 via message 20.

min resolution([{J2, J3}, 6, 〈x1, 0〉], [{J1}, 4, 〈x0, 1〉])

→ [{J1, J2, J3}, 3, 〈x0, 1〉〈x1, 0〉]

Convergence. AgentA2 also receives message 18, storing the nogood inlr[3] and inca[0][3]. Its constraint
x2 6= x1 generates a nogood with cost 3 inl[0], which combined by sum-inference with the nogood inca,
leads to a nogood with total cost 6, visible in message 22.

AgentA0 receives message 19 and registers the nogood inlr[1], ca[1][1], andh[1]. The cost assessment
obtained inh[1] has a cost higher than the one inh[0], determining the switch of the assignment ofx0

to 0 (announced via messages 23 and 24). Message 24 also transports a threshold nogood obtained from
ca[0][2] and ca[0][3] (received via messages 15 and 5). The agentA3 evaluates its constraintx0 6= x3

inferring a valued nogood inl[0], which propagates through itsh[0], lastSent[2], lastSent[0] to messages
25. SimilarlyA2 propagates this nogood toA1, which propagates it further through its data structures and
eventually delivers it toA0 via message 27. Messages 25, 26 and 27 basically confirm the already known
threshold nogoods. Further research may make it possible toavoid them14.

We have modeled solved this example with our implementationfor ADOPT-Aos and ADOPT-aos with
rounds. ADOPT-Aos used one more cycle but 3 less messages than ADOPT-aos.

3.9 Theoretical comparison between ADOPT-ing and ADOPT/ABT

ADOPT-ing vs ADOPT The difference starts with adding SRCs for justification, explicitly bundling cost-
related data into valued nogoods such that associated inferences can be performed formally, and enabling the
destination of the nogood (cost) messages to include other agents besides the parent. Internal data manage-
ment is also different:

1. The DFS tree can be dynamically detected (ADOPT-Y). It can be based only on already used con-
straints.

2. ADOPT did not haveadd-link messages.

3. In ADOPT (as a result of not using SRCs and not having our rules on the order for combination of
nogoods) messages could be sent only to the parent rather than to any ancestor.

4. ADOPT could not use explicit max-inference (because it did not maintain SRCs).

5. ADOPT did not maintain data structures likelr and lastSent to avoid resending the same message
several times and easy the network load.

6. ADOPT did not provide guidelines for using any additionalstorage other than the minimal ones
(ADOPT did not specify/have an equivalent of Lemma 6 with rules for using cost information).

7. New assignments arriving first via nogoods can be detectedas such in ADOPT-ing (as in (Silaghi &
Faltings, 2004)) while in ADOPT they had to be considered old.

14. E.g, by a mechanism for storing threshold nogoods in thelastSent of the recipient and in thelr of the sender, resending the
lastSent when the threshold nogood does not apply.

ADOPT-ing vs ABT Unlike ABT:

• An ADOPT-ing agent may send possibly irrelevant messages toa given predecessor (its parent in the
current DFS tree). It does this to guarantee optimality given the non-idempotent aggregation operation
of DCOPs.

• The nogoodmessages have an associated cost and justification (SRCs). These are used to find the
assignments with the least conflicts in case of an unsatisfiable problem.

3.10 Possible Extensions

We addressed ADOPT-ing as an asynchronous version of A*, more exactly a version of iterative deepening
A*, where the heuristic is computed by recursively using ADOPT-ing itself, and where the composition of
the results of recursive ADOPT-ing is based on backtracking.

A proposed extension to this work consists of composing the recursive asynchronous heuristic estimator
by using consistency maintenance. This can be done with the introduction ofvalued consistency nogoods.
Details and variations are described in (Silaghi, 2002, 2003b; Silaghi et al., 2004; Gershman, Meisels, &
Zivan, 2006, 2007; Sultanik et al., 2006). The control of thespace requirements for such extensions may
be based on the use of consistency nogoods to simulate the distributed weighted arc consistency in (Silaghi
et al., 2004), while the maintenance of this control of spacein asynchronous search may be similar to the
one for distributed CSPs described in (Silaghi & Faltings, 2004). Another possible extension is by further
generalizing the nogoods such that each variable can be assigned a set of values. This type of aggregation
was shown in (Silaghi & Faltings, 2004) to improve search, and the extension is detailed in (Silaghi, 2002).

In our implementation we concentrated on minimizing the logic time of the computation, evaluated as the
number of rounds on a simulator. The optimization of local processing (which is polynomial in the number
of variables) is not at the center of attention at this stage.Local computations can be optimized, for example,
by reusing values of structuresl and h computed at min-resolution for a given target agent in obtaining
values of these structures at the min-resolution for messages sent to lower priority target agents. Further
work can determine whether improvements could be made by storing separately the nogoods ofh for each
targetk. The size of messages in ADOPT-Yos could be slightly reducedby appending a given content of the
ancestors list only once to each target. ADOPT-Yos is better than ADOPT-Aos in terms of simulated time.
Agents in ADOPT-Yos could insert from the beginning all their neighboring predecessors in their ancestors
list, obtaining from the firstn rounds the DFS tree of ADOPT-Dos, thereby replicating the efficiency of
ADOPT-Dos.

Other extensions seem possible by integrating additive branch and bound searches on DFS sub-trees, as
proposed by (Chechetka & Sycara, 2006; Yeoh, Koenig, & Felner, 2007). This can be added to ADOPT-ing
by maintaining solution-based nogoods as suggested in (Silaghi, 2002). It remains to be seen if the quality
of solutions with a certain value can be predicted with the technique in (Petcu & Faltings, 2006b). Further
improvements are possible by running ADOPT-ing in parallelfor several orderings of the agents (Ringwelski
& Hamadi, 2005; Benisch & Sadeh, 2006).

ADOPT-ing can be seen as an extension of ABT. The extension ofABT called ABTR (Silaghi, Sam-
Haroud, & Faltings, 2001a; Silaghi, 2006) proposes a way to extend ABT-based algorithms to allow for
dynamic ordering of the agents (Armstrong & Durfee, 1997). Work in the area consistent with this approach,
but mainly favoring static ordering, appears in (Liu & Sycara, 1995; Chechetka & Sycara, 2005). Finding
good heuristics was shown to be a difficult problem (Silaghi et al., 2001b; Zivan & Meisels, 2005) and here
one will need to take into account the importance of the existence of a short DFS tree compatible to the
current ordering.

4. Experiments

We implemented several versions of ADOPT-ing. Some versions use valued nogoods while other versions
use valued global nogoods. Some versions maintain an optional DFS tree precomputed on the constraint

Submitted to JAAMAS on 5/07.

graph. Some versions exploit more opportunities to send optional nogoodmessages15 than others. In the
version ADOPT-pos, valued nogoods are sent only to the parent of the current agent in a maintained DFS
tree. In ADOPT-dos, each agentAi tries to compute a valued nogood after each change, for each of its
ancestorsAj in the DFS tree, and sends this nogood toAj if it is new and has a non-zero cost. ADOPT-aos
can be seen as a version of ADOPT-dos where the DFS tree is reduced to the linear list of agents (each having
the predecessor as parent). ADOPT-Aos is a version of ADOPT-aos where an optionalnogoodmessage is
sent only if the destination of the message is the same as the target of the nogood in the payload. The same
holds for the relation between ADOPT-Dos and ADOPT-dos. Theversion ADOPT-Yos is a hybrid between
ADOPT-Aos and ADOPT-Dos where initially agents can only contact neighboring agents and the DFS tree is
dynamically discovered during the search (more similar to ABT). The version of ADOPT-Yos using method
(b) in Step 1 of Remark 8 is denoted ADOPT-Yos.b. The version of ADOPT-Yos where the computation of
h for a destination agent reuses the results computed for its ancestors is denoted ADOPT-Yos.a.opt.

ADOPT-pon, ADOPT-don, and ADOPT-aon are variations of ADOPT-pos, ADOPT-dos, and ADOPT-aos
where valued global nogoods are used instead of valued nogoods. Note that ADOPT-pon is our implemen-
tation of the original ADOPT. For experiments with random message latencies and for outputs not provided
by the original implementation of ADOPT (e.g., ENCCCs), we had to provide the results of our implementa-
tion (ADOPT-pon). While ADOPT-pon and the original implementation of ADOPT performed similarly in
general, ADOPT-pon solved in a few hours the instances for which the original ADOPT implementation was
interrupted after some weeks, confirming that some differences in details may exist. Functional differences
between ADOPT-pon and the original implementation of ADOPTmay lie only in petty details not described
in (Modi et al., 2005). To specify that in a certain experiment we used our implementation rather than the
original implementation of ADOPT, we will denote it withADOPT (-p).

We implemented a version of ADOPT (using our implementationof ADOPT-pon with threshold no-
goods) that uses a chain of agents like ADOPT-aos, rather than the DFS tree. This version is denoted
ADOPT.chain. We also experimented with versions of ADOPT-aon, ADOPT-don, ADOPT-aos and ADOPT-
Yos where threshold valued nogoods are not used. This helpedto isolate and evaluate the importance of
threshold valued nogoods in ADOPT-ing.

The algorithms are compared on the same problems that are used to report the performance of ADOPT
in (Modi et al., 2005). To correctly compare our techniques with the original ADOPT, we have used the same
order (or DFS trees) on agents for each problem. The impact ofthe existence of a good DFS tree compatible
with the used order is tested separately by comparison with arandom ordering. The set of problems dis-
tributed with ADOPT and used here contains 25 problems for each problem size. It contains problems with
8, 10, 12, 14, 16, 18, 20, 25, 30, and 40 agents, and for each of these numbers of agents, it contains test sets
with density 20% and with density 30%. A smaller set of problems with density 40% is also available. The
density of a (binary) constraint problem’s graph withn variables is defined by the ratio between the number
of binary constraints andn(n−1)

2 . Results are averaged on the 25 problems with the same parameters.
We believe that the size of problems in this set is sufficiently large, given that the average simulated time

(expected time of a real solver) for the instances with 40 agents at density 30% is between 3 hours and 27
hours, (and up to 10 days at 25 agents and density 40%), longerthan what users are expected to wait for a
solution.

Our simulator allows for defining the latency of each message, and we performed two sets of tests. In
the first set of experiments, we followed a common practice ofusing the same latency for each message (to
be referred assynchronous cycles). In a second set of experiments16, we also performed experiments with
random message latencies (to be referred asasynchronous cycles). The random latencies were generated
in the range of common values for Internet communications via optical fiber between Israel and the United
States which is between 150ms and 250ms (Neystadt & Har’El, 1997). To reproduce our results for the
second set of tests, one has to seed the standard C ’random()’function with the value 10000 and generate

15. Messages to predecessors other than the previous agent (or parent agent for versions with DFS trees).
16. At the request of an anonymous reviewer.

each latency as carried out in (Neystadt & Har’El, 1997):

latency = 150 +
random() ∗ 100.0

LONG MAX
(msec).

FIFO channels are ensured in the second set of tests by setting the delivery time of each message to the
maximum between the value obtained using the latency yielded by the aforementioned computation and the
delivery time of the last message sent on that particular communication channel. Messages with the same
value for the delivery time are handed to the destination agent in a FIFO manner through a queue.

In graphs, an algorithmADOPT-DON is typically shortened toDON. When confusions are possible, the
name of the algorithm is followed by the notationasyncto denote asynchronous cycles androundsto denote
synchronous cycles.AsyncvsSyncCyclesDensity:20%

AgentsCycles(l
ongestc
ausalch
ain)

810121416182022242628303234363840304050
607080
90100110
120
Aos;roundsAos;async(50ms)Aos;async(100ms)

Figure 9: Asynchronous vs. synchronous cycles for problemswith density 20%.

We compare the number of synchronous cycles with the number of asynchronous cycles obtained on
our two simulators of ADOPT-ing. For this experiment we alsoevaluated ADOPT-Aos using a smaller
distribution of values for the message latency (150ms to 200ms) to see its influence on results. The results
show an impact on the different versions of ADOPT-ing, ranging from 1% to 5%. A similar impact may be
explained by the common nature of the different versions. Several cases are shown in Figures 9 and 10. For
ADOPT-aos the version based on synchronous cycles is 3% faster than the version with 100ms of random
variation in latency. The performance of the implementation of ADOPT-Aos based on synchronous cycles
is between the performance of its implementation with 50ms random variation of message latencies and the
performance of its implementation with 100ms random variation of message latencies. It differs from them
by less than 1%.

Particular care has to be taken in the evaluation of distributed algorithms because one needs to take into
account two tightly related factors of a very different nature: local computations (constraint checks) and
message latencies. The classical solution to this problem is to compute several measures at different possible
ratios between the latency of a message and the time associated with a constraint check, yielding the behavior
of the techniques in different scenarios. Here we do this analysis for the ratios:106:1, 105:1, 104:1, 103:1,
102:1, 10:1, 1:10. The actual ratio for a given application scenario depends on the speed of the used CPUs,
but we want to get a hint about the order of magnitude of this ratio, the operating point (OP), in the targeted
application scenario of remote Internet communications. We therefore compute the average amount of time

Submitted to JAAMAS on 5/07.

AsyncvsSynccyclesDensity:30%

AgentsCycles(l
ongestc
ausalch
ain)

81012141618202224262830323436384001e+04
2e+043e+04
4e+045e+04
6e+04Aos�roundsAos�async(100ms)Aos�async(50ms)aos�roundsaos�async(100ms)

Figure 10: Asynchronous vs. synchronous cycles for problems with density 30%.

Agents checks/latency
ADOPT (-p) Aos aos dos Yos

8 62518 77417 78076 59314 65032
10 50104 67731 69560 48067 56087
12 46666 61784 61899 43366 50637
14 42088 55634 55209 38715 44616
16 38042 50425 47544 34281 39949
18 29673 41209 36854 26142 32062
20 25104 35455 31078 21064 27012
25 17437 24809 21998 14510 19225
30 12519 17911 14521 10138 13986
40 7041 10654 8461 5899 8555

Table 1: The operating point (checks per message latency) onproblems at density 30%.

spent by our simulator for a constraint check. This is computed by dividing the total running time of the
simulator by the total number of constraint checks during the process. The result for different problem sizes
is shown in Figure 1. Our operation point is shown to vary between 5000:1 and 80000:1, at average message
latency 200ms.17

Figure 11 shows equivalent non-concurrent constraint checks (ENCCCs) (Chechetka & Sycara, 2006;
Silaghi & Faltings, 2004; Meisels, Kaplansky, Razgon, & Zivan, 2002; Silaghi, Sam-Haroud, & Faltings,
2000; Yokoo et al., 1992) for the problems at size 40 and density 30%. There the overall cost is studied for
the case where the latency of messages decreases to lower ratios with respect to the cost for constraint checks
(predicting behavior for local area networks and MIMD parallel computer systems with efficient message
passing). With equivalent non-concurrent constraint checks, the intersection of the graph with the vertical
axis yields the number of non-concurrent constraint checks(NCCCs).

17. Earlier experiments with a slower CPU yielded a ratio around 1000:1.

ENCCCsAgents:40Density:30%

constraint©checks/message©latency
ENCCCs
0.11101001e+031e+041e+051e+061e+061e+07
1e+081e+09
1e+101e+11
1e+12
YosDosAosdosaosADOPT(Óp)ADOPT.chainYosDosAosdosaosADOPT(Óp)ADOPT.chain

Figure 11: Equivalent non-concurrent constraint checks (ENCCCs). The two vertical segments delimit the
operation point area, between 5000 and 80000 checks per message-latency.EquivalentmessageèlatenciesAgents:40Density:30%

message÷latencies/constraint÷checkequivalen
tmessag
e�latencie
s

1e�071e�061e�050.00010.0010.010.11101e+05
1e+06
1e+07
1e+08 YosDosAosdosaosADOPT(+p)ADOPT.chainYosDosAosdosaosADOPT(+p)ADOPT.chain

Figure 12: Equivalent latencies. The two vertical segmentsdelimit the operation point area, between 5000
and 80000 checks per message-latency.

We obtain what we consider a slightly better visibility of the behavior with another kind of graph, measur-
ing equivalent latencies rather than equivalent non-concurrent constraint checks. This is obtained by dividing
each point in the ENCCCs graph by the number of checks/latency in that point. Such equivalent latencies
are shown in Figure 12. We note that the closest analyzed latency/check ratio to the ones found experimen-
tally is 104:1. Once the OP is fixed, the two metrics yield the same graph, differing just by a scaling factor

Submitted to JAAMAS on 5/07.

Density30%OP1:10000

AgentsEquivalent
messageTlat
enciesinO
P
(104ENCCC
sTOP)

8101214161820222426283032343638401e+03
1e+04
1e+05
1e+06
YosAosDosADOPT(wp)aosdosADOPT.chainYosAosDosADOPT(wp)aosdosADOPT.chain

Figure 13: Equivalent latencies and ENCCCs in the operationpoint104:1 checks per message-latency.

(Figure 13). Figure 12 shows that the behavior in this OP is practically identical to the one obtained from the
number of asynchronous cycles (equivalent to a ratio 1:∞ given by the intersection of the graph in Figure 12
with the vertical axis). Therefore in the following we look closer at the number of cycles.Density30%

Agents
AsyncCy
cles

81012141618202224262830323436384001e+04
2e+043e+04
4e+045e+04
6e+047e+04AosaosYosADOPT(́p)dosDosADOPT.chain
AosaosYosADOPT(́p)dosDosADOPT.chain

Figure 14: Asynchronous cycles for problems with density 30%.

The length of the longest causal (sequential) chain of messages of each solver (the number of asyn-
chronous cycles), averaged on problems with density 30%, isgiven in Figure 14. Results for problems with
density 20% are given in Figure 15. Results for density 40% are shown in Figure 16. We can note that
version ADOPT-Yos of ADOPT-ing brought an improvement of approximately 10 times on problems with

Density20%

Agents
AsyncCycle
s

81012141618202224262830323436384040.060.0
80.0100.0
120.0AosaosYosdosDosADOPT(îp)ADOPT.chainAosaosYosdosDosADOPT(îp)ADOPT.chain

Figure 15: Asynchronous cycles for problems with density 20%.

Density40%

Agents
AsyncCy
cles

121416182022240
1e+05
2e+05
3e+05
4e+05
DosYosdosAosaosADOPT('p)ADOPT.chainDosYosdosAosaosADOPT('p)ADOPT.chain

Figure 16: Asynchronous cycles for problems with density 40%.

40 agents and density 30%, and of approximately 12 times on problems with 25 agents and density 40%. The
improvement at density 20% is 2 times when compared to ADOPT (-p).18 Therefore, sending nogoods only
to the parent node is significantly worse (in number of cycles), than sending nogoods to several ancestors.
With respect to the number of cycles, the use of SRCs with nogood contexts practically replaces the need
to maintain the DFS tree since ADOPT-aos and ADOPT-Aos are comparable in efficiency to ADOPT-dos
and ADOPT-Dos. New versions of ADOPT-ing are up to 14 times faster than ADOPT.chain, proving that

18. At density 20%, with synchronous rounds, the original implementation of ADOPT performs 3.5 times worse than ADOPT (-p), i.e.,
7 times worse than ADOPT-Yos. This may be explained by some inefficient detail in the original implementation of ADOPT, since
the deviation from ADOPT (-p) does not appear at other densities.

Submitted to JAAMAS on 5/07.

Density30%

Agents
Total#o
fmessa
ges

810121416182022242628303234363840
1e+05
1e+06
1e+07aosAosdosDosADOPT.chainADOPT(gp)YosaosAosdosDosADOPT.chainADOPT(gp)Yos

Figure 17: Total number of messages at density 30% (log scale).

Agents 16 18 20 25 30 40
ADOPT-aos 690.24 1420.76 1392.48 5687.28 12254.68 64518.6
no threshold 843.2 1787.16 1801.88 7608.44 17507.16 101956.4

ADOPT-Yos.b 701.72 1438 1345.56 5540.84 12394 59114.36
no threshold 872.76 1781.96 1708.72 7391.28 17531.36 92745.44

Table 2: Impact of threshold valued nogoods on the longest causal chain of messages (asynchronous cycles)
for versions of ADOPT-ing, averaged on problems with density 30%.

ADOPT-ing is not a simple application of ADOPT to a chain of agents, but that justified valued nogoods
literally succeed in dynamically discovering the DFS tree.

Versions using DFS trees require fewer parallel/total messages, being more network friendly, as seen in
Figure 17. Figure 17 shows that refraining from sending too many optionalnogoodmessages, as done in
ADOPT-Aos, ADOPT-Yos and ADOPT-Dos, is 4 times better at density 30% than ADOPT (-p) in terms of
total number of messages, while (as shown by previous graphs) maintaining the efficiency in cycles compa-
rable to ADOPT-aos and ADOPT-dos. At density 40% ADOPT-Yos is 6 times better than ADOPT (-p) in
terms of total number of messages. ADOPT-Yos is the most efficient algorithm in terms of total number of
messages, being 30% better at density 30% than the second best algorithm, ADOPT-Aos. At density 40% it
is 12% better than ADOPT-Aos.

We do not show run-time comparisons with the original implementation of ADOPT since our versions
of ADOPT are implemented in C++, while the original ADOPT is in Java (which obviously leads to all our
versions being an irrelevant order of magnitude faster). However, we provide run-time comparisons with our
implementation of ADOPT, ADOPT (-p). A comparison between the time required by versions of ADOPT-
ing on a simulator is shown in Figure 18 for asynchronous cycles. It reveals the computational load of the
agents which, as expected, is related to the total number of exchanged messages.

A separate set of experiments was run for isolating and evaluating the contribution of threshold valued
nogoods. Table 2 shows that the use of threshold nogoods almost halves the computation time. Another

TimeinSimulatorDensity30%

Agents
seconds

8101214161820222426283032343638400.11.0
10.0100.0
1000.010000.0aosAosdosDosADOPT.chainADOPT(p)YosaosAosdosDosADOPT.chainADOPT(p)Yos

Figure 18: Actual time in seconds using our simulator as solver of centralized WCSPs (log scale).TimeinSimulatorDensity30%

Agents
seconds

26283032343638400.01000.0
2000.03000.0
4000.05000.0
6000.0
aosAosdosDosADOPT.chainADOPT(Úp)YosaosAosdosDosADOPT.chainADOPT(Úp)Yos

Figure 19: Actual time in seconds using our simulator as solver of centralized WCSPs.

Agents 16 18 20 25 30 40
DFS compatible 708.8 1429.48 1357.07 5579.56 12.4*103 60*103

random order 4807.44 15.6*103 33*103 219*103 708*103 —

Table 3: Impact of choice of order according to a DFS tree on the longest causal chain of messages (asyn-
chronous cycles) for ADOPT-Yos, averaged on problems with density 30%.

Submitted to JAAMAS on 5/07.

experiment, whose results are shown in Table 3, is meant to evaluate the impact of the guarantees that the
ordering on agents is compatible with a short DFS tree. We evaluate this by comparing ADOPT-Yos with an
ordering that is compatible with the DFS tree built by ADOPT,versus a random ordering. At 30 agents it
was found to be 60 times more efficient to ensure that a DFS treeexists rather than to use a random ordering.
The results show that random orderings are unlikely to be compatible with short DFS trees and that verifying
the existence of a short DFS tree compatible to the ordering on agents to be used by ADOPT-ing is highly
recommended. NCCCsDensity:30%

Agents
NCCCs

8101214161820222426283032343638401e+04
1e+05
1e+06
1e+07
AosaosDosdosADOPT(
p)YosADOPT.chain
AosaosDosdosADOPT(
p)YosADOPT.chain

Figure 20: Asynchronous non-concurrent constraint checks(NCCCs).

The number of non-concurrent constraint checks when messages are considered instantaneous (NC-
CCs (Meisels et al., 2002)) is relevant for showing the expected performance of the algorithms on MIMD
parallel computer systems. We show NCCCs for our algorithmsin Figure 20, (they can also be extracted
as the intersection points of ENCCCs curves with the coordinate axis in Figure 11). The simulated time
of the computations, where the random latencies of the messages are accumulated along the longest causal
chain, is shown in Figure 21. The time taken for the local computation handling/generating each message
(Figure 18) is hundreds of times smaller than the latency of the associated messages, falling close to the
numerical precision of this accounting (Figure 22). The smallest ratio (for ADOPT-aos) is around 80.

We compute the maximum and minimum number of asynchronous cycles of the simulations for each
problem size, and the obtained graph is shown in Figure 23.

We have implemented versions that do not use threshold nogoods for ADOPT-aon and ADOPT-don (vari-
ants of ADOPT-ing based onvalued global nogoodsinstead of the (Dago & Verfaillie, 1996)’s valued no-
goods). Those versions were compared with the corresponding versions of ADOPT-aos and ADOPT-dos,
evaluated using synchronous cycles, and the results on problems with density 30% are reported in Figure 24.
The versions using valued global nogoods perform clearly worse (30%) than the corresponding versions
with (Dago & Verfaillie, 1996)’s valued nogoods (ADOPT-aosand ADOPT-dos). Since this suggests that
valued global nogoods are not a promising alternative to (Dago & Verfaillie, 1996)’s valued nogoods, we did
not evaluate their use in combination with other techniquesexplored here. Figure 24 also shows the behavior
of a version of ADOPT-pon (implementation of ADOPT), without threshold nogoods. It took more than
two weeks for the original ADOPT implementation to solve oneof the problems for 20 agents and density
30%, and one of the problems for 25 agents and density 30% (at which moment the solver was interrupted).
Therefore, it was evaluated using only the remaining 24 problems at those problem sizes. SRCs bring im-

Density30%

Agents
simulate
dsecond
s

8101214161820222426283032343638401e+02
1e+03
1e+04
1e+05ADOPT(Gp)DosdosYosAosaosADOPT.chainADOPT(Gp)DosdosYosAosaosADOPT.chain

Figure 21: Simulated time in seconds, each latency being drawn randomly between 150ms and 250ms (for
problems with density 30%).

Density30%

Agentssimulated
mtime/loca
lmcomputa
tion

161820222426283032343638400400
8001200
16002000
DosdosYosAosaosADOPT(�p)ADOPT.chainDosdosYosAosaosADOPT(�p)ADOPT.chain

Figure 22: Ratio between total expected time where each latency is drawn randomly between 150ms and
250ms, and the local time of an agent (for problems with density 30%).

provements over versions with valued global nogoods, sinceSRCs allow detection of dynamically obtained
independence.

We tried to figure out the importance of using method (a) rather than method (b) in Step 1 of Remark 8
(comparing obtained versions ADOPT-Yos and ADOPT-Yos.b),and we found the two alternatives to be
equally good (ADOPT-Yos being less than 1% better than ADOPT-Yos.b). We also evaluated the effects
of optimizations in local computations, by computing the nogoods for an agentAk based on the nogoods

Submitted to JAAMAS on 5/07.

Density30%

Agents
AsyncCycl
es

81012141618202224262830323436384002000
4000
6000
8000 Yos(min)Dos(min)dos(min)Aos(min)aos(min)ADOPT(_p)(min)ADOPT(_p)(Max)aos(Max)Aos(Max)dos(Max)Dos(Max)Yos(Max)ADOPT.chain(min)ADOPT.chain(Max)

Figure 23: The minimum and the maximum number of asynchronous cycles for each problem size (at den-
sity 30%).

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 10 15 20 25 30

agents

cy
cl

es

ADOPT
ADOPT-aon
ADOPT-don
ADOPT-pon
ADOPT-aos
ADOPT-dos

Figure 24: Longest causal chain of messages (synchronous cycles) for versions using valued global nogoods
(and without threshold nogoods), at density 30%.

Density30%

Agents
AsyncC
ycles

283032343638401000020000
3000040000
5000060000
7000080000
90000
YosYos.bYos.a.optDosAosYosYos.bYos.a.optDosAos

Figure 25: Local computations have little effect, but ADOPT-Yos is clearly better than ADOPT-Aos, com-
peting with ADOPT-Dos. The optimized version of ADOPT-Yos is in average approximately 1%
better than ADOPT-Dos (up to 15% better on some problem instances).

computed for higher priority agents rather than computing them from scratch (ADOPT-Yos.a.optim). The
same figure shows the effect on asynchronous cycles to be minor (approximately 1% worse than ADOPT-
Yos). The effect on constraint checks is similarly minor (4%) and is not depicted here.

Figure 24 clearly shows that the highest improvement in number of cycles is brought by sending valued
nogoods to other ancestors besides the parent. The next factor for improvement with difficult problems
(density .3) is the use of SRCs. The use of the structures of the DFS tree makes slight improvements in
number of cycles (when nogoods reach all ancestors). To obtain a low total message traffic and to reduce
computation at agent level, we found that it is best not to announce any possible valued nogoods to each
interested ancestor. Instead, one can reduce the communication without a significant penalty in number of
cycles by only announcing valued nogoods to the highest priority agent to which they are relevant (besides
the communication with the parent, which is required for guaranteeing optimality).

Experimental comparison with DPOP is redundant since its performance can be easily predicted. DPOP
is a good choice if the induced widthγ of the graph of the problem is smaller thanlogd T/n and smaller
thanlogd S, whereT is the available time,n the number of variables,d the domain size, andS the available
computer memory.

5. Conclusions

With the ADOPT distributed constraint optimization algorithm, an agent can communicate feedback only to
a predefined predecessor, its parent in the DFS tree. The extension proposed here enables agents to send feed-
back to any relevant agent (fulfilling a research direction suggested in the original publication of ADOPT),
bringing significant speed-up, and embodying a version of ADOPT on which one can apply the results related
to the main algorithm for distributed constraint satisfaction, ABT.

ADOPT-ing can dynamically discover a DFS tree based only on the constraints that had been proved
relevant by the search up to that moment. It uses (Dago & Verfaillie, 1996)’s valued nogoods tagging contexts
with costs and with sets of references to culprit constraints. The generalized algorithm is denoted ADOPT-

Submitted to JAAMAS on 5/07.

ing. Tagging costs with sets of references to culprit constraints (SRCs) allows detection and exploitation of
dynamically created independence between sub-problems. Such independence can be caused by assignments.
Experimentation shows that it is important for an agent to infer and send in parallel several valued nogoods
to different higher priority agents. It also shows that exaggerating this principle by sending each valued
nogood to all ancestors able to handle it produces little additional gain while increasing the network traffic
and the computational load. Instead, each inferred valued nogood should be sent only to the highest priority
agent that can handle it (its target). Precomputed DFS treescan still be used in conjunction with the valued
nogood paradigm for optimization, thereby providing some additional improvements. ADOPT-ing versions
detecting and/or exploiting DFS trees that we tested so far are also slightly better (in number of cycles and
total messages) than the ones without DFS trees.

We isolated and evaluated the contribution of using threshold valued nogoods in ADOPT-ing. In addition,
we determined the importance of precomputing and maintaining a short DFS tree of the constraint graph, or
at least of guaranteeing that a DFS tree is compatible with the order on agents, which is almost an order of
magnitude in our problems.

The use of SRCs to dynamically detect and exploit independence and the generalized communication of
valued nogoods to several ancestors bring elegance and flexibility to the description and implementation of
ADOPT in ADOPT-ing. They also produced experimental improvements of an order of magnitude.

Acknowledgments

We thank Judith Strother for her professional restyling of the paper. We also thank anonymous reviewers for
suggesting particularly relevant references, clarifications, and experiments.

References

Ali, S., Koenig, S., & Tambe, M. (2005). Preprocessing techniques for accelerating the DCOP algorithm
ADOPT. InAAMAS.

Armstrong, A., & Durfee, E. F. (1997). Dynamic prioritization of complex agents in distributed constraint
satisfaction problems. InProceedings of 15th IJCAI.

Benisch, M., & Sadeh, N. (2006). Examining dcsp coordination tradeoffs. InAAMAS.

Bessiere, C., Brito, I., Maestre, A., & Meseguer, P. (2005).Asynchronous backtracking without adding links:
A new member in the abt family.Artificial Intelligence, 161, 7–24.

Bistarelli, S., Fargier, H., Montanari, U., Rossi, F., Schiex, T., & Verfaillie, G. (1996). Semiring-based
CSPs and Valued CSPs: Basic Properties and Comparison. In Jampel, M., Freuder, E., & Maher, M.
(Eds.),Over-Constrained Systems (Selected papers from the Workshop on Over-Constrained Systems
at CP’95, reprints and background papers), Vol. 1106, pp. 111–150.

Bistarelli, S., Montanari, U., & Rossi, F. (1995). Constraint solving over semirings. InProceedings IJCAI,
pp. 624–630, Montreal.

Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., & Fargier, H. (1999). Semiring-based CSPs
and valued CSPs: Frameworks, properties, and comparison.Constraints, 4(3), 199–240.

Chechetka, A., & Sycara, K. (2005). A decentralized variable ordering method for distributed constraint
optimization. InAAMAS.

Chechetka, A., & Sycara, K. (2006). No-commitment branch and bound search for distributed constraint
optimization. InAAMAS.

Collin, Z., Dechter, R., & Katz, S. (2000). Self-stabilizing distributed constraint satisfaction.Chicago Journal
of Theoretical Computer Science.

Dago, P. (1997). Backtrack dynamique valué.. InJFPLC, pp. 133–148.

Dago, P., & Verfaillie, G. (1996). Nogood recording for valued constraint satisfaction problems.. InICTAI,
pp. 132–139.

Davin, J., & Modi, P. J. (2005). Impact of problem centralization in distributed cops. InDCR.

Dechter, R. (1990). Enhancement schemes for constraint processing: Backjumping, learning, and cutset
decomposition.AI’90.

Dechter, R. (2003).Constraint Processing. Morgan Kaufman.

Franzin, M., Rossi, F., E.C., F., & Wallace, R. (2004). Multi-agent meeting scheduling with preferences:
efficiency, privacy loss, and solution quality.Computational Intelligence, 20(2).

Freuder, E. C., & Wallace, R. J. (1992). Partial constraint satisfaction.Artificial Intelligence, 58(1-3), 21–70.

Gershman, A., Meisels, A., & Zivan, R. (2006). Asynchronousforward-bounding for distributed constraints
optimization. InECAI.

Gershman, A., Meisels, A., & Zivan, R. (2007). Asynchronousforward-bounding with backjumping. In
IJCAI DCR Workshop.

Ginsberg, M. L. (1993). Dynamic backtracking.Journal of AI Research, 1.

Greenstadt, R., Pearce, J., Bowring, E., & Tambe, M. (2006).Experimental analysis of privacy loss in dcop
algorithms. InAAMAS, pp. 1024–1027.

Hamadi, Y., & Bessière, C. (1998). Backtracking in distributed constraint networks. InECAI’98, pp. 219–
223.

Hirayama, K., & Yokoo, M. (1997). Distributed partial constraint satisfaction problem. InProceedings of the
Conference on Constraint Processing (CP-97),LNCS 1330, pp. 222–236.

Jagota, A., & Dechter, R. (1997). Simple distributed algorithms for the cycle cutset problem. InSAC ’97:
Proceedings of the 1997 ACM symposium on Applied computing, pp. 366–373, New York, NY, USA.
ACM Press.

Larrosa, J. (2002). Node and arc consistency in weighted csp. In AAAI-2002, Edmonton.

Liu, J., & Sycara, K. P. (1995). Exploiting problem structure for distributed constraint optimization. In
ICMAS.

Maheswaran, R., Tambe, M., Bowring, E., Pearce, J., & Varakantham, P. (2004). Taking DCOP to the real
world: Efficient complete solutions for distributed event scheduling. InAAMAS.

Mailler, R., & Lesser, V. (2004). Solving distributed constraint optimization problems using cooperative
mediation. InAAMAS, pp. 438–445.

Marcellino, F. M., Omar, N., & Moura, A. V. (2007). The planning of the oil derivatives transportation by
pipelines as a distributed constraint optimization problem. In IJCAI-DCR Workshop, India.

Meisels, A., Kaplansky, E., Razgon, I., & Zivan, R. (2002). Comparing performance of distributed constraints
processing algorithms. InAAMAS02 DCR Workshop, pp. 86–93.

Meseguer, P., & Jiménez, M. (2000). Distributed forward checking. InCP’2000 Distributed Constraint
Satisfaction Workshop.

Modi, P., & Veloso, M. (2005). Bumping strategies for the multiagent agreement problem. InAAMAS.

Modi, P. J., Shen, W.-M., Tambe, M., & Yokoo, M. (2005). ADOPT: Asynchronous distributed constraint
optimization with quality guarantees.AIJ, 161.

Modi, P. J., Tambe, M., Shen, W.-M., & Yokoo, M. (2002). A general-purpose asynchronous algorithm
for distributed constraint optimization. InDistributed Constraint Reasoning, Proc. of the AAMAS’02
Workshop, Bologna. AAMAS.

Neystadt, J., & Har’El, N. (1997). Israeli internet guide (iguide). http://www.iguide.co.il/isp-sum.htm.

Submitted to JAAMAS on 5/07.

Petcu, A., & Faltings, B. (2005a). Approximations in distributed optimization. InPrinciples and Practice of
Constraint Programming CP 2005.

Petcu, A., & Faltings, B. (2005b). A scalable method for multiagent constraint optimization. InIJCAI.

Petcu, A., & Faltings, B. (2006a). Distributed generator maintenance scheduling. InProceedings of the
First International ICSC Symposium on ARTIFICIAL INTELLIGENCE IN ENERGY SYSTEMS AND
POWER: AIESP’06, Madeira, Portugal.

Petcu, A., & Faltings, B. (2006b). ODPOP: an algorithm for open/distributed constraint optimization. In
AAAI.

Ringwelski, G., & Hamadi, Y. (2005). Multi-directional distributed search with aggregation. InIJCAI-DCR.

Schiex, T., Fargier, H., & Verfaillie, G. (1995). Valued constraint satisfaction problems: hard and easy prob-
lems.. InProcs. IJCAI’95, pp. 631–637.

Silaghi, M.-C. (2002).Asynchronously Solving Distributed Problems with PrivacyRequirements. PhD Thesis
2601, (EPFL).http://www.cs.fit.edu/ ˜ msilaghi/teza .

Silaghi, M.-C. (2003a). Asynchronous PFC-MRDAC±Adopt —consistency-maintenance in ADOPT—. In
IJCAI-DCR.

Silaghi, M.-C. (2003b). Howto: Asynchronous PFC-MRDAC –optimization in distributed constraint prob-
lems +/-ADOPT–. InIAT, Halifax.

Silaghi, M.-C. (2006). Framework for modeling reordering heuristics for asynchronous backtracking. InIAT.

Silaghi, M.-C., & Faltings, B. (2002). A comparison of DisCSP algorithms with respect to privacy. In
AAMAS-DCR.

Silaghi, M.-C., & Faltings, B. (2004). Asynchronous aggregation and consistency in distributed constraint
satisfaction.Artificial Intelligence Journal, 161(1-2), 25–53.

Silaghi, M.-C., Landwehr, J., & Larrosa, J. B. (2004). Vol. 112 of Frontiers in Artificial Intelligence and
Applications, chap. Asynchronous Branch & Bound and A* for DisWCSPs with heuristic function
based on Consistency-Maintenance. IOS Press.

Silaghi, M.-C., & Mitra, D. (2004). Distributed constraintsatisfaction and optimization with privacy enforce-
ment. In3rd IC on Intelligent Agent Technology, pp. 531–535.

Silaghi, M.-C., Sam-Haroud, D., & Faltings, B. (2000). Asynchronous search with aggregations. InProc. of
AAAI2000, pp. 917–922, Austin.

Silaghi, M.-C., Sam-Haroud, D., & Faltings, B. (2001a). ABTwith asynchronous reordering. InIAT.

Silaghi, M.-C., Sam-Haroud, D., & Faltings, B. (2001b). Hybridizing ABT and AWC into a polynomial
space, complete protocol with reordering. Tech. rep. #01/364, EPFL.

Silaghi, M.-C., Sam-Haroud, D., & Faltings, B. (2001c). Consistency maintenance for ABT. InProc. of
CP’2001, pp. 271–285, Paphos,Cyprus.

Silaghi, M.-C., Sam-Haroud, D., & Faltings, B. (2000). Maintaining hierarchical distributed consistency. In
Workshop on Distributed CSPs, Singapore. 6th International Conference on CP 2000.

Stallman, R. M., & Sussman, G. J. (1977). Forward reasoning and dependency-directed backtracking in a
system for computer-aided circuit analysis.Artificial Intelligence, 9, 135–193.

Sultanik, E., Modi, P. J., & Regli, W. (2006). Constraint propagation for domain bounding in distributed task
scheduling. InCP.

Wallace, R., & Silaghi, M.-C. (2004). Using privacy loss to guide decisions in distributed CSP search. In
FLAIRS’04.

Walsh, T. (2007). Traffic light scheduling: a challenging distributed constraint optimization problem. InDCR,
India.

Yeoh, W., Koenig, S., & Felner, A. (2007). Idb-adopt : A depthfirst search dcop algorithm. InIJCAI DCR
Workshop.

Yokoo, M. (1993). Constraint relaxation in distributed constraint satisfaction problem. InICDCS’93, pp.
56–63.

Yokoo, M., Durfee, E. H., Ishida, T., & Kuwabara, K. (1992). Distributed constraint satisfaction for formal-
izing distributed problem solving. InICDCS, pp. 614–621.

Yokoo, M., Durfee, E. H., Ishida, T., & Kuwabara, K. (1998). The distributed constraint satisfaction problem:
Formalization and algorithms.IEEE TKDE, 10(5), 673–685.

Yokoo, M., & Hirayama, K. (1998). Distributed constraint satisfaction algorithm for complex local problems.
In Proceedings of 3rd ICMAS’98, pp. 372–379.

Yokoo, M., Suzuki, K., & Hirayama, K. (2002). Secure distributed constraint satisfaction: Reaching agree-
ment without revealing private information. InCP.

Zhang, W., & Wittenburg, L. (2002). Distributed breakout revisited. InProc. of AAAI, Edmonton.

Zivan, R., & Meisels, A. (2005). Dynamic ordering for asynchronous backtracking on discsps. InCP, pp.
161–172.

Submitted to JAAMAS on 5/07.

