ADOPT-ing: Unifying Asynchronous Distributed Optimizati on with
Asynchronous Backtracking

Marius C. Silaghi
Florida Institute of Technology
MSILAGHI @FIT.EDU

Makoto Yokoo
Kyushu University
YOKOO@IS.KYUSHU-U.AC.JP

Abstract

This article presents an asynchronous algorithm for sglistributed Constraint Optimization problems
(DCOPs). The proposed technique unifies asynchronousraakkig (ABT) and asynchronous distributed
optimization (ADOPT) where valued nogoods enable more lflexieasoning and more opportunities for
communication, leading to an important speed-up. Whildibeek can be sentin ADOPT by COST messages
only to one predefined predecessor, our extension allowsdiading such information to any relevant agent.
The concept of valued nogood is an extension by Dago and iVMerfd the concept of classic nogood that
associates the list of conflicting assignments with a codt aptionally, with a set of references to culprit
constraints.

DCOPs have been shown to have very elegant distributedi@mutsuch as ADOPT, distributed asyn-
chronous overlay (DisAO), or DPOP. These algorithms arécafly tuned to minimize the longest causal
chain of messages as a measure of how the algorithms wi#t §makystems with remote agents (with large
latency in communication). ADOPT has the property of maiitey the initial distribution of the problem.
To be efficient, ADOPT needs a preprocessing step consisfingmputing a Depth-First Search (DFS) tree
on the constraint graph. Valued nogoods allow for autorafiicletecting and exploiting the best DFS tree
compatible with the current ordering. To exploit such DF&# it is now sufficient to ensure that they exist.
Also, the inference rules available for valued nogoods hekxploit schemes of communication where more
feedback is sent to higher priority agents. Together theyltén an order of magnitude improvement.

1. Introduction

Distributed Constraint Optimization (DCOP) is a formalifimt can model problems distributed due to their
nature. These are problems where agents try to find assigarnt®@a set of variables that are subject to
constraints. The reason for the distribution of the solvyimgcess comes from the assumption that only
a subset of the agents has knowledge of each given consthNénertheless, in DCOPs it is assumed that
agents try to maximize their cumulated satisfaction by thesen solution. This is different from other related
formalisms where agents try to maximize the satisfactiothefleast satisfied among them (Yokoo, 1993). It
is also different from formalisms involving self-interegtagents (which wish to maximize their own utility
individually).

The application of distributed constraint optimizatioarfrework to modeling and solving multi-agent
meeting scheduling problems is detailed in (Modi & Velos802; Franzin, Rossi, E.C., & Wallace, 2004;
Maheswaran, Tambe, Bowring, Pearce, & Varakantham, 2004ar8k, Modi, & Regli, 2006). The appli-
cation to Distributed Generator Maintenance is describgetcu & Faltings, 2006a). An application to oil
pipelines is described in (Marcellino, Omar, & Moura, 200#hile an application to traffic light scheduling
is described in (Walsh, 2007). These problems have in conthmfact that some constraints are originally
distributed among involved agents and are difficult to cdite due to privacy or due to other structural
issues.

Submitted to JAAMAS on 5/07.

Several synchronous and asynchronous distributed dimasihave been proposed for solving DCOPs in a
distributed manner. Since a DCOP can be viewed as a digtdlugrsion of the common centralized Weighted
Constraint Satisfaction Problems (WCSPs-WCSP) (Bistarelli, Fargier, Montanari, Rossi, Schiex, &V
faillie, 1996; Bistarelli, Montanari, & Rossi, 1995; Sckjd-argier, & Verfaillie, 1995; Bistarelli, Montanari,
Rossi, Schiex, Verfalllie, & Fargier, 1999), it is normaatrsuccessful techniques for WCSPs were ported to
DCOPs. However, the effectiveness of such techniques haes ¢évaluated from a different perspective (and
using different measures) as imposed by the new requirean@yically research has focused on techniques
in which reluctance is manifested toward modifications ® distribution of the problem (modification ac-
cepted only when some reasoning infers it is unavoidablgf@aranteeing that a solution can be reached).
This criteria is widely believed to be valuable and adamabl large, open, and/or dynamic distributed
problems. It is also perceived as an alternative approaphitacy requirements (Silaghi & Faltings, 2002;
Wallace & Silaghi, 2004; Yokoo, Suzuki, & Hirayama, 2002a8hi & Mitra, 2004).

A synchronous algorithm, synchronous branch and boundtheafirst known distributed algorithm for
solving DCOPs (Hirayama & Yokoo, 1997). Stochastic versibave also been proposed (Zhang & Wit-
tenburg, 2002). From the point of view of efficiency, a distiied algorithm for solving DCOPs is typically
evaluated with regard to applications to agents on the netenamely, where latency in communication is
significantly more time consuming than local computatidnsfost algorithms). A common measure that
represents this assumption well is given by the number oiesyof a simulator that lets each agent in turn
process all the messages that it receives (Yokoo, Durfe@ds& Kuwabara, 1992). Within the mentioned
assumption, for real solvers this measure is shown to bevalguit to the longest causal chain of sequential
messages, as used in (Silaghi, Sam-Haroud, & Faltings,@0Bibwever, we also provide results computed
in a scenario simulating random latency in communicatioom×, local computation time is also fac-
tored into the evaluation metric by weighting the compuatatassociated with each constraint check as a
fraction (e.g., between one tenth and one millionth) of #tericy of a message (Yokoo et al., 1992; Silaghi
& Faltings, 2004; Chechetka & Sycara, 2006). The curreriealf this fraction for the Internet is around
one thousand, estimating approximatély “seconds/constraint-check and 0.5 seconds/message. cfhe te
nological trend predicts improvements of the computatiepaeds of machines (reducing the duration of
constraint-checks), while communication latencies aablst being close to the physical limit set by the
speed of light (Neystadt & Har'El, 1997). Therefore, thecfian is expected to be reduced even further in
the future, reducing the relevance of constraint checks.

From the point of view of this measure, a very efficient cutleaxisting DCOP solver is DPOP (Petcu
& Faltings, 2005b, 2005a), which is linear in the number afalales. However, that algorithm generally has
message sizes and local computation costs that are exjadnenhe induced width of a chosen depth-first
search tree of the constraint graph of the problem. Thiglgiéavalidates the assumptions that lead to the
acceptance of the number of cycles as an efficiency measomee 8f the agents are also very disadvantaged
in DPOP with respect to their privacy (Greenstadt, Pearasyr®ig, & Tambe, 2006). Effort is currently
directed toward reducing these drawbacks (Petcu & Falti2@86b).

Two other algorithms competing as efficient solvers of DC@fghe asynchronous distributed optimiza-
tion (ADOPT) and the distributed asynchronous overlay fldis DisAO works by incrementally joining the
sub-problems owned by agents found in conflict (Mailler & $&5 2004). ADOPT can be described as a
parallel version of (Iterative Deepening) A* (Silaghi, Ldhmehr, & Larrosa, 2004). While DisAQ is typically
criticized for its significant abandon of the maintenancéhaf local distribution of the problem at the first
conflict (and expensive local computations invalidating &bove assumptions as for DPOP (Davin & Modi,
2005; Maheswaran et al., 2004; Ali, Koenig, & Tambe, 2008DOPT can be criticized for its strict message
pattern that only provides reduced reasoning opportmiddOPT works with orderings on agents dictated
by some Depth-First Search tree on the constraint graphallmds cost communication from an agent only
to its parent node.

It is easy to construct huge problems whose constraint graphforests and which can be easily solved
by DPOP (in linear time), but are unsolvable with the otheown algorithms. It is also easy to construct
relatively small problems whose constraint graph is fultl dherefore require unacceptable (exponential)

space with DPOP, while being easily solvable with algorihike ADOPT, e.g., for the trivial case where all
tuples are optimal with cost zero.

In this work we address the aforementioned critiques of ADC#howing that it is possible to define a
message scheme based on a type of nogoods, salledd nogoodéDago & Verfaillie, 1996; Dago, 1997),
which besides automatically detecting and exploiting t€S0Oree of the constraint graph coherent with
the current order, help to exploit additional communicatigading to significant improvement in efficiency.
The examples given of additional communication are basedllowing each agent to send feedback via
valued nogoods to several higher priority agents in pdrallthe usage of nogoods is a source of much
flexibility in asynchronous algorithms. A nogood specifiesed of assignments that conflict with existing
constraints (Stallman & Sussman, 1977). A basic versioh®falued nogoods consist of associating each
nogood with a cost, namely a cost limit violated due to thégassents of the nogood. Valued nogoods that
are associated with a list of culprit constraints producpadntant efficiency improvements. Each of these
incremental concepts is described in the following sestion

We start by defining the general DCOP problem, followed byomtiction of the immediately related
background knowledge consisting of the ADOPT algorithm asel of Depth-First Search trees in optimiza-
tion. In Section 2.4 we also describe valued nogoods togeilte the simplified version of valued global
nogoods. In Section 3 we present our new algorithm that a#@OPT with the older Asynchronous Back-
tracking (ABT). The algorithm is introduced by first desénigp the goals in terms of new communication
schemes to be enabled. Then the data structures neededioc@mmunication are explored together with
the associated flow of data. Finally the pseudo-code andrbaf pf optimality are provided before dis-
cussing other existing and possible extensions. Sevdfataht versions mentioned during the description
are compared experimentally in the last section.

2. Background and Preliminaries

Now we introduce in more detail the distributed constraiptimization problems, the ABT and ADOPT
algorithms, as well as the theory behind the versions ofacdhogoods used in this work.

2.1 Distributed Constraint Optimization

Constraint Satisfaction Problems (CSPs) are describedsbyX of n variables and a sé&t of m constraints
on the possible combinations of assignments to these Vesialith values from their domaing). A common
extension of the CSP framework for modeling applicationsniaimization of time, space, or number of
resources is known as Weighted CSP (Bistarelli et al., 19989; Larrosa, 2002).

Definition 1 (WCSP (Larrosa, 2002; Bistarelli et al., 1996))A Weighted CSP is defined by a triplet of sets
(X,D,C) and aboundB. X and D are defined as in CSPs. In contrast to CSPs:{ci, ..., ¢n, } is a set of
functionse; : D;, X..x D, — IN>° wherem; is the arity ofc;.

Its solutionisex = argmin > ., ci(e]x,), if Yiv, ci(ex |x,) < B, whereX; = D;, x...xD

i7ni "
eeDi X...xXxDy,

The specification of the bour@ in the above definition is common only to a few versions (Laa,2002),
and other articles use its default vallle= oo (Bistarelli et al., 1999 WCSPs are an important instance
of more general frameworks, such as Valued CSPs (VCSPs) emitiSg CSPs (SCSPs) (Bistarelli et al.,
1999) that we do not address heéré framework equivalent to WCSPs, where each violation obastraint
of the CSP is associated with a cost, is callied VC'S P (Schiex et al., 1995). Other equivalent frameworks
are known, such as the Partial CSPs of (Freuder & Wallace2)19Bistributed Constraint Optimization
Problems, the problems addressed in this work, are a gératrah of WCSPs.

1. DCOP definitions could also include it to help specify lstaand bound solvers.
2. Algorithmic ideas presented in this paper could be easilged with a fuzzy version of DCOP (with a + replaced by a Milhie
definition of the optimal solution), where the goal would bertinimize the highest unsatisfaction among agents.

Submitted to JAAMAS on 5/07.

Definition 2 (DCOP) A distributed constraint optimization problem (DCOP), sfided by a set of agents
Ay, Ay, .. Ay, and a setX of variables,zy, o, ...,2,. Each agentd; has a set of; functionsC; =
{eh, .,y ¢l X 5 — Ry, X, ; C X, where only4; knowsC;. We assume that; can only take values
from a domainD, = {1, ..., d}.

Denoting with e an assignment of values to all the variables in X, the problsmto find
argminy ;. iy e,

For simplification and without loss of generality, one tydig assumes thak; ; C {x1, ..., z; }.

By ¢x, ; we denote the projection of the set of assignmentsan the set of variables i ;.

Our idea can be easily applied to general weighted CSPs.xaonge, our simulator of the ADOPT-ing
algorithm for DCOPs (presented later) is a solver of weigh@SPs. This solver receives a WCSP as input
and returns an optimal solution (after converting the WC&R DCOP in an intermediary step). This solver
is parametrized with a random number generator that det¢fdetatencies of each message. For constant
latencies (the implementation based on rounds), a cexgthforward checking-like paradigm is obtained.
Namely, each new assignment of a variabjes followed in the next step by cost inferences on the domain
of all variablesz;,j > k (which in their turn are then immediately backward propadah the following
round to the variable, and to other earlier variables).

Reducing general DCOPs to the used framework. With the aforementioned definition of DCOPs one
often says that each agefif controls one variable;;, since it knows all constraints betweenand previous
variablesz;, j < i. There exist several common extensions to this definitidD@OPs providing for several
variables per agent, and for agents that hold constraintshiimg only variables that they do not control.
While non-trivial optimizations are possible when consig such frameworks (Yokoo & Hirayama, 1998;
Silaghi & Faltings, 2004), any solution for the version dissed here can be easily applied to those cases.

e The case of several variables per agent can be addressedtegating all variables of an agent into
a new variable, which can take as value any tuple allowed byctinstraints between the original
variables. Another straightforward solution is to replaaeh original agent by several new agents,
one for each variable (where the original agents act underakfalse names (Modi, Shen, Tambe, &
Yokoo, 2005)).

¢ The case of agents holding constraints involving only \@esa that they do not control can be modeled
by adding a new variable for each such constraint, adding ihat constraint (with a total relation),
assigning it to be controlled by the corresponding agend, then applying one of the approaches
mentioned for several variables per agent.

Example 2.1Consider a problem with 3 variables, x2, andxzs and 3 constraintg;» (betweenc; andz,),
co3 (betweenr, andzs), andcs; (betweencs andx;), where Alice knows;», Bob knows:,3, and Carol
knowscs;.

This problem can be modeled as a DCOP with 4 agents. Alicetusesgents,A; and A, (typically
called pseudo-agents in ADOPT). Bob uses the aggrand Carol uses an agent,. The new variable:4
of the agentd, is involved in a ternary constraint;3; with 21 andx3. The constraint,s; is constructed
such that its projection om; andxs is cs; .

2.2 DFS-trees

The primal graph of a DCOP is the graph having the variables as nodes and having an arc for each pair
of variables linked by a constraint (Dechter, 2003). A Depifst Search (DFS) tree associated with a DCOP
is a spanning tree generated by the arcs used for first \gs@tith node during some Depth-First Traversal
of its primal graph. DFS trees were first successfully usedifstributed constraint satisfaction problems
in (Collin, Dechter, & Katz, 2000). The property exploitérbte is that separate branches of the DFS-tree are
completely independent once the assignments of commos@nsare decided. Two examples of DFS trees
for a DCOP primal graph are shown in Figure 1.

22

@:@

b)

Figure 1: For a DCOP with primal graph depicted in (a), twogilole DFS trees (pseudo-trees) are (b) and
(c). Interrupted lines show constraint graph neighborglgtions not in the DFS tree.

Nodes directly connected to a node in a primal graph are salbtitsneighbors In Figure 1.a, the
neighbors ofr; are{x1, x4, z5}. Theancestorof a node are the nodes on the path between it and the root
of the DFS tree, inclusively. In Figure 1.bzs, x5} are ancestors af;. x5 has no ancestors. If a variable
x; is an ancestor of a variable;, thenz; is adescendanof z;. For example, in Figure 1.4z, 2.} are
descendants afs.

2.3 ADOPT and ABT

ADOPT. ADOPT (Modi et al., 2005) is an asynchronous complete DCO¥esgawhich is guaranteed to
find an optimal solution. Here, we only show a brief descoiptof ADOPT. Please consult (Modi et al., 2005)
for more details. First, ADOPT organizes agents into a Déjitkt Search (DFS) tree, in which constraints
are allowed between a variable and any of its ancestors ceddants, but not between variables in separate
sub-trees.

ADOPT uses three kinds of messages: VALUE, COST, and THRESH® VALUE message com-
municates the assignment of a variable from ancestors teddants that share constraints with the sender.
When the algorithm starts, each agent takes a random valts feariable and sends appropriate VALUE
messages. A COST message is sent from a child to its pareith) witlicates the estimated lower bound of
the cost of the sub-tree rooted at the child. Since commtinités asynchronous, a cost message contains
a context, i.e., a list of the value assignments of the ancesfThe THRESHOLD message is introduced
to improve the search efficiency. An agent tries to assigmdtse so that the estimated cost is lower than
the given threshold communicated by the THRESHOLD message ifs parent. Initially, the threshold is
0. When the estimated cost is higher than the given thresti@dagent opportunistically switches its value
assignment to another value that has the smallest estirnagtdinitially, the estimated cost is 0. Therefore,
an unexplored assignment has an estimated cost of 0. A castage also contains the information of the
upper bound of the cost of the sub-tree, i.e., the actualafasie sub-tree. When the upper bound and the
lower bound meet at the root agent, then a globally optimhitmm has been found and the algorithm is
terminated.

ABT. Distributed constraint satisfaction problems are spaxEaks of DCOPs where the constrahjtsan
return only values if0, co}. The basic asynchronous algorithm for solving distribudedstraint satisfaction
problems is asynchronous backtracking (ABT) (Yokoo, Deyfshida, & Kuwabara, 1998). ABT uses a
total priority order on agents where agents announce neigrasents to lower priority agents usirak?

Submitted to JAAMAS on 5/07.

Figure 2: MIN resolution on valued global nogoods

messages, and announce conflicts to lower priority ageintg negoodmessages. New dependencies created
by dynamically learned conflicts are announced usidd-link messages. An important difference between
ABT and ADOPT is that, in ABT, conflicts (the equivalents ostjocan be freely sent to any higher priority
agent.

ABT performs a kind of forward checking. Immediately aftevaxiable is instantiated, after the latency
of a message, all future variables are immediately check&eddlues consistent with that assignment (as
their controlling agents receive the new assignment inlfgdya Therefore ABT has a transparent look-
ahead behavior implicit in its asynchronism and feedback&hapisms. This explanation is experimentally
confirmed by the fact that explicit forward checking does imaprove over ABT (Meseguer & Jiménez,
2000).

2.4 Cost of nogoods

Previous flexible algorithms for solving distributed comastt satisfaction problems exploit the inference
power of nogoods (e.g., ABT, AWC, ABTR (Yokoo et al., 1992989 Silaghi, Sam-Haroud, & Faltings,

2001b)¥. A nogood—N stands for a selN of assignments that was proven impossible, by inferendegus

constraints. IftN = ((z1,v1), ..., (z¢, v:)) wherev; € D;, then we denote by the set of variables assigned
iNnN,N = {z1,...,7:}.

2.4.1 \WWLUED GLOBAL NOGOODS

In order to apply nogood-based algorithms to DCOP, one neeletihe notion of nogoods as follows. First,
we attach a value to each nogood obtainingatued global nogood These are a simplified version of

Dagoé&Verfaille’s valued nogoods introduced next, and asitally equivalent to the content of COST mes-
sages in ADOPT.

Definition 3 (Valued Global Nogood) A valued global nogood has the fofm N], and specifies that the
(global) problem has cost at leastgiven the set of assignmentsfor distinct variables.

Example 2.2For the graph coloring problem in Figure 2 (assume it has astomnt z;#x4 with weight
10), a possible valued global nogood i®), {(x1,), (x4, r)}]. It specifies that ift; =r andz,=r then there
exists no solution with a cost lower thaf.

Given a valued global nogood,[({x1,v1), ..., {xt,v¢))], one can infer alobal cost assessment (GCA)
for the valuev, from the domain ofr; given the assignment$ = (z1,v1), ..., (xz—1,v¢—1). This GCA is
denoted v, ¢, S) and is semantically equivalent to an applied valued globgbed (i.e., the inference):

((@1,v1), .o, (@e—1,v0-1)) — ({4,) has cost).

3. Other algorithms, like AAS, exploit generalized nogodis., extensions of nogoods to sets of values for a varfjalaled the
extension of the work here for that case is suggested inggil2002).

Remark 1 Given avalued global nogodd, N] known to some agent, that agent can infer the GCA, N)
for any valuev from the domain of any variable, wherez is not assigned iV, i.e.,z ¢ N.

For example, ifA3 knows a valued global nogogdo, {(z1,r), (x2,y)}], then it can infer for the value
of 23 the GCA(r, 10, {(z1,), (x2,¥)}).

Proposition 1 (min-resolution) Given a minimization WCSP, assume that we have a set of GG fofm
(v, ey, N, that has the property of containing exactly one GCA for eadhew in the domain of variable;;
and that for allk and j, the assignments for variablég, N W] are identical in bothV,, and V;. Then one
can resolve a new valued global nogo¢ahin, ¢,, U, N,].

Example 2.3For the graph coloring problem in Figure 2 (weighted congtia are not shown);; is colored
red (r), z2 yellow (y) andzs green (g). Assume that the following valued global nogood&aown for each
of the valueqr, y, g} of z4:

(n): [10,{(x1,7), (z4,7)}], obtaining forz, the GCA(r, 10, {(z1,7)})
v): [8,{(x2,v), (z4,y)}], obtaining forz, the GCA(y, 8, {(z2,)})
9): [7,{(z3,9), (x4, g)}], obtaining forz, the GCA(g,7,{(z3,9)})

By min-resolution on these GCAs, one obtains the valuedi@good 7, {(x1, r), (x2,y), (z3, g)}], mean-
ing that given the coloring of the first 3 nodes, there is naisoh with (global) cost lower than 7.
Min-resolution can be applied to valued global nogoods:

Corollary 1.1 AssumeS is a set of nogoods associated with the variable such that for eaclic,, S,]
in 8§, Ix;,v) € S,. If § contains exactly one global valued nogopd, S,] for each valuev in
the domain of variabler; of a minimization WCSP, then one can resolve a new valuedagludgood:

[min, ¢y, Uy (Sy \ (21, v))].

2.4.2 DAGO AND VERFAILLE'S VALUED NOGOODS

We would like to allow free sharing of nogoods between agerite operator for aggregating the weights of
constraints in DCOPs i, which is not idempotent (i.e., in general a # a). Therefore a constraint cannot
be duplicated and implied constraints cannot be addedyktfarwardly without modifying the semantic of
the problem (which was possible with distributed CSPs (&chkt al., 1995; Bistarelli et al., 1999))Two
solutions are known. One solution is based on DFS trees ([us@dOPT), while the second is based on
justifications. We will use both of them.

Remark 2 (DFS sub-trees)Given two GCAsw, ¢, , S.) and(v, ¢}/, Si/) for a valuev in the domain of vari-
able z; of a minimization WCSP, if one knows that the two GCAs areredefrom different constraints,
then one can infer a new GCAw, ¢, + ¢/, SI, U S;/). This is similar to what ADOPT does to combine cost
messages coming from disjoint problem sub-trees (Modip&®hen, & Yokoo, 2002; Collin et al., 2000).

This powerful reasoning can be applied when combining a adgibtained from the local constraints
with a valued nogood received from other agents (and obdaso&ely by inference from other agents’ con-
straints). When a DFS tree of the constraint graph is useddiestraining the message pattern as in ADOPT,
this powerful inference applies, too.

The question is how to determine that the two GCAs are infefrem different constraints in a more
general setting. This can be done by tagging cost assessmihtthe identifiers of the constraints used to
infer them (the justifications of the cost assessments).

Definition 4 A set of references to constraif®RC) is a set of identifiers, each for a distinct constraint.

4. The aggregation method for fuzzy CSPs (a kind of VCSPi€Rcet al., 1995) is MIN, being idempotent. Therefore irdelr
global valued nogoods can be freely added in that framework.

Submitted to JAAMAS on 5/07.

Note that several constraints of a given problem descriptian be composed in one constraint (in a
different description of the same problef).

SRCs help to define a generalization of the concepabfed global nogoodamedvalued nogood@Dago
& Verfaillie, 1996; Dago, 1997).

Definition 5 (Valued Nogood) A valuednogoodhas the form[R, ¢, N] where R is a set of references to
constraints having cost at leastgiven a set of assignmenfs, for distinct variables.

Valued nogoods are generalizations of valued global nogiodalued global nogoods are valued nogoods
whose SRCs contain the references of all the constraints.

Once we decide that a nogoodR,fc, ((x1,v1), ..., (x;,v;))] will be applied to a certain vari-
able z;, we obtain a cost assessment tagged with the set of referdnceonstraintsk®, denoted

(R, Vi, C, (<£C1,’Ul>, ceey <Ii,1,’0i71>)).

Definition 6 (Cost Assessment (CA))A cost assessment of variahlghas the forn(R, v, ¢, N) whereR is
a set of references to constraints having cost with lowemlay given a set of assignmems for distinct
variables where the assignmentgfis set to the value.

As for valued nogoods and valued global nogoods, cost ansess are generalizations of global cost
assessments.

Remark 3 Given a valued nogooflk, ¢, N] known to some agent, that agent can infer the(GAv, ¢, N)
for any valuev from the domain of any variable, wherex is not assigned iV, i.e., wherex ¢ N.

For example, denoting by, - the reference to the constraint between variablgand z7, if As knows
the valued nogoof Js 7}, 10, {(z2, y), (z4,7)}], then it can infer the CA{J4 7 },b, 10, {(z2,y), (z4,7)})
for the valueb of x.

We can now detect and perform the desired powerful reasamingalued nogoods and/or CAs coming
from disjoint sub-trees, mentioned in Remark 2.

Proposition 2 (sum-inference (Dago & Verfaillie, 1996; Dag, 1997)) A set of cost assessments of type
(Ri,v,c;, N;) for a valuev of some variable, wherei, j : i # j = R, N R; = 0, and the assignment

of any variablezy, is identical in all N; wherezy, is present, can be combined into a new cost assessment.
The obtained cost assessmertisv, ¢, N) such thatR=U; R;, c=>,(¢;), and N=U; N;.

Example 2.4For the graph coloring problem in Figure 3;; is colored red;z, yellow,z3 green, ande, red.

Figure 3: SUM-inference resolution on CAs

Let the justification referring a set of constraints inclodic; ; andc; ., be denoted’; ; .. Assume that the
following valued nogoods are known fary,):

5. For privacy, a constraint can be represented by sevenati@ont references and several constraints of an agerteagpresented
by a single constraint reference.
6. This is called avalued conflict lisin (Silaghi, 2002).

b [{J475-,2}v 5, {(x% y)v (I4v T)}] Obtaining CA({J4-,572}7 r,9, {(I27 y)})
° [{J476,1}, 7, {(1‘1, 7‘)7 (.%'4, T‘)}] Obtaining CA({J476,1}, r, 7, {(CCl, T)})

o [{Ju72},9,{(22,v), (v4,7)}] Obtaining CA({Ju 72}, 7,9, {(z2,9)})
Also assume that based oi's constraint withz1, one has obtained fojz4,) the following valued nogood:

° [{J1,4}7 10, {(CCl, ’f‘), ($4, T‘)}] Obtaining CA({J174}7 T, 10, {(CCl, T‘)})

Then, by sum-inference on these CAs, one obtains fary the CA
{J1,4, Ja5,2, Ja6,1, Ja72}, 7,31, {(x1,7), (x2,y)}], meaning that given the coloring of the first 2
nodes, coloring:4 in red leads to a cost of at least 31 for the constraif\fs 4, Ju 5.2, J1.6,1, Ja,7,2}-

Remark 4 (sum-inference for valued nogoods)Sum inference can be similarly applied to any set of val-
ued nogoods with disjoint SRCs and compatible assignmeéltis. result of combining a set of nogoods
[Ri,c;i, Si]is[U; Ry, Y, ¢i,U;S;]. This can also be extended to the case where assignmentsraeeadjzed

to sets (Silaghi, 2002).

The min-resolution proposed for GCAs translates stragyhtardly for CAs as follows.

Proposition 3 (min-resolution (Dago & Verfaillie, 1996; Dago, 1997)) Assume that we have a set of cost
assessments far; of the form(R,, v, ¢, N,) that has the property of containing exactly one CA for each
valuewv in the domain of variable:; and that for allk and j, the assignments for variable$, N FJ are
identical in both/V, and N;. Then the CAs in this set can be combined into a new valuedogogdhe
obtained valued nogood [$2, ¢, N] such thatR=U; R;, c= min;(¢;) and N=U; N;.

Example 2.5For the graph coloring problem in Figure 2, is colored red;zs yellow, andrs green. Assume
that the following valued nogoods are known for the values,of

n: {J1.4},10,{(x1,7), (x4,7)}] obtaining CA({J1 4}, 7,10, {(x1,7)})
(y) [{J274}7 8, {(IQv y)v (x47 y)}] Obtaining CA({JQA}? Y, 8, {(x% y)})

9): [{J5,4}, 7, {(x3,9), (x4, 9)}] obtaining CA({J34},9,7,{(3,9)})

By min-resoluton on these CAs, one obtains the valued ¢lobaogood
[{J1,4,J2,4, J34},7,{(x1,7), (z2,9), (x3,9)}], meaning that given the coloring of the first 3 nodes
there is no solution with cost lower than 7 for the constrainf; 4, J2 4, J3.4}.

As with valued global nogoods, the min-resolution could pplid directly to valued nogoods:

Corollary 3.1 (min-resolution on nogoods) From a set of valued nogoodgR,,c,,S,)] (such that
Fv, (z;,v) € S,) containing exactly one valued nogood for each value the domain of variable:; of
a minimization problem, one can resolve a new valued nogpog:R,, min, ¢,, U, (S, \ (i, v))].

3. ADOPT with nogoods

We now present a distributed optimization algorithm whd§eiency is improved by exploiting the increased
flexibility brought by the use of valued nogoods. The aldoritcan be seen as an extension of both ADOPT
and ABT, and will be denoted Asynchronous Distributed ORZation with inferences based on valued
nogoods (ADOPT-ing).

As in ABT, agents communicate wittk? messages proposing new assignments of the variable of the
sendernogoodmessages announcing a nogood, add-link messages announcing interest in a variable.
As in ADOPT, agents can also uggeshold messages, but their content can be includeskih messages.

For simplicity we assume in this algorithm that the commatian channels are FIFO (as enforced by
the Internet transport control protocol). Attachment oficters to proposed assignments and nogoods can
also be used to ensure this requirement (i.e., older asgigtsand older nogoods for the currently proposed
value are discarded).

Submitted to JAAMAS on 5/07.

a) b) c) d) e)

Figure 4: Feedback modes in ADOPT-ing. a) a constraint gmapl totally ordered set of agents; b) a
DFS tree compatible with the given total order; ¢) ADOPT:sending valued nogoods only to
parent (graph-based backjumping); d) ADOPT;&ADOPT-D__, and ADOPT-Y_: sending valued
nogoods to any ancestor in the tree; €) ADORTaand ADOPT-A_: sending valued nogoods to
any predecessor agent.

3.1 Exploiting DFS trees for Feedback

In ADOPT-ing, agents are totally ordered as in ABA; having thehighest priorityand A,, the lowest
priority. Thetargetof a valued nogood is the position of the lowest priority @gemong those that proposed
an assignment referred by that nogood. Note that the bas@weof ADOPT-ing does not maintain a DFS
tree, but each agent can send messages with valued nog@ygiredecessor and the DFS tree is discovered
dynamically. We also propose hybrid versions that can exploexisting DFS tree. We have identified two
ways of exploiting such an existing structure. The first ishlbying each agent send its valued nogood only
to its parent in the tree. The obtained algorithm is rouglajyiealent to the original ADOPT. The other way
is by sending valued nogoods only to ancestors. This latbrithypproach can be seen as a fulfillment of
a direction of research suggested in (Modi et al., 2005),etgmommunication of costs to higher priority
parents.

The versions of ADOPT-ing described in this article are afi#ntiated using the notatiohDOPT-
DON. D shows the destinations of the messages containing valugdods. D has one of the values
{p,a, A,d, D, Y} wherep stands foparent a« and A stand forall predecessorswhile d, D andY stand for
all ancestors in a DFS treeThe difference between the upper and lower case versidustiger explained
in Section 3.2Y is asD but for a dynamically discovered DFS tre@.marks the optimization criteria used
by sum-inference in selecting a nogood when the alterratiaee the same cost. For now we use a single
criterion, denote@, which consists of choosing the nogood whose target hasdhest priority. N specifies
the type of nogoods employed and has possible vaJues}, wheren specifies the use of valued global
nogoods (without SRCs) andspecifies the use of valued nogoods (with SRCs).

The different schemes are described in Figure 4. The totddroon agents is described in Figure 4.a
where the constraint graph is also depicted with dottedliepresenting the arcs. Each agent (representing
its variable) is depicted with a circle. A DFS tree of the doaisit graph which is compatible to this total
order is depicted in Figure 4.b. ADOPT gets such a tree agt,rgnd each agent sends COST messages
(containing information roughly equivalent to a valuedlgibnogood) only to its parent. As mentioned
above, the versions of ADOPT-ing that replicate this betvawt ADOPT when a DFS tree is provided are

called ADOPT-p_, where p stands fogparentand the underscores stand for any legal value defined above
for O andN respectively. Sometimes the underscores are dropped t@mpeadability. This method of
announcing conflicts based on the constraint graph is dmpict Figure 4.c and is related to the classic
Graph-based Backjumping algorithm (Dechter, 1990; Har&a8lessiere, 1998).

In Figure 4.d we depict the nogoods exchange schemes used@PA-d_, ADOPT-D__ and ADOPT-
Y__where, for each new piece of information, valued nogoodseparately computed to be sent to each of
the ancestors in the currently known DFS tree. These scharaesabled by valued nogoods and are shown
by experiments to bring large improvements. As for the ahitiersion of ADOPT, the proof shows that the
only mandatory nogood messages for guaranteeing optinialihis scheme are the ones to the parent agent.
However, agents can infer from their constraints valuedooalg that are based solely on assignments made
by shorter prefixes of the ordered list of ancestor agent® agents try to infer and send valued nogoods
separately for all such prefixes.

Figure 4.e depicts the basic versions of ADOPT-ing, whenarchf agents is used instead of a DFS
tree (ADOPT-a_ and ADOPT-A_), and where nogoods can be sent to all predecessor agergsdotied
lines show messages, which are sent between independanhbsaof the DFS tree, and which are expected
to be redundant. Experiments show that valued nogoods beknove the redundant dependencies whose
introduction would otherwise be expected from such messaghe only mandatory nogood messages for
guaranteeing optimality in this scheme are the ones to tineeidiately previous agent (parent in the chain).
However, agents can infer from their constraints valuedooalg that are based solely on assignments made
by shorter prefixes of the ordered list of all agents. As in dkieer case, the agents try to infer and send
valued nogoods separately for all such prefixes. Note theadtlginal ADOPT can also run on any chain of
the agents, but our experiments show that its efficiencyedsas by 20% when it does not know the shortest
DFS tree compatible with the current order, and is an ordanafjnitude less efficient than any of these
two variants of ADOPT-ing. When no DFS tree is known in aden&DOPT-Y__ slightly improves on
ADOPT-A__as it dynamically detects a tree with reduced depth.

3.2 Differentiating ADOPT-a and ADOPT-d from ADOPT-A and AD OPT-D

The valued nogood computed for a preflx, ..., A, ending at a given predecesséf may not be different
from the one of the immediately shorter prefix,, Ax_1. Sending that nogood td;, may not affect the
value choice ofdy, since the cost of that nogood applies equally to all valde$oaccording to Remark 3.
Exceptions appear in the case where such nogoods cannoiripmsed by sum-inference with some valued
nogoods ofA4;. The versions ADOPT-D and ADOPT-A_ correspond to the case where optional nogood
messages are only sent when the target of the payload vahgmbd is identical to the destination of the
message. The versions ADOPT-dnd ADOPT-a_ correspond to the case where optional nogood messages
are sent to all possible destinations each time that thewpdylogood has a non-zero cost. In other words, in
those versionsogoodmessages are sent even when the target of the transporteddizgnot identical to
the destination agent but has a higher priority. From thistpaf view ADOPT-Y__ works like ADOPT-D._

but on the dynamically found DFS tree.

Example 3.6Consider the DCOP whose DFS tree is depicted in Figure 4. hsdhat the next nogoods are
inferred by Ag:

[1] For the prefix of predecessor agenftal; }: [{Js,1}, 2, (x1 = 2)]
[2] For the prefix of predecessor agentals, Az, As}: [{Js,1, J6,3}, 3, (21 = 2) (23 = 2)]

With ADOPT-a, nogood [1] is sent tpA4;, A2}, and nogood [2] to A3, A4, As}. With ADOPT-A, nogood
[1]is senttoA;, and nogood [2] to its targefl; and to the predecessor agefy.

Example 3.7Consider the DCOP whose DFS tree is depicted in Figure 5. heghat the next nogoods are
inferred by A7:

[1] For the prefix of ancestor agentsd; }: [{J7,1},2, (z1 = 2)]
[2] For the prefix of ancestor agentsd;, As, A¢}: [{J7,1, J7.6}, 3, (1 = 2)(z6 = 2)]

Submitted to JAAMAS on 5/07.

Figure 5: The constraint graph for a problem with 7 agents.

Nogood [1] can be used in inferences by all three ancestonteA;, Az, Ag}. Nogood [2] can be used
only by Ag. In this situation, with ADOPT-d the agedt, sends nogood [1] t1; and A3, and nogood [2]
to Ag. With ADOPT-D,A7 sends nogood [1] only tel;, and nogood [2] to its target (and parent)s.

3.3 Dynamic Discovery of Compatible DFS Tree in ADOPT-Y

Let us now assume that at the beginning, the agents only khewaddress of the agents involved in their
constraints (their neighbors), as in ABT. Finding a DFS tre& constraint graph is different from the minimal
cycle cutset problem, whose distributed solutions have lsaelied in the past (Jagota & Dechter, 1997). We
address the problem of computing a DFS tceenpatiblewith a given total order on nodes, namely where
the parent of a node precedes that node in the given totat.ortievever, not any given total order on the
variables is compatible with a DFS tree of the constrainpfraGiven an agreed total order on agents that
unknowingly happens to be compatible with a DFS tree, it iatreely simple (less tham rounds) to find
the compatible DFS tree. When a compatible DFS tree does«istt eur technique adds a small set of arcs
(total constraints) that keep the problem equivalent tatiiginal one and then returns a DFS tree compatible
with the new graph.

procedure initPreprocessing) do
11 ancestors < neitghboringpredecessors;
foreach A; in ancestors do
12 | send DFSancestors) to Aj;

13 | parent— last agent imuncestors;

whenreceiveDFS(induced) from A, do
1.4 if (predecessors imduced) ancestors then

15 ancestors <« ancestors U (predecessors ithduced);
foreach A; in ancestors do

16 | send DFSancestors) to A;;

17 parent— last agent immncestors;

Algorithm 1: Procedures of agent; during preprocessing for dynamic discovery of DFS tree.

Preprocessing for computing the DFS tree Algorithm 1 can be used for preprocessing the distributed
problem. Each agent maintains a list withdtscestors and starts executing the procedingPreprocess-
ing. The first step consists of initializing itg:cestors list with the neighboring predecessors (Line 1.1). The
obtained list is broadcast to the known ancestors usingiaated message namB#S (Line 1.2). On receiv-
ing aDFSmessage froml,, an agent discards it when the parameter is a subset ofédlknown ancestors
(Line 1.4). Otherwise the new ancestors induced becaudeg afe inserted in thencestors list (Line 1.5).

The new elements of the list are broadcast to all interestedstors, namely ancestors that will have these
new elements as their ancestors (Line 1.6). The parent ojantas the last ancestor (Lines 1.3,1.7).

Lemma 4 Algorithm 1 computes a DFS tree compatible with a problemedent to the initial DCOP.

Proof. Let us insert in the initial constraint graph of the DCOP a rtetal constraint (constraint allowing
everything) for each link between an agent and its parenpeed by this algorithm, if no constraint existed
already. A constraint allowing everything does not charigeproblem therefore the obtained problem is
equivalent to the initial DCOP. Note that the arcs betweeh @gent and its parent define a tree.

Now we can observe that there exists a DFS traversal of thehgoé the new DCOP that yields the
obtained DFS tree. Take three ageA{s A;, andA;, such that4; is the obtained parent of both; and Ay,.
Our lemma is equivalent to the statement that no constraiatsebetween sub-trees rooted Hy and Ay,
(given the arcs defining parent relations).

Let us assume (trying to refute) that an agdnt in the sub-tree rooted byl; has a constraint with an
agentA; in the sub-tree rooted by,. Symmetry allows us to assume without loss of generality tha
precedesi; . Therefored; includesA; in its ancestors list and sends it to its parent, which propagates it
further to its parent, and so on to all ancestorsigf. Let A;» be the highest priority ancestor df;; having
lower priority thanA,.. But thenA;~ will set Ay, as its parent (Lines 1.3,1.7), makial, an ancestor of
Aj. This contradicts the assumption thl and A, are in different sub-trees of;. O

Note that for any given total order on agents, Algorithm ures a single compatible DFS tree. This
tree is built by construction, adding only arcs needed tdétdefinition of a DFS tree. The removal of any
of the added parent links leads to breaking the DFS-treegutgpas described in the proof of the Lemma.
Therefore, we infer that Algorithm 1 obtains the smallest3xFee compatible with the initial order.

Remark 5 The trivial approach to using the DFS construction algomitlas a preprocessing technique also
requires the detection of the termination, to launch AD@PT-or ADOPT-d_ when the preprocessing ter-
minates. Some of our techniques can be viewed as efficiensttavayoid such detection.

The preprocessing algorithm terminates, and the maximglalachain of messages it involves has a
length of at most.. That is due to the effort required to propagate ancestors the last agent to the first
agent. All messages travel only from low priority agents ighhpriority agents, and therefore the algorithm
terminates after the messages caused by the agents in teacéghe root of the trée

Lemma 5 If the total order on the agents is compatible with a known DEE® of the initial DCOP, then
all agent-parent arcs defined by the result of the above dtgor correspond to arcs in the original graph
(rediscovering the DFS tree).

Proof. Assume (trying to refute) that an obtained agent-pareaticei, A;—A,;, corresponds to an arc that
does not exist in the original constraint graph (for the lstygriority agentd4; obtaining such a parent). The
parentd;, of 4; in the known DFS tree must have a higher or equal priority tharotherwiseA; (having Ay

in hisancestors) would chose it as the parent in Algorithm 1 (Lines 1.3, 117}, and A, are not identical,

it means that4; has no constraint wittd; in the original graph (otherwise, the known DFS would not be
correct). Therefored; was received byl; as an induced link from a descendahtwhich had constraints
with A; (all descendants being defined by original arcs due to thengstion). However, if such a link
exists between a descendafitand A4;, then the known DFS tree would have been incorrect (sincebR&
pseudo-tree all predecessor neighbors of one’s descendarst be ancestors of oneself). This contradicts
the assumption and proves the Lemma. [

Remark 6 If one knows that there exists a DFS tree of the initial caistrgraph that is compatible with
the order on agents, then the parent of each agent in thatisréts lowest priority predecessor neighbor.

7. Or roots of the forest.

Submitted to JAAMAS on 5/07.

The agent can therefore compute its parent from the beginwithout any message. This is at the basis
of our implementation of ADOPT- ADOPT-d_ and ADOPT-p_, where we know that the input order is
compatible with a DFS tree (being the same order as the ong:lmsADOPT) but we do not bother providing
the tree to the solver.

Dynamic detection of DFS trees Intuitively, detecting a DFS tree in a preprocessing phasethree po-
tential weaknesses which we can overcome. The first drawibdblat it necessarily adds a preprocessing of
up ton sequential messages. Second, it uses all constraint®opvihile some of them may be irrelevant,
at least for initial assignments of the agents (and shomestcan be used to speed up search in the initial
stages). Third, trivial DFS tree detection may also reqaineadditional termination detection algorithm.
Here we show how we address these issues in one of our nerideels.

Therefore, we propose to build a DFS tree only for the coirgsaised so far in the search. Therefore,
agents in ADOPT-Y_ do not start initializing theitncestors with all neighboring predecessors, but with the
empty set. Neighboring predecessors are added tarthestors list only when the constraint defining that
neighborhood is actually used to increase the cost of a gtalogood. On such an event, the newicestor
is propagated further as on a receipt of new induced ancegtith a DFS message in Algorithm 1. The
handling of DFS messages is also treated as before. The dynamic detectian oncurrently with the
search and integrated with the search, thus circumvertimgientioned weaknesses of the previous version
based on preprocessing. The payload ofif messages is attachedriogoodmessages.

Another problem consists of dynamically detecting thedreih nodes and how descendants are currently
grouped in sub-trees by the dynamic DFS tree. In our solutigrgroups agentgl;, and A, in the same sub-
tree if it detects that its own descendants in the receistd ¢if induced links fromd;, and A; do intersect.
This is done as follows. A check is performed each time thei@new descendant agefy in the lists of
induced links received from a descendant If A, was not a previously known descendantff then A,
is inserted in the sub-tree of;,. Otherwise, the previous sub-tree containitgis merged with the sub-tree
containingAy. Also, a new sub-tree is created for each agent from whicheseive a nogood and that was
not previously known as a descendant. The data structuréogetpby an agenti; for this purpose consists
of a vector ofn integers, calledubtrees. subtrees[j] holds the ID of the sub-tree containin, or O if A,
is not currently considered to be a descendantipf Each agent generates a different unique 1D (positive
number) for each of its sub-trees (e.g., by incrementinguenta).

Remark 7 If agents start ADOPT-Y by inserting all their predecesseighbors in theirancestors list, the
algorithm becomes equivalent to ADOPT-D after less thaounds.

3.4 Data Structures

Besides theincestors andsubtrees structures of ADOPT-Y, each agedt stores itsagent-view(received
assignments) and itsutgoinglinks (agents of lower priority thaml; and having constraints an;). The
instantiation of each variable is tagged with the value oépasate counter incremented each time the as-
signment changes. To manage nogoods and @Asises matrice§1..d], A[1..d], ca[1..d][i+1..n],zR[1..1],
Ir[i+1..n] andiastSent[1..i-1] whered is the domain size fat;. crt_val is the current valuel; proposes for

x;. These matrices have the following usage:

e [[K] stores a CA forz; = k, which is inferred solely from the local constraints betwag and prior
variables.

e ca[K][]] stores a CA forz; = k, which is obtained by sum-inference from valued nogoodsived
from A;.

e th[K] stores nogoods coming viaireshold/ok? messages from,,.

e h|v] stores a CA forz;=v, which is inferred fromca[V][j], {[v] andth[t] for all ¢ andj.

8. More exactly, when a message is sent to that neighboriegtag

S— THRESHOLD: th[k] ﬁ?m
—
local u
constraints
— OK view @
=y e[)| ()
thik] v
{ %
h Irlj] [€ NOGOOD —
1=
S
<« NOGOOD 2 <= Z | mv S
] =
Z £ cavllil | <3
o/

Figure 6: Schematic flow of data through the different datacstires used by an agedt in ADOPT-ing.

o [r[K] stores the last valued nogood received fraim
e lastSent[K] stores the last valued nogood sent4g.

The names of the structures were chosen by following th¢ioelaf ADOPT with A* search (Silaghi,
2003a; Silaghi et al., 2004). Thus, stands for the “heuristic” estimation of the cost due to t@sts
maintained by future agents (equivalent to f¢ function in A*) and! stands for the part of the standard
g() function of A* that is “local” to the current agent. Here, asADOPT, the value foh() is estimated
by aggregating the costs received from lower priority ager@ince the costs due to constraints of higher
priority agents are identical for each value, they are @vaht for the decisions of the current agent. Thus,
the functionf () of this version of A* is computed combining solelyandh. We currently store the result of
combiningh and! in h itself to avoid allocating a new structure féf).

The structure$r andth store received valued nogoods, andstores intermediary valued nogoods used
in computingh. The reason for storing, th andca is that change of context may invalidate some of the
nogoods im while not invalidating each of the intermediary compondrdm which i is computed. Storing
these components (which is optional) saves some work aedsdfietter initial heuristic estimations after a
change of context. The cost assessments stored([ifi[j] of A; also maintain the information needed for
threshold messages, namely the heuristic estimate for the valoiethe variablez; at successod; (to be
transmitted ta4; if the valuev is proposed again).

The arraylastSent is used to store at each indéxthe last valued nogood sent to the agdnt The
arraylr is used to store at each indéxhe last valued nogood received from the agépt Storing them
separately guarantees that in case of changes in contextatk discarded at the recipient only if they are
also discarded at the sender. This property guaranteesuthaient can safely avoid retransmittingAg
messages duplicating the last sent nogood, since if it hiagatdeen discarded frodastSent[k], then the
recipients have not discarded it framk] either.

3.5 Data flow in ADOPT-ing

The flow of data through these data structures of an agerns illustrated in Figure 6. Arrows= are
used to show a stream of valued nogoods being copied fromraesdata structure into a destination data
structure. These valued nogoods are typically sorted daogpto some parameter such as the source agent,
the target of the valued nogood, or the valuassigned to the variable in that nogood (see Section 3.4).

Submitted to JAAMAS on 5/07.

The—+ sign at the meeting point of streams of valued nogoods orassgissments shows that the streams are
combined using sum-inference. Tﬁesign is used to show that the stream of valued nogoods is addkd
destination using sum-inference, instead of replacingléstination. When computing a nogood to be sent

to Ag, the arrows marked Wi restrict the passage to allow only those valued nogoodsaong solely
assignments of the variables of ageAts ..., A;. Our currentimplementation recomputes the elemenis of
and! separately for each target ageht by discarding the previous values.

whenreceiveok?({z;, v,), tun) do

21 | integrate(z;,v;));

2.2 if (tvn no-null and has no old assignmetiten

2.3 k:=target{vn); // thresholdtvn as common cost;
2.4 th[k]:=sum-inferencefvn,th[K]);

25 | check-agent-view();

whenreceiveadd-link ((z;, v;)) from A; do

2.6 addA; to outgoinglinks;

27 | if ((x;,v;)) is old,sendnew assignment td ;;
whenreceivenogoodrun, t, inducedLinks) from A, do

2.8 insert new predecessors framduced Links in ancestors, on change making sure interested predeces-
sors will be (re-)senhogoodmessages; //needed only in ADOPT-Y
29 | foreachnew assignmenit of a linked variabler; in ron do

2.10 | integrateg); // counters show newer assignment;

211 | Ir[t]:=ron;

212 | if (an assignmentinun is outdated}hen

2.13 if (some new assignment was integrated nitnen
2.14 | check-agent-view();
2.15 return;

216 | foreachassignment of a non-linked variable:; in run do

2.17 | sendadd-link(a) to A;;

218 | foreachvaluev of z; such that rvp, is not(do

2.19 vn2ca(rvn,i,v) — rca (a CA for the value v ofc;);

2.20 ca[V][t]:=sum-inferencefca,ca[V][t]);

2.21 updateh[v] and retract changes ta[Vv][t] if A[v]'s cost decreases;
2.22 | check-agent-view();

Algorithm 2: Receiving messages df in ADOPT-ing

3.6 ADOPT-ing pseudo-code and proof

The pseudo-code for the procedures in ADOPT-ing is givenlgoAthms 2 and 3. To extract the cost of a
CA, we introduce the functionost(), wherecost((R, v, ¢, N)) returns c. Thenin_resolution(j) function
applies the min-resolution over the CAs associated withhedlvalues of the variable of the current agent,
but uses only CAs having no assignment from agents with I@sierity than A;. More exactly, it first re-
computes the arrag using only CAs inca and! that contain only assignments frory, ..., 4;, and then
applies min-resolution over the obtained elementas.oln the current implementation, we recomputend

h at each call tanin_resolution(j). An optimization is possible here, reusing the resolt computing
min_resolution(k — 1) in the computation ofnin_resolution(k) for k < parent by adding only nogoods

9. From applying Step 2 of Remark 8.

onzy to it. Experiments show that this brings minor 4% improvetsémsimulator time (local computations)
on hard problems.

The sum_in ference() function used in Algorithm 3 applies the sum-inference sopidrameters when-
ever this is possible (it detects disjoint SRCs). Othernpitseelects the nogood with the highest cost or the
one whose lowest priority assignment has the highest pyi@ttis has been previously used in (Bessiere,
Brito, Maestre, & Meseguer, 2005; Silaghi et al., 2001b)heTunctionvn2ca(vn, i) transforms a valued
nogooduvn in a cost assessment foy. Its inverse is functiora2vn. If vn has no assignment far;, then
a cost assessment can be obtained according to Remark 3uftt®hvn2ca(vn, i, v) translatesmn into a
cost assessment for the valuef z;, using the technique in Remark 3 if needed. The functioget(NV)
gives the index of the lowest priority variable present ia #ssignment of nogoad. As with file expansion,
when “*” is present in an index of a matrix, the notation isdrgreted as the set obtained for all possible
values of that index (e.g., ca[V][*] stands féta[v][t] | Vt}). Given a valued nogoodyg, the notatiomg,,
stands for vn2cafg) whenng'’s value forz; is v, and() otherwise.

3.6.1 PSEUDO-CODE

This sub-section explains line by line the pseudocode irAllgms 2 and 3. Each agent; starts by call-
ing the init() procedure in Algorithm 3, which at Line 3.1 tiializes! with valued nogoods inferred from
local (unary) constraints. The agent assigndo a value with minimal local costrt_val (Line 3.2), an-
nouncing the assignment to lower priority agentsirigoinglinks (Line 3.3). Theoutgoinglinks of an agent
A; initially holds the address of the agents enforcing comssahat involve the variable;. The agents
answer to any received message with the corresponding guoeen Algorithm 2: fwhenreceiveok?,”
“whenreceivenogood” and “whenreceiveadd-link .”

When a new assignment of a variablg is learned fromok? or nogood messages, valued nogoods
based on older assignments for the same variables are distélrines 2.1,2.10) by calling the function
integrate()in Algorithm 3. Within this function, all valued nogoods &amssignments) stored by the agent
are verified and those that contain an old assignmenj ofvhich is no longer valid, are deleted (Line 3.17).
Any discarded element aofa is recomputed fronir. Namely, if a cost assessment|v][t] is deleted in
this process whilér[t] remains valid, the agent attempts to apply the nogodd|it to the valuev and the
obtained cost assessment is copiecti][¢] (Line 3.18). This application of the nogoddt] to v is possible
either if it containse; = v or if it contains no assignment for the variabigof the current agent (Remark 3).
Eventually the new assignment is stored in the agent-vieme(B.19).

Further, when amk? message is received, it is checked for valid threshold ndg@oine 2.2). The target
k of any such nogood, i.e., the position of the owner of the kiyeiority variable, is extracted at Line 2.3 with
a procedure callethrget to detect the place where the nogood should be stored. g received threshold
nogood is stored ah[k] by sum-inference with the current nogood found there (Liés3.21). If no nogood
is found inth[k], the new nogood is simply copied there (Line 3.20). If a nabiscalready stored inh[k],
but its SRC intersects the one in the new nogood, then thevtetdepends on the version of ADOPT-ing.
Our pseudo-code illustrates the versions ADQBI-where the valued nogoods with the highest cost are
retained (Line 3.22). In case of a tie, the one with the smaiierget is maintained (Line 3.23) (Bessiere
et al., 2005; Silaghi et al., 2001b).

After receiving a new value, like in ABT, theheck-agent-vieprocedure is used to select a value or detect
nogoods (Line 2.5). In this procedure, the agent first tiesampute a nogood for each of its predecessors
(Line 3.4). For each such destination, a separate nogoazhipated in/ for each valuev by considering
only local constraints with that target agent and with itegacessors. Then, by considering these nogoods
of [and all cost assessmentscinbased only on assignments from the target agent and itsqessiers, new
elements ofh are computed by sum-inference (Line 3.5). The order of thpsstuised in this computation
is important for correctness and is described in detailrlate Remark 8. If all values of:; have non-
zero cost nogoods ih (Line 3.6), then all elements df are combined via min-resolution and a nogood
vn is obtained for the currently targeted destination (Lin@)3.However, the nogoodn is sent only if
it is different from the last nogood sent to that same ageimg(13.8). Repeating its sending would be

Submitted to JAAMAS on 5/07.

redundant since the recipient holds it in itsvector. A further restriction is set with ADOPT-A ADOPT-
D_, and ADOPT-Y._ where the nogood is sent only if the lowest priority variaiololved in it is the same
as the one controlled by the destination (Line 3.9). The ndgs always sent to the parent in the DFS tree
(with ADOPT-d__, ADOPT-D__, and ADOPT-Y_) which is the immediate predecessor with ADOPTand
ADOPT-A__. With ADOPT-Y__, when a nogood is sent for the first time to an agépt®, A, is added to
the listancestors (Line 3.10). After the nogood is sent (Line 3.11), it is stbir lastSent to help avoid
immediate retransmission (Line 3.12). If some change wesnity made to thencestors list, the change

is propagated at Line 3.13 to all the ancestors that had neady been notified withogoodmessages at
Line 3.11.

The second part of theheck-agent-viewrocedure deals with selecting opportunistically a valite the
smallest estimated cost (Line 3.14), as common in ADOPT aRd. AVe used the common mathematical
notationargmin,(f(v)) to denote a computation that returns the valuminimizing the functionf (v)
passed as the parameter (hevet(h[v])). In case of a tie with the old value af;, our implementation
of argmin prefers to maintain the old value. If the value selectedafpis different from the old value
(Line 3.15), the new value is sent to all agentsirgoing_links (Line 3.16).

Whennogoodmessages are received, in the ADOPI-Version we first insert new received induced
links into ancestors (Line 2.8). If the set ofancestors was changed by this operation, we set a flag to
make sure thatheck-agent-views eventually called and will propagate the change to altentrancestors.
The agent checks if the transported nogood has newer assigarhan the ones it already knows. A new
assignment can reach an agent as part of a nogood before fespandingok? message. This can be
handled in two ways:

i The original solution of ADOPT and ABT (Yokoo et al., 1998;ddi et al., 2005) is to consider any
assignment in a nogood that is different from the assignrkieoivn for that variable as being invalid.
Assignments are re-announced after each received validages Therefore, later retransmissibaf
the nogood triggered by this scheme is guaranteed to chyrigadtver each nogood eventually.

i The other scheme identifies new assignmentsdgoodmessages as such, and validates the nogoods
on their first reception. The mechanism was used in severalores of ABT (Silaghi & Faltings,
2004). It works by letting each agent maintain a separateteodor each variable. The counter is
incremented when the assignment is changed and tags edassgmment. Each agent stores the last
value of the counter it sees for each variable. An agent teetenew assignment by comparing its tag
with the previously seen value of that counter. Once detedtime 2.9), new assignments in nogoods
are integrated as on the arrival of thek? message (Line 2.16¥.

The last nogood received from some agdnts stored inr[j] (Line 2.11), such that it would not be lost
as long as it is stored byi; in its lastSent (otherwise deadlocks could occd?).If some assignment in a
nogood is considered old at Line 2.12 (with any mentione@sd) the handling of the nogood is stopped
and the nogood is discarded (Line 2.15). However, if someassignment was integrated at Line 2.10, then
the rest of the processing normally executecb&R messages is performed by calling itteeck-agent-view
procedure at Lines 2.13,2.14.

If a received nogood contains a variable not previously Ived in constraints with the variable of the
agent (Line 2.16), andd-link message is sent to the agent owning that variable (Line 2olaf)nounce the
creation of a new link between the two agents (Line 2.6) anddaest updates on the values of that variable
(Line 2.7). In ADOPT-ing, the assignment received in thegu)is attached to thedd-link message. This
allows the owner of that variable to spare a message by ndirsgthis assignment td; if the assignment
is still valid.

10. Because the corresponding constraint increases fdirshéme the cost of the computed nogood.

11. Assuming no mechanism is used to block immediate retrasson of nogoods, such as dustSent structure.

12. Assignments having the same value are consideredddereiven if their tag differs (allowing for re-using old raugs).

13. Note that with the first scheme (i), where assignmentsa@reagged with counters, ADOPT-ing should not delete olglomals from
Ir (which is done with the second scheme), but checks them wk@messages are received.

An agent can receive a nogood where its variable is not ptesehtherefore where the nogood can be
applied to all its values. Valid nogoods are projected orvallies ofA; (Lines 2.18,2.19), and the result
is added to the corresponding cost assessments using the sum-inference procedure (Line 2.20). Itis
possible that by the quirks of the impact of disjoint SRCs emsgnference, the addition of a new nogood
leads to the decrease of the cost of the obtained cost assgis&mthe corresponding value. We prefer to
enforce a monotonic behavior by withdrawing changesitm such situations (Line 2.21). For this purpose,
the evaluation of the modification of the cost is done by cotinglh as when messages are prepared for the
parent in the DFS tree (or immediate predecessor). Aftegiating the new nogoodheck-agent-vieus
called at Line 2.22 to infer new nogoods and to select the\zdse ofz;.

3.6.2 RROOF

Received nogoods are stored in matriéesindth (Algorithm 2). A; always sets itgrt_val to the index
with the lowest CA cost in vectal (preferring the previous assignment in case of ties). Om ehange
that propagates tb, and for each ancestat; (or higher priority agent in versions not using DFS treelsg, t
elements of: are recomputed separately by min-resolution(j) to geeenatv nogoods fod ;. The simul-
taneous generation and use of multiple nogoods is alreaokio be useful for the constraint satisfaction
case (Yokoo & Hirayama, 1998).

The threshold valued nogoadn delivered withok? messages sets a common cost on all values of the
receiver (see Remark 3), effectively setting a thresholdasts below which the receiver does not change its
value. This achieves the effect of THRESHOLD messages in RDO

The procedure described in the following remark is used énpttoof of termination and optimality.

Remark 8 The order of combining CAs to gktat Line 3.5 matters. To computv]:

1. a) When maintaining DFS trees, for each valu€As are combined separately for eachsef agents
defining a DFS sub-tree of the current node:
tmp[v][s]=sum-inference- ;(ca[Vv][t]).
b) Otherwise, with ADOPT-aand ADOPT-A_, we act as if we have a single sub-tree:
tmp[v]=sum-inference-; 1) (ca[V][t]).

2. CAs from step 1 (a or b) are combined:
In case (a) this meansfv, s; h[v]=sum-inference(tmp[v][s]).
Note that the SRCs in each term of this sum-inference areinisgnd therefore we obtain a valued
nogood with cost given by the sum of the individual costsinbthfor each DFS sub-tree.

For case (b) we obtain h[v]=tmp[v].
This makes sure that at quiescence the codt[afis at least equal to the total cost obtained at the
next agent.

3. Add I[v]: h[v]=sum-inference(h[v], [[V]).
4. Add threshold: h[v]=sum-inference(h[v], th[*]).

Note that method (a) at Step 1 can be applied only to ADOR,TADOPT-D _, and ADOPT-d., while
method (b) can be applied to all versions. Experiments slhady tvhen applicable, method (a) works only
slightly (i.e. 1%) better than method (b).

Lemma 6 (Infinite Cycle) Ata given agent, assume that the agent-view no longer clsanggbthat its array

h (used for min-resolution and for deciding the next assigmiyie computed only using cost assessments that
are updated solely by sum-inference. In this case the céskeelements of it cannot be modified in an
infinite cycle due to incoming valued nogoods.

Submitted to JAAMAS on 5/07.

Proof. Valued nogoods that are updated solely by sum-inference basts that can only increase (which
can happen only a finite number of times). For a given cost,ifications can only consist of modifying
assignments to obtain lower target agents, which again appdn only a finite number of times. Therefore,
after a finite number of events, the cost assessments usetetdiwill not be modified any longer and
thereforeh will no longer be modified. [

Corollary 6.1 If ADOPT-ing uses the procedure in Remark 8, then for a givganaview, the elements of
the arrayh for that agent cannot be modified in an infinite cycle.

Remark 9 Sincelr contains the last received valued nogoods via messagestbtreok? messages, which
change the agent-view, that array is updated by assignméhtracently received nogoods without sum-
inference. Therefore, it cannot be used directly to irifer

Note that with the described procedure, a newly arrivingigdinogood can decrease the cost of certain
elements o (even if it does not decrease the cost of any of the elememts fvhich/ is computed). This
is because, while increasing the cost of some element,iit can also modify its SRC and therefore forbid
its composition by sum-inference with other cost assestsnen

Remark 10 (Obtaining Monotonic Increase) One can avoid the undesired aforementioned effect, where
incoming nogoods decrease costs of elements iNamely, after a newly received valued nogood is added
by sum-inference to the corresponding elemeni:@f] for some value, if the cost ofi[v] decreases, then
the old content ofa[v] can be restored. Each new valued nogood is used for updatir@n each change to
some element ina, one has to add tea the elements found i and coming from children in the DFS tree

(if they do not lead to a decrease in the coshpf Experiments show that this technique can bring a small
improvement of up to 2% in the number of cycles.

Intuitively, the convergence of ADOPT-ing can be noticeahirthe fact that valued nogoods can only
monotonically increase valuation for each subset of theckespace, and this has to terminate since such
valuations can be covered by a finite number of values. If&sgép j<i no longer change their assignments,
valued nogoods can only monotonically increasedatfor each value inD;: costs of the nogoods only
increase since they only change by sum-inference.

Lemma 7 ADOPT-ing terminates in finite time.

Proof. Giventhe list of agentdy, ..., A,,, define the suffix of lengthn of this list as the last agents. Then
the result follows immediately by induction for an increagy growing suffix (increasingr), assuming the
other agents reach quiescence.

The basic case of the induction (for the last agent) follogfthe fact that the last agent terminates in
one step if the previous agents do not change their assigsmen

Let us now assume that the induction assertion is true foffex s & agents. Based on this assumption,
we now prove the induction step, namely that the propertysis tiue for a suffix ofs+1 agents: For each
assignment of the agent, ., the remaining: agents will reach quiescence, according to the assumption o
the induction step; otherwise, the assignment’s CA coseeses. By construction, costs for CAs associated
with the values of4,,_;. can only grow (see Remark 10). Even without the techniquesim&k 10, costs for
CAs associated with the values 4f, ., will eventually stop being modified as a consequence of Lefdma
After values are proposed in turn and the smallest cost esaith highest estimate, agefy ;. selects the
best value and reaches quiescence. The other agents raéasheaqce according to the assumption of the
induction step. O

Lemma 8 The last valued nogoods sent by each agent additively iatedghe non-zero costs of the con-
straints of all of the agent’s successors (or descendarttsaiDFS tree when a DFS tree is maintained).

3.1
3.2
3.3

3.4

3.5

3.6
3.7
3.8
3.9
3.10
3.11
3.12

3.13

3.14
3.15
3.16

3.17
3.18
3.19

procedureinit do

hlv] := l[v]:=initialize CAs from unary constraints;
crt_val=argmin,(cost(h[v]));

| sendok?((z;, crt_val),D) to all agents in outgoindjnks;

procedure check-agent-viewgo

tained)do
for every(v € D;) update/[v] and recomputé[v];

/1 with valued nogoods using only instantiations{ef, ..., z; };
if (h has non-null cost CA for all values &f;) then
vn:=min.resolution(j);
if (vn# lastSent[j]) then

if ((target(vn)==) or (j is parent/immediate predecessothien
addj to ancestors (updating parent);// for ADOPT-Y;
L sendnogoodvn,i,ancestors) to A;;
lastSent[j] = vn;

on new ancestors, sembgood(,i,ancestors) to each ancestat; not yet announced;

crt_val=argmin,(cost(h[v]));
if (ert_val changed}hen

sendok?({z;, ert_val), ca2vngalert_vall[k]), 7)
L to eachA; in outgoinglinks;

procedureintegrate(z;, v;)) do

discard elements itu, th, lastSent andir based on other values for;
uselr[t],, to replace each discarded[v][t];

| store(z;, v;) in agent-view,

function sum-inference(vng1l, vng2)

320 | if either vngl or vng2 has costthen

| return the other one;
321 | if vngl and vng2 have disjoint SRen

| return the result of applying sum-inference on them;
3.22 | if vngl and vng2 have different cositien

| return the one with lower cost;
323 | if vngl and vng2 have different targeben

| return the one with smaller target;

| return vngl
Algorithm 3: Procedures aofl; in ADOPT-ing
Proof. At quiescence, each agenj, has received the valued nogoods describing the costs ofaddtsh

successors (or descendants in the DFS tree when a DFS tregnigimed).

The lemma results by induction for an increasingly growiagfiz of the list of agents (in the order used

by the algorithm): It is trivial for the last agent.

local cost to the cost received from its children in the trég for ADOPT-A__) will be higher (or equal when

removing zero costs) than the result of addifyg ;s local cost to that of any descendants of those children.
Respecting the order in Remark 8 guarantees that this valoletained (according to the assumption of the
induction step, costs from children will be higher than tlee® from their descendants and prevail at Step

Assuming that it is true for agemy, it follows that it is also true for agem;_; since addingd;_1's

Submitted to JAAMAS on 5/07.

for every A; with higher priority thanA; (respectively ancestor in the DFS tree, when one is main-

1, and therefore the result of Step 2 is the sum of the costseofhildren). Therefore, the sum between the
local cost and the last valued nogood coming from its childtefines the last valued nogood senthy ;.
O

Theorem 9 ADOPT-ing returns an optimal solution.

Proof. We prove by induction on an ever increasing suffix of the [fsagents that this suffix convergesto a
solution that is optimal for the union of the sub-problemshaf agents in that suffix.

The induction step is immediate for the suffix composed ofafentA,, alone. Assume now that it is
true for the suffix starting witt4;,. Following the previous two lemmas, one can conclude thatiescence,
Aj—1 knows exactly the minimal cumulated cost of the problems$soduccessors for its chosen assignment,
and therefore knows that this cumulated cost cannot berlfettany of its other values.

Since A, has selected the value leading to the best sum of costs (betitgeown local cost and the
costs of all subsequent agents), it follows that the suffaxgents starting withl;,_; converged to an optimal
solution for the union of their sub-problems. [

The space complexity is basically the same as for ADOPT. R@ésdo not change the space complexity
of the nogoods. The largest space is required by the dastewused for storing potential payloads of future
(equivalents of) THRESHOLD messages.

Theorem 10 The space complexity of an agent in ADOPT-ing ig/G3}.

Proof. In an agent,A;, the space for storing theutgoing_links, and the agent view (assignments) is
linear inn, having at most one link and one assignment per agent. Sixdflatctures in ADOPT-ing store
valued nogoodd/[1..d], ca[1..d][i+1..n], th[1..i], A[1..d], Ir[i+1..n], lastSent[1..i-1]). Therefore the space
complexity is given by the complexity of the largest of them, which stores Q{n) cost assessments that
can be sent as threshold nogoods.

Each valued nogood contains a list of uprt@ssignments and a list of up toSRCs, its space being
linear inn. Therefore the total space requirement for an agent igi1€)(O

The space complexity for using the simulator of ADOPT-ing&entralized WCSP solver is given by the
sum of all the spaces of theagents, which is Q). The simulator also maintains the queuesrafeling
messages, which can be compacted such that only the lashserage is stored for each channel (Silaghi,
Sam-Haroud, & Faltings, 2000). There aren®) bidirectional channels, each of them requiring at most a
valued nogood (for an optimized simulator); thereforerthatal size is O%?), being smaller than the sum of
the sizes of the agents.

We expect that one can further optimize the space of a cergdaimplementation by abandoning the
message-passing paradigm of the simulator and by sharegatllata structures of the agents, directly
storing each inferred valued nogood at its final positiommgtructure:a. Additionalimprovements in space
complexity are possible by simply discarding the storage in favor of more compact aggregations of its
nogoods (wheré and the structure fof () mentioned in Section 3.4 are used alone withauytintegrating
incoming nogoods directly in), with a total space complexity of @62). However, some nogoods would
be lost and may have to be recomputed, and threshold nogamdd wo longer be available.

3.7 Optimizing valued nogoods

Both for the versions of ADOPT-ing using DFS trees, as wefioashe version that does not use such DFS
trees, if valued nogoods are used for managing cost infegertben a lot of effort can be saved at context
switching by keeping nogoods that remain valid (Ginsbe@f3). The amount of effort saved is higher if

the nogoods are carefully selected (to minimize their ddpane on assignments for low priority variables,
which change more often). We compute valued nogoods by ndimignthe index of the least priority variable

involved in the context. At sum-inference with intersegti®RCs, we keep the valued nogoods with lower
priority target agents only if they have better costs. Natpoptimized in a similar manner were used in

{01}

<>(#3)

Figure 7: A DCOP with four agents and four inequality conistta For example, the fact that the cost
associated with not satisfying the constraipt£ x; is 4 is denoted by the notatios{).

several previous distributed CSP techniques (Bessiere, &085; Silaghi et al., 2001b). A similar effect is
achieved by computing miresolution(j) with incrementally increasing j and keepimgwv nogoods only if
they have higher cost than previous ones with lower targets.

3.8 Example

Next we detail and contrast the executions of ADOPT-Yos, AD@\os, and ADOPT-aos illustrating the
different types of inferences involved in them. The mainadiggion follows the run of ADOPT-Aos while
describing differences with ADOPT-Yos and ADOPT-aos wheytoccur. Take the problem in Figure 7, a
trace of which is shown in Figure 8. ldentical messages senil&neously to several agents are grouped
by displaying the list of recipients on the right hand sidehaf arrow. In our implementation, we decide to
maintain a single reference for each agent’s secret contgtran our next description, the notation which
refers to the constraints of the agefitin a SRC isJ;. In the messages of Figure 8, SRCs are represented
as Boolean values in an array of size A value at index in the array of SRCs set t6 signifies that the
constraints ofd; are used in the inference of that nogood (i.£.js part of the justification of the valued
nogood).

Initialization. The agents start selecting values for their variables amd@amce them to interested lower
priority agents. There are no constraints betwegandz-. Similarly, there is no constraint betweeg and
xo; therefore, the first exchanged messagesifemessages sent by, to both successord; and A3 and
which propose the assignmerg=0. ConcurrentlyA; sendok? messages td, and A3 proposingr; =0.
These are messages 1 and 2 in Figure 8. The messages in Fayaergr®uped by their cycle in the simulator
based on rounds (i.e., assuming constant communicatiendatand no cost for local computations). The
simulator with asynchronous cycles can yield differentésfunction of the random latencies.

Handling data structures for ok? messages. On the receipt of thek? messages, the agents update their
agent-view with the new assignment. Each agent tries torgenealued nogoods for each prefix of its list
of predecessor agents, such &dy }, { Ao, 41}, {A4o, A1, A2}. A; receives the assignmentef and infers

a valued nogood based on its constraifn & x1). It is stored as cost assessment in its structubefore
being integrated ith. h[1] = I[1] = [{J/1},4, {(x0,0)]. {[1] (and h[1]) have cost O whilé[0] and A[0] have
cost 4. Thereforel; switches the value of; to 1 and announces it td, and A3 via message 34; cannot
compute any valued nogood to send4g.

Submitted to JAAMAS on 5/07.

ok?(xp,0)— . Ay, Az
Ok’.7<5017 0>—> AQ, A3
Ok’.7<5017 1>—> AQ, A3
nogood|F, F, T, F|,3, (x1,0)]— A
nogood|F, F, F,T|, 2, (x0,0)]—, Ap, Az
___nogood|F, F, F,T|,5, {x0,0)(x1,0)]__, A1, A2
0|(?<.’EO7 1>—, Al, Ag
nogood|F, F, F, T, 2, (x0,0)]— Ap

= o

Jun

w

w

@ No o s wN e
S R e

»

9.A> ___nogood|F,F,T,T|,5,(xo,0){(x1,0)]— Ay
10. A2 __ add-link <IEO, 0>4, Ao
11.A> ___nogood|F, F,T,T|,8, (xo,0){(z1,0)]— Ay
12.As ____ nogood|F, F,F,T|,2,(x0,0)]— Ao
13. Ao —Ok?<ro7 1>—, A2
14. A1 —Ok?<x17 0>—> AQ, A3
15.A2 ___ nogood|F,F, F,T|,2,{x0,0)]— . Ap, A1
16. A2 ___nogood|F, F,T,T|,5, (xo,0){(x1,0)]— Ay
17.A> _____ nogood|F, F,T, F|,3,(x1,0)]— Ay
18. A3 nogood|F, F, F,T|,3,(x1,0)]— , A1, Az
19. A nogood|F, T, F, T, 3, (x0,1)]— Ap
20.A1 __ nogood|F,T,T,T|,4,{xo,)] — Ag
21. A1 —Ok?<"217 1>—, AQ, Ag
22. Ao nogood|F, F,T,T|,6,(x1,0)]— Ay
2340 — @ ok?(x0,0)— Ay

24. Ag __ok?<m0,0>threshold [|F, F, F,T|,27 (x0,0>]_) Ag, A3

25. A3 nogood|F, F, F,T|,2, (x0,0)]—, Ag, Az
26. Ao nogood|F, F, F,T|,2, (x0,0)]—, Ao, A1
27. Ay nogood|F, T, F,T|,2, (x0,0)] — Ao

Figure 8: Trace of ADOPT-Aos on the problem in Figure 7. Hontal lines separate groups of messages
with the same logic clock (i.e., messages that are part o$dinge round in a simulator based on
rounds).

After the agen#d, gets message 2, it compute$[id] a valued nogood with cost 3 (conflict with # x5).
This valued nogood is copied if0] andlastSent[1] before being sent tal; via message 4. No nogood can
be computed for.

Remark 11 (ADOPT-Aos vs ADOPT-Yos) In ADOPT-Yos this message would also include the current lis
of knownancestors which here contains onlyl; .

When A5 gets message 1, it tries to separately infer nogoods forrifixps of the set of agent$A,},
{Ap, A1}, and{ Ay, A1, A>}. For the sef Ay} it detects a conflict with its constraim # xo from which it
infers a valued nogood stored as cost assessméfif] jicopied toh[0] andlastSent[0] before being sent to
A, via message 5. For the setly, 4, }, the computed nogood is identical with the one fgrand its target
does not coincide withl,, the last agent of the corresponding set. Therefore ADOB3gends no message
to A;. Message 5 is also sent #y according to the rule that an agent always attempts to segolads to its
predecessor, to ensure optimality. Its nogood is stored lastSent[2].

Remark 12 (ADOPT-Aos vs ADOPT-aos)Note that message 5 is not sent4g, as would be the case with
the version ADOPT-aos.

Remark 13 (ADOPT-Aos vs ADOPT-Yos) With ADOPT-Yos, message 5 would not be sen;tcsince the
current parent ofd; would beAy.

After receiving the assignment in messagel? detects a new conflict with its constraint # x35. From
its two constraintsd; infers a new valued nogood, stored in i8] and A[0], and sent ta4; and A, via
message 6. Note that a nogood is not seMgas the nogood to be sent is identical to the last nogood sent
to that destination (as recordediinst Sent[0]).

Remark 14 (ADOPT-Aos vs ADOPT-Yos) With ADOPT-YosA; would become the parent of; at this
stage due to the non-zero cost of the constraint betwgesnd ;. As’s known ancestors would become
Ag,A1, and this list would be sent with all nogood messages.

Handling data structures for nogoods. As a result of getting the nogood in message 5 frésmthe agent
Ay stores that nogood iir[3], copies it toca[0][3] (which was empty), and copies it further itfj0]. Since
now the cost of,[0] is 2, A, decides to switch to its next value, 1. This assignment i®anoed via message
7.

After receiving message 3, registers that nogood in its[3], ca[0][3] and A[0]. Computing a nogood
for Ay, the nogood of message 5 is storeddantSent[0] and sent to4, via message 8. AgemM, also
computes a nogood for destinatidn, where it can also use the local constraint withwhich yields fori[0]

a nogood with cost 3. Combinirn0] with ca[0][3] by sum-inferenceAs infers a nogood, which it stores
in A[0] andlastSent[0] before sending it tod; via message 94, detects a new variable in the nogood in
message 6, and sendsaxutd-link message tal asking to be notified of changes to the assignmgnt 0.
The nogood in message 6 replaces the one storéd3h Since the new nogood cannot be combined by
sum-inference with the old nogood n[0][3] but has a higher cost, it also replaces that cost assest and
leads to the computation by sum-inference of message 114erii¢0A; .

In the following we skip the details of changes to data stiret that are similar to steps that have already
been presented. When the new assignment;ofh message 3 is received at agehy, the old nogoods
based on:; are discarded from it§0]. To send a nogood td,, a new![0] is computed based solely on the
constraintzy # x3. Nogoods computed for the other prefixes of agents do nardifbm this one since the
constraint withz; is satisfied. This nogood with cost 2 is sent via message I#tagentd,. Note that the
nogood does not need to be sentpbecause it is not different from the one just sent earliea (aessage
5) and recorded ifast Sent[0]. After getting message 4, deletes its nogoods ii0] and ca[0][3], infers
a new valued nogood ij1] with cost 4, and switches to the value 0 (announced vissags 14).

Use oflr data structure. Let us assume that, receives message 12 before message 3, which is possible
and allows us to illustrate better the usage ofithstructure. On receiving message 12, agénstores it in
Ir[0]. However,As does not propagate it further ta[0][3] since the current cost assessment had a higher
cost and cannot be combined by sum-inference with the newstraing the reference to the constraints of
As). When A, receives message 3, it deletesdt$0][3] and /[0], which are based on the older value of
x1, and use$r[3]. After copyingir[3] through itsca[0][3] and k[0] data structures where all other nogoods
were empty, it passes it further #y and toA; via message 15 (storing it &tstSent[0] andlastSent[1]).
Since Ag’s value forz is different from the one in thadd-link message 104, answers ta4, with the
message 13.

Now A, receives message 14 and computes a new local nd§@oaith cost 3 that is combined by sum-
inference with the nogood received in message 12 to gentateogood in message 16. No change appears
in the nogood computed specially for the targgt However, afterd, also receives message 13 it discards
the nogood received via message 12 (which was based on asteditwssignment) and infers itf0] solely
based ori[0]. The resultis sent tal; with message 17. After receiving the two assignments in ageEs13
and 14 (in this order) the agent infers from its constraint; # x; a valued nogood sent td; and A, via
message 18.

Min-resolution. Now our example encounters the first nontrivial min-resolut When agentl; receives

message 18, it stores that nogood:#8] and ca[0][3]. No other nogood is stored i at this point (the

nogood received with message 1%:irj0][1] has already been invalidated by the new assignmemtgasage
7). The only other nogood held by; at this moment is the one 1] = [{J1}, 4, (zo, 1)], which is due

to its constraint withz. [[1] is copied inh[1] while ca[0][3] is copied ink[0]. The two are combined via
min-resolution to generate the nogood in message 19 (alsedsinlastSent[0]).

min_resolution([{Js}, 3, (x1,0)],[{/1}, 4, (xo, 1)]) — [{J1, J3}, 3, (x0, 1)(x1,0)]

Message 16 is discarded at its destination because itassig forz, is no longer valid. On the arrival of
message 17 (which is concurrent with messages 16 and 18)gtsod is stored ifir[2] and ca[0][2]. Now,

Submitted to JAAMAS on 5/07.

when computing the updated nogood to be semph[0] is computed by sum-inference en[0][2] and
ca[0][3] obtaining [{ J2, J3}, 6, (z1, 0)].

sum_inference([{J2}, 3, (x1,0)],[{J3}, 3, (x1,0)]) — [{J2, J3}, 6, (x1,0)]

The obtained valued nogood has a higher cost than the ohglfpcausing the agent to switch the assignment
of 21 to 1 (announced via message 21). When min-resolution iseabph the two nogoods ih[0] andh[1],
the obtained nogood is sent # via message 20.

min_resolution([{J2, J3}, 6, (x1,0)], [{J1}, 4, (x0, 1)])
- [{Jl, JQ, Jg}, 3, <$0, 1><$1, O>]

Convergence. AgentA; also receives message 18, storing the nogodg&) and inca[0][3]. Its constraint
xo # x1 generates a nogood with cost 3/[0], which combined by sum-inference with the nogood:in
leads to a nogood with total cost 6, visible in message 22.

AgentAq receives message 19 and registers the nogobdih ca[1][1], and h[1]. The cost assessment
obtained inh[1] has a cost higher than the one i#f0], determining the switch of the assignmentxf
to 0 (announced via messages 23 and 24). Message 24 alspotarns threshold nogood obtained from
ca[0][2] and ca[O][3] (received via messages 15 and 5). The agéntevaluates its constrainty # 3
inferring a valued nogood if{0], which propagates through itd0], lastSent[2], lastSent[0] to messages
25. Similarly A, propagates this nogood t4,, which propagates it further through its data structured an
eventually delivers it tod, via message 27. Messages 25, 26 and 27 basically confirmréglknown
threshold nogoods. Further research may make it possilatediol then®.

We have modeled solved this example with our implementdto™mDOPT-Aos and ADOPT-aos with
rounds. ADOPT-Aos used one more cycle but 3 less messagesb@PT-aos.

3.9 Theoretical comparison between ADOPT-ing and ADOPT/AB

ADOPT-ing vs ADOPT The difference starts with adding SRCs for justificatiorpleitly bundling cost-
related data into valued nogoods such that associate@ides can be performed formally, and enabling the
destination of the nogood (cost) messages to include ogenta besides the parent. Internal data manage-
ment is also different:

1. The DFS tree can be dynamically detected (ADOPRT})YIt can be based only on already used con-
straints.

2. ADOPT did not havadd-link messages.

3. In ADOPT (as a result of not using SRCs and not having owsroh the order for combination of
nogoods) messages could be sent only to the parent rathmetatiaay ancestor.

4. ADOPT could not use explicit max-inference (becausedtrdit maintain SRCs).

5. ADOPT did not maintain data structures likeandlastSent to avoid resending the same message
several times and easy the network load.

6. ADOPT did not provide guidelines for using any additiostdrage other than the minimal ones
(ADOPT did not specify/have an equivalent of Lemma 6 witlesulor using cost information).

7. New assignments arriving first via nogoods can be deteagesiich in ADOPT-ing (as in (Silaghi &
Faltings, 2004)) while in ADOPT they had to be considered old

14. E.g, by a mechanism for storing threshold nogoods indeSent of the recipient and in thér of the sender, resending the
lastSent when the threshold nogood does not apply.

ADOPT-ing vs ABT Unlike ABT:

¢ An ADOPT-ing agent may send possibly irrelevant messagasgiven predecessor (its parent in the
current DFS tree). It does this to guarantee optimality igiee non-idempotent aggregation operation
of DCOPs.

e The nogoodmessages have an associated cost and justification (SR@Gske Bre used to find the
assignments with the least conflicts in case of an unsatisfiabblem.

3.10 Possible Extensions

We addressed ADOPT-ing as an asynchronous version of A*erexactly a version of iterative deepening
A*, where the heuristic is computed by recursively using APRing itself, and where the composition of
the results of recursive ADOPT-ing is based on backtracking

A proposed extension to this work consists of composing ¢lsensive asynchronous heuristic estimator
by using consistency maintenance. This can be done witmthaduction ofvalued consistency nogoads
Details and variations are described in (Silaghi, 2002, 30Gilaghi et al., 2004; Gershman, Meisels, &
Zivan, 2006, 2007; Sultanik et al., 2006). The control of #pace requirements for such extensions may
be based on the use of consistency nogoods to simulate thibutisd weighted arc consistency in (Silaghi
et al., 2004), while the maintenance of this control of spacasynchronous search may be similar to the
one for distributed CSPs described in (Silaghi & Falting304). Another possible extension is by further
generalizing the nogoods such that each variable can bgnaska set of values. This type of aggregation
was shown in (Silaghi & Faltings, 2004) to improve searcld #e extension is detailed in (Silaghi, 2002).

In our implementation we concentrated on minimizing theddigne of the computation, evaluated as the
number of rounds on a simulator. The optimization of localgassing (which is polynomial in the number
of variables) is not at the center of attention at this stageal computations can be optimized, for example,
by reusing values of structurésand » computed at min-resolution for a given target agent in otihgj
values of these structures at the min-resolution for messsagnt to lower priority target agents. Further
work can determine whether improvements could be made bingtseparately the nogoods bffor each
targetk. The size of messages in ADOPT-Yos could be slightly rediigeabpending a given content of the
ancestors list only once to each target. ADOPT-Yos is better than ADQ¥®E in terms of simulated time.
Agents in ADOPT-Yos could insert from the beginning all thegighboring predecessors in their ancestors
list, obtaining from the firstx rounds the DFS tree of ADOPT-Dos, thereby replicating tHiiehcy of
ADOPT-Dos.

Other extensions seem possible by integrating additivedirand bound searches on DFS sub-trees, as
proposed by (Chechetka & Sycara, 2006; Yeoh, Koenig, & FeRG07). This can be added to ADOPT-ing
by maintaining solution-based nogoods as suggested iagl8jl12002). It remains to be seen if the quality
of solutions with a certain value can be predicted with theliéque in (Petcu & Faltings, 2006b). Further
improvements are possible by running ADOPT-ing in pardtieseveral orderings of the agents (Ringwelski
& Hamadi, 2005; Benisch & Sadeh, 2006).

ADOPT-ing can be seen as an extension of ABT. The extensigxBdf called ABTR (Silaghi, Sam-
Haroud, & Faltings, 2001a; Silaghi, 2006) proposes a wayxterael ABT-based algorithms to allow for
dynamic ordering of the agents (Armstrong & Durfee, 1997)ork\in the area consistent with this approach,
but mainly favoring static ordering, appears in (Liu & Sygat995; Chechetka & Sycara, 2005). Finding
good heuristics was shown to be a difficult problem (Silagdlale 2001b; Zivan & Meisels, 2005) and here
one will need to take into account the importance of the erist of a short DFS tree compatible to the
current ordering.

4. Experiments

We implemented several versions of ADOPT-ing. Some vessige valued nogoods while other versions
use valued global nogoods. Some versions maintain an @tioRS tree precomputed on the constraint

Submitted to JAAMAS on 5/07.

graph. Some versions exploit more opportunities to seniboatnogood messages than others. In the
version ADOPT-pos, valued nogoods are sent only to the pafethe current agent in a maintained DFS
tree. In ADOPT-dos, each agedt tries to compute a valued nogood after each change, for eaith o
ancestorsd; in the DFS tree, and sends this nogooditpif it is new and has a non-zero cost. ADOPT-aos
can be seen as a version of ADOPT-dos where the DFS tree isg@dithe linear list of agents (each having
the predecessor as parent). ADOPT-Aos is a version of AD&#sTwhere an optionalogoodmessage is
sent only if the destination of the message is the same aapet bf the nogood in the payload. The same
holds for the relation between ADOPT-Dos and ADOPT-dos. Widrsion ADOPT-Yos is a hybrid between
ADOPT-Aos and ADOPT-Dos where initially agents can onlyte@tneighboring agents and the DFS tree is
dynamically discovered during the search (more similar BTA The version of ADOPT-Yos using method
(b) in Step 1 of Remark 8 is denoted ADOR®s.b The version of ADOPT-Yos where the computation of
h for a destination agent reuses the results computed fondsstors is denoted ADOPYIBs.a.opt

ADOPT-pon, ADOPT-don, and ADOPT-aon are variations of ADg#®s, ADOPT-dos, and ADOPT-aos
where valued global nogoods are used instead of valued misgdote that ADOPT-pon is our implemen-
tation of the original ADOPT. For experiments with randomasege latencies and for outputs not provided
by the original implementation of ADOPT (e.g., ENCCCs), veallo provide the results of our implementa-
tion (ADOPT-pon). While ADOPT-pon and the original implemation of ADOPT performed similarly in
general, ADOPT-pon solved in a few hours the instances fachviine original ADOPT implementation was
interrupted after some weeks, confirming that some diffegsrin details may exist. Functional differences
between ADOPT-pon and the original implementation of ADQRAy lie only in petty details not described
in (Modi et al., 2005). To specify that in a certain experirnere used our implementation rather than the
original implementation of ADOPT, we will denote it withDOPT (-p)

We implemented a version of ADOPT (using our implementatbrADOPT-pon with threshold no-
goods) that uses a chain of agents like ADOPT-aos, rather e DFS tree. This version is denoted
ADOPT.chainWe also experimented with versions of ADOPT-aon, ADOPM;dkDOPT-aos and ADOPT-
Yos where threshold valued nogoods are not used. This hétpesblate and evaluate the importance of
threshold valued nogoods in ADOPT-ing.

The algorithms are compared on the same problems that adetaseport the performance of ADOPT
in (Modi et al., 2005). To correctly compare our techniquéthe original ADOPT, we have used the same
order (or DFS trees) on agents for each problem. The impabtieoéxistence of a good DFS tree compatible
with the used order is tested separately by comparison witmdom ordering. The set of problems dis-
tributed with ADOPT and used here contains 25 problems foh geioblem size. It contains problems with
8, 10, 12, 14, 16, 18, 20, 25, 30, and 40 agents, and for eattesé numbers of agents, it contains test sets
with density 20% and with density 30%. A smaller set of proidewith density 40% is also available. The
density of a (binary) constraint problem'’s graph witlvariables is defined by the ratio between the number
of binary constraints an@@. Results are averaged on the 25 problems with the same prame

We believe that the size of problems in this set is sufficielatige, given that the average simulated time
(expected time of a real solver) for the instances with 4hégat density 30% is between 3 hours and 27
hours, (and up to 10 days at 25 agents and density 40%), ldngemwhat users are expected to wait for a
solution.

Our simulator allows for defining the latency of each messagéd we performed two sets of tests. In
the first set of experiments, we followed a common practicesirig the same latency for each message (to
be referred asynchronous cyclgs In a second set of experimetiswe also performed experiments with
random message latencies (to be referred@gchronous cyclgs The random latencies were generated
in the range of common values for Internet communicatioasoyitical fiber between Israel and the United
States which is between 150ms and 250ms (Neystadt & Har®7)lL To reproduce our results for the
second set of tests, one has to seed the standard C 'randand)ion with the value 10000 and generate

15. Messages to predecessors other than the previous aggatrént agent for versions with DFS trees).
16. At the request of an anonymous reviewer.

each latency as carried out in (Neystadt & Har’El, 1997):

random() * 100.0()
LONGMAX "

FIFO channels are ensured in the second set of tests bygs#ttndelivery time of each message to the
maximum between the value obtained using the latency yddigethe aforementioned computation and the
delivery time of the last message sent on that particularmsaonication channel. Messages with the same
value for the delivery time are handed to the destinatiomtigea FIFO manner through a queue.

In graphs, an algorithtADOPT-DON is typically shortened t& ON. When confusions are possible, the
name of the algorithm is followed by the notatiasyncto denote asynchronous cycles andndsto denote
synchronous cycles.

latency = 150 +

<

4

© <

2 o JAsync vs Sync Cycles

V% X

E 1 L]

3 % 4Density: 20%

o 9 —><— Aos-rounds

o Aos-async (50ms)

2o + Aos-async (100ms)

Q

> v

c

o %

n 3

k) (4

O ¥

6 (4
\90I'T'I'I'I'I'I'I'I'I'I'I'I'I'I'I'I

8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Agents

Figure 9: Asynchronous vs. synchronous cycles for probleittsdensity 20%.

We compare the number of synchronous cycles with the numbasymchronous cycles obtained on
our two simulators of ADOPT-ing. For this experiment we ats@luated ADOPT-Aos using a smaller
distribution of values for the message latency (150ms ta1&)Qo see its influence on results. The results
show an impact on the different versions of ADOPT-ing, raggrom 1% to 5%. A similar impact may be
explained by the common nature of the different versionse& cases are shown in Figures 9 and 10. For
ADOPT-aos the version based on synchronous cycles is 3%r fdstn the version with 100ms of random
variation in latency. The performance of the implementattd ADOPT-Aos based on synchronous cycles
is between the performance of its implementation with 50amslom variation of message latencies and the
performance of its implementation with 100ms random vatabf message latencies. It differs from them
by less than 1%.

Particular care has to be taken in the evaluation of digeithalgorithms because one needs to take into
account two tightly related factors of a very different matulocal computations (constraint checks) and
message latencies. The classical solution to this prold@émdompute several measures at different possible
ratios between the latency of a message and the time assbwidh a constraint check, yielding the behavior
of the techniques in different scenarios. Here we do thisyaisafor the ratios:10°:1, 10°:1, 10%:1, 103:1,
102:1, 10:1, 1:10. The actual ratio for a given application scendepends on the speed of the used CPUs,
but we want to get a hint about the order of magnitude of this rethe operating point (OR)in the targeted
application scenario of remote Internet communications.tMérefore compute the average amount of time

Submitted to JAAMAS on 5/07.

Async vs Sync cycles
Density: 30%

—><— Aos-rounds
—<— Aos-async (100ms)
—+— Aos-async (50ms)
aos-rounds
aos-async (100ms)

Cycles (longest causal chain)
&
L1 1 I L1 1 I L1 1 I L1 1 I L1 1 I L1 1 I 1

8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Agents

Figure 10: Asynchronous vs. synchronous cycles for probletith density 30%.

Agents checks/latency
ADOPT (-p) | Aos aos dos Yos

8 62518 77417| 78076 | 59314 | 65032
10 50104 67731| 69560| 48067 | 56087
12 46666 61784| 61899 | 43366 | 50637
14 42088 55634 | 55209 | 38715| 44616
16 38042 50425| 47544 | 34281 | 39949
18 29673 41209 | 36854 | 26142 | 32062
20 25104 35455| 31078 | 21064 | 27012
25 17437 24809| 21998 | 14510 19225
30 12519 17911| 14521 | 10138| 13986
40 7041 10654| 8461 | 5899 | 8555

Table 1: The operating point (checks per message latengy)aiiems at density 30%.

spent by our simulator for a constraint check. This is coraguiy dividing the total running time of the
simulator by the total number of constraint checks durirgglocess. The result for different problem sizes
is shown in Figure 1. Our operation point is shown to vary lestv5000:1 and 80000:1, at average message
latency 200ms’

Figure 11 shows equivalent non-concurrent constraint kh€ENCCCs) (Chechetka & Sycara, 2006;
Silaghi & Faltings, 2004; Meisels, Kaplansky, Razgon, &&iy 2002; Silaghi, Sam-Haroud, & Faltings,
2000; Yokoo et al., 1992) for the problems at size 40 and teB88%. There the overall cost is studied for
the case where the latency of messages decreases to lowemih respect to the cost for constraint checks
(predicting behavior for local area networks and MIMD pleiatomputer systems with efficient message
passing). With equivalent non-concurrent constraint kbethe intersection of the graph with the vertical
axis yields the number of hon-concurrent constraint chésk3CCs).

17. Earlier experiments with a slower CPU yielded a ratioiach1000:1.

25 3
* 1 /ENCCCs
Y%) o]
3 Agents: 40
*, - Density:-30%;
" i
O Y%
@] ®X0&_§_+Yos _________
@) 3 —Lf—Dos
g &] & dos
" _E_ﬁi‘l)asop‘r(-)
‘95 —- ADOPT.chain
e@xo)E
JQXO]
s

0.1 1 10 100 le+03 le+04 le+05 le+06
constraint-checks/message-latency

Figure 11: Equivalent non-concurrent constraint checkéGECs). The two vertical segments delimit the
operation point area, between 5000 and 80000 checks peagetsency.

Equivalent message-latencies

—— Yos

Agents: 40 Do

Aos

—5— dos

®y -D-eDSi-ty,'_ 30%_ & o S

—F— ADOPT.chain

0

Q

O

c

Q

-

(]

T

g _

c % 3

m -

n]

w -

£,

-+ Gx T gt/
c 06‘ = = = = =
O 3 v
©]

2 .

3\)0

Oy, Frm=S === —e O —————————

le-07 1le-06 1le-05 0.0001 0_.001 0.01 _0.1 1 10
message-latencies/constraint-check

Figure 12: Equivalent latencies. The two vertical segmeetanit the operation point area, between 5000
and 80000 checks per message-latency.

We obtain what we consider a slightly better visibility oéthehavior with another kind of graph, measur-
ing equivalent latencies rather than equivalent non-coeaticonstraint checks. This is obtained by dividing
each point in the ENCCCs graph by the number of checks/lgtenthat point. Such equivalent latencies
are shown in Figure 12. We note that the closest analyzeddgteheck ratio to the ones found experimen-
tally is 10%:1. Once the OP is fixed, the two metrics yield the same graiffleridg just by a scaling factor

Submitted to JAAMAS on 5/07.

a o Q"OG\E_'_____'_____Q__
° o "3 Density 30%
£ 9 .

n O]

g 24] OP1:10000 |
2y &

-] | —< Yos

o 4 | —8%— Aos

g 4 +— Dos

0 v —&— ADOPT (-p)

g oy

E 75 ADOPT.chain

=]

Q _

o 4

s- OXO\;i\ _______________________
L

16 18 20 22 24 26 28 30 32 34 36 38 40
Agents

12

14

Figure 13: Equivalent latencies and ENCCCs in the operationt 10%:1 checks per message-latency.

(Figure 13). Figure 12 shows that the behavior in this OPastically identical to the one obtained from the
number of asynchronous cycles (equivalent to a ratio fjiven by the intersection of the graph in Figure 12
with the vertical axis). Therefore in the following we looloser at the number of cycles.

Async Cycles

—<— Aos
—%*— aos
—+— Yos
—S— ADOPT (-p)
dos
Dos
—F— ADOPT.chain

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Agents

Figure 14: Asynchronous cycles for problems with density630

The length of the longest causal (sequential) chain of ngessaf each solver (the number of asyn-
chronous cycles), averaged on problems with density 30%iyén in Figure 14. Results for problems with
density 20% are given in Figure 15. Results for density 40&bsdwown in Figure 16. We can note that
version ADOPT-Yos of ADOPT-ing brought an improvement opegximately 10 times on problems with

—>&— fos

& 11 v
0‘0 i gdos

Async Cycles
S
|

Dos
ADOPT (-p)

ADOPT.chain

6
2 B e
-
0.0 1 > 2
T Tl T T T T T rrrrrrr I
8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Agents
Figure 15: Asynchronous cycles for problems with density620
2,
T e
S
%« 1/ Density 40%
wn X —_— - — — —
9 % |
@)
> 4 | —>%— Dos
(@) > 1 —Y—Yos
dos
8 0><0 —_1——-=—Ass ——————f——————
> S /x— aos
0 —4/— ADOPT (-p)
< 7 |~ ADOPT.chain
<
T
)
o T 1
12 14 16 18 20 22 24
Agents

Figure 16: Asynchronous cycles for problems with densitye40

40 agents and density 30%, and of approximately 12 timesaligms with 25 agents and density 40%. The
improvement at density 20% is 2 times when compared to ADGP)I§ Therefore, sending nogoods only
to the parent node is significantly worse (in number of cyglésan sending nogoods to several ancestors.
With respect to the number of cycles, the use of SRCs with adgomntexts practically replaces the need
to maintain the DFS tree since ADOPT-aos and ADOPT-Aos anepewable in efficiency to ADOPT-dos
and ADOPT-Dos. New versions of ADOPT-ing are up to 14 timeseiathan ADOPT.chain, proving that

18. At density 20%, with synchronous rounds, the origingllementation of ADOPT performs 3.5 times worse than ADOR), (-e.,
7 times worse than ADOPT-Yos. This may be explained by somffi¢gient detail in the original implementation of ADOPThee
the deviation from ADOPT (-p) does not appear at other diessit

Submitted to JAAMAS on 5/07.

Density 30%

Total # of messages

o
1 1 IIIIIII

o

aos
Aos
dos
Dos
ADOPT.chain
ADOPT (-p)
Yos

B
1 IIIIIII

12 14 16

18 20 22 24 26 28 30

Agents

32 34 36 38 40

Figure 17: Total number of messages at density 30% (log)scale

Agents

16

18

20

25

30

40

ADOPT-aos
no threshold

690.24
843.2

1420.76
1787.16

1392.48
1801.88

5687.28
7608.44

12254.68
17507.16

64518.6
101956.4

ADOPT-Yos.b
no threshold

701.72
872.76

1438
1781.96

1345.56
1708.72

5540.84
7391.28

12394
17531.36

59114.36
92745.44

Table 2: Impact of threshold valued nogoods on the longestadahain of messages (asynchronous cycles)
for versions of ADOPT-ing, averaged on problems with dgn3i%.

ADOPT-ing is not a simple application of ADOPT to a chain ofats, but that justified valued nogoods
literally succeed in dynamically discovering the DFS tree.

Versions using DFS trees require fewer parallel/total ragss, being more network friendly, as seen in
Figure 17. Figure 17 shows that refraining from sending t@mynoptionalnogood messages, as done in
ADOPT-Aos, ADOPT-Yos and ADOPT-Dos, is 4 times better atgityr80% than ADOPT (-p) in terms of
total number of messages, while (as shown by previous gyapaintaining the efficiency in cycles compa-
rable to ADOPT-aos and ADOPT-dos. At density 40% ADOPT-Yo§ times better than ADOPT (-p) in
terms of total number of messages. ADOPT-Yos is the mostaffi@lgorithm in terms of total number of
messages, being 30% better at density 30% than the secaraldg@ihm, ADOPT-Aos. At density 40% it
is 12% better than ADOPT-Aos.

We do not show run-time comparisons with the original impdetation of ADOPT since our versions
of ADOPT are implemented in C++, while the original ADOPT iisJava (which obviously leads to all our
versions being an irrelevant order of magnitude faster\wéler, we provide run-time comparisons with our
implementation of ADOPT, ADOPT (-p). A comparison betweka time required by versions of ADOPT-
ing on a simulator is shown in Figure 18 for asynchronousesclt reveals the computational load of the
agents which, as expected, is related to the total numberoiamged messages.

A separate set of experiments was run for isolating and atialy the contribution of threshold valued
nogoods. Table 2 shows that the use of threshold nogoodsstaimatves the computation time. Another

0000——————m-"m-—m-—-"m—-1r—m--—-"to e ——

Time in Simulator
T Density 30%

100.0 ————————

seconds

%Dos :'A
10.0 —— % ADOPTchan |~ — 272 — T T ———-—

ADOPT (-p)

II
8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Agents

Figure 18: Actual time in seconds using our simulator asesad¥ centralized WCSPs (log scale).

A
6000.0 ; . — [————— ===
Time in Simulator
ws0000+—/f(—/——M— ™—mAM—mmMmm™ M M™™M———— — — — — -
-O - 0
c Density 30%
Ss00t—ornooe--—-+——— L
O
(O] —<— a0s
n ?Aos
. d
3000.0 D(:)Ss
ADOPT.chain
ADOFPT (-p)
2000.0—— 71 You
i0000+—/W—————"———— —— —
0.0%ﬁilririililiililIﬂé‘illllIIIIIIIIIIIIIIII
26 28 30 32 36 38 40

34
Agents

Figure 19: Actual time in seconds using our simulator asesod¥ centralized WCSPs.

Agents 16 18 20 25 30 40
DFS compatible, 708.8 1429.48 | 1357.07| 5579.56| 12.4*10° | 60*10°
random order | 4807.44| 15.6*10% | 33*103 | 219*10% | 708*103 —

Table 3: Impact of choice of order according to a DFS tree @nldingest causal chain of messages (asyn-
chronous cycles) for ADOPT-Yos, averaged on problems wattsity 30%.

Submitted to JAAMAS on 5/07.

experiment, whose results are shown in Table 3, is meantdluate the impact of the guarantees that the
ordering on agents is compatible with a short DFS tree. Weuatathis by comparing ADOPT-Yos with an
ordering that is compatible with the DFS tree built by ADOR&rsus a random ordering. At 30 agents it
was found to be 60 times more efficient to ensure that a DFS#ists rather than to use a random ordering.
The results show that random orderings are unlikely to bepadiible with short DFS trees and that verifying
the existence of a short DFS tree compatible to the ordeninggents to be used by ADOPT-ing is highly
recommended.

©
=Z
O
O
0O
n

S . 1Density: 30%
O
=2

Xp =
6 4 —< Aos
1 —< aos
14—+ Dpos
i ——— dos
2 /X~ ADOPT (-p)
Gx —%— Yos L
9% £+ ADOPT.chain

2z IIIIIII!

‘2 ks aﬂ
GX T
oy*l/\'\@ﬁ/'l'l'l'I'I'I'I'I'I'I'I'I'I'I'I
8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Agents

Figure 20: Asynchronous non-concurrent constraint chék¥CCs).

The number of non-concurrent constraint checks when message considered instantaneous (NC-
CCs (Meisels et al., 2002)) is relevant for showing the etgatperformance of the algorithms on MIMD
parallel computer systems. We show NCCCs for our algorithmfSigure 20, (they can also be extracted
as the intersection points of ENCCCs curves with the coattéimxis in Figure 11). The simulated time
of the computations, where the random latencies of the rgessare accumulated along the longest causal
chain, is shown in Figure 21. The time taken for the local cotappon handling/generating each message
(Figure 18) is hundreds of times smaller than the latencyhefassociated messages, falling close to the
numerical precision of this accounting (Figure 22). The kesaratio (for ADOPT-ao0s) is around 80.

We compute the maximum and minimum number of asynchronoclegyf the simulations for each
problem size, and the obtained graph is shown in Figure 23.

We have implemented versions that do not use threshold isgoo ADOPT-aon and ADOPT-don (vari-
ants of ADOPT-ing based ovalued global nogoodmstead of the (Dago & Verfaillie, 1996)'s valued no-
goods). Those versions were compared with the correspgndirsions of ADOPT-aos and ADOPT-dos,
evaluated using synchronous cycles, and the results omgpnstwith density 30% are reported in Figure 24.
The versions using valued global nogoods perform clearlyse¢30%) than the corresponding versions
with (Dago & Verfaillie, 1996)’s valued nogoods (ADOPT-aasd ADOPT-dos). Since this suggests that
valued global nogoods are not a promising alternative t@(f Verfaillie, 1996)’s valued nogoods, we did
not evaluate their use in combination with other techniqugdored here. Figure 24 also shows the behavior
of a version of ADOPT-pon (implementation of ADOPT), withdbreshold nogoods. It took more than
two weeks for the original ADOPT implementation to solve arfiehe problems for 20 agents and density
30%, and one of the problems for 25 agents and density 30%h{ahwnoment the solver was interrupted).
Therefore, it was evaluated using only the remaining 24 lgrob at those problem sizes. SRCs bring im-

Density 30%

— —X<— ADOPT(p) —————————=———~————— —— -
Dos ~
+

dos

)Q
1 IIIIIIII

simulated seconds
0)(

2
N7 IIIIIIII

8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Agents

Figure 21: Simulated time in seconds, each latency beingrdrandomly between 150ms and 250ms (for
problems with density 30%).

)
c @ T————————T—\—
.0

-t -

8

3 ‘)6‘ S S
o 9

£ | Density 30%

(w]

x e 4

c @

O

2 -

S~

() &

E ° —%— Dos

=] —3— dos

! 11—+ Yos

8 —5— Aos

2 Y%, —H A aos

© 4 —/— ADOPT (-p)

S | —t4— ADOPT.chain

£

U) 0 T I T I T I T I T I T I T I T I T I T I T I T I

Figure 22: Ratio between total expected time where eachdgtes drawn randomly between 150ms and
250ms, and the local time of an agent (for problems with dgr3$1%).

provements over versions with valued global nogoods, sBREs allow detection of dynamically obtained
independence.

We tried to figure out the importance of using method (a) nathen method (b) in Step 1 of Remark 8
(comparing obtained versions ADOPT-Yos and ADOPT-Yosdny] we found the two alternatives to be
equally good (ADOPT-Yos being less than 1% better than ADQ®3.b). We also evaluated the effects
of optimizations in local computations, by computing thgyoods for an agentl;, based on the nogoods

Submitted to JAAMAS on 5/07.

<
O, —_— — [N IS,
(2
° a Yos (min)
Dos (min)

_Densiﬁy/BO% — ks

—5— Aos (min)
—><— aos (min)

f _ADOPT (p)(min) __ [JJ]
ADOPT (_p) (Max)
aos (Max)

‘ —Q— Aos (Max)

2 35— dos (Max)

i Dos (Max)

Yos (Max)
—Z—n

D@Pﬁmin—%ﬁny————— —

—~— ADOPT.chain fMax)

Async Cycles

8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Agents

Figure 23: The minimum and the maximum number of asynchrsmyules for each problem size (at den-

sity 30%).
35000 T T T T
ADOPT
3 7 ADOPT-aon
2 J ADOPT-don --
3 ADOPT-pon -
30000 |- ADOPT-a0s -3~ |
ADOPT-dos - -m--
25000
20000
15000
10000
5000
"""" agents
Oi\ e L
10 25 30

Figure 24: Longest causal chain of messages (synchronelesgyor versions using valued global nogoods
(and without threshold nogoods), at density 30%.

Async Cycles

Yos.b
l _|—— Yosaopt b — — — — — ——
Dos

Figure 25: Local computations have little effect, but ADGRIS is clearly better than ADOPT-Aos, com-
peting with ADOPT-Dos. The optimized version of ADOPT-Yssn average approximately 1%
better than ADOPT-Dos (up to 15% better on some problemiicsts).

computed for higher priority agents rather than computimgm from scratch (ADOPT-Yos.a.optim). The
same figure shows the effect on asynchronous cycles to ber i@@pproximately 1% worse than ADOPT-
Yos). The effect on constraint checks is similarly minor (4%d is not depicted here.

Figure 24 clearly shows that the highest improvement in nemolf cycles is brought by sending valued
nogoods to other ancestors besides the parent. The negt factimprovement with difficult problems
(density .3) is the use of SRCs. The use of the structureseoDIRS tree makes slight improvements in
number of cycles (when nogoods reach all ancestors). Tarpatbow total message traffic and to reduce
computation at agent level, we found that it is best not tooance any possible valued nogoods to each
interested ancestor. Instead, one can reduce the comrtionigathout a significant penalty in number of
cycles by only announcing valued nogoods to the highestityriagent to which they are relevant (besides
the communication with the parent, which is required forrgnéeeing optimality).

Experimental comparison with DPOP is redundant since itlopmance can be easily predicted. DPOP
is a good choice if the induced widthof the graph of the problem is smaller thasg, 7'/n and smaller
thanlog, S, whereT is the available timep the number of variableg, the domain size, anfl the available
computer memory.

5. Conclusions

With the ADOPT distributed constraint optimization alghrmn, an agent can communicate feedback only to
a predefined predecessor, its parent in the DFS tree. Thesateproposed here enables agents to send feed-
back to any relevant agent (fulfilling a research directinggested in the original publication of ADOPT),
bringing significant speed-up, and embodying a version o&&F on which one can apply the results related
to the main algorithm for distributed constraint satisi@ct ABT.

ADOPT-ing can dynamically discover a DFS tree based onlyhendonstraints that had been proved
relevant by the search up to that moment. It uses (Dago & Méfal 996)’s valued nogoods tagging contexts
with costs and with sets of references to culprit constsaiithe generalized algorithm is denoted ADOPT-

Submitted to JAAMAS on 5/07.

ing. Tagging costs with sets of references to culprit caists (SRCs) allows detection and exploitation of
dynamically created independence between sub-probleme.iBdependence can be caused by assignments.
Experimentation shows that it is important for an agent feriand send in parallel several valued nogoods
to different higher priority agents. It also shows that ega@ting this principle by sending each valued
nogood to all ancestors able to handle it produces littlateacl gain while increasing the network traffic
and the computational load. Instead, each inferred valogdod should be sent only to the highest priority
agent that can handle it (its target). Precomputed DFS taestill be used in conjunction with the valued
nogood paradigm for optimization, thereby providing sorddiional improvements. ADOPT-ing versions
detecting and/or exploiting DFS trees that we tested sortaakso slightly better (in number of cycles and
total messages) than the ones without DFS trees.

We isolated and evaluated the contribution of using thrigsvelued nogoods in ADOPT-ing. In addition,
we determined the importance of precomputing and maintgiaishort DFS tree of the constraint graph, or
at least of guaranteeing that a DFS tree is compatible wétotker on agents, which is almost an order of
magnitude in our problems.

The use of SRCs to dynamically detect and exploit indepecaland the generalized communication of
valued nogoods to several ancestors bring elegance antilitgxtio the description and implementation of
ADOPT in ADOPT-ing. They also produced experimental imgnments of an order of magnitude.

Acknowledgments

We thank Judith Strother for her professional restylinghaf paper. We also thank anonymous reviewers for
suggesting particularly relevant references, clarifaragi and experiments.

References

Ali, S., Koenig, S., & Tambe, M. (2005). Preprocessing téghes for accelerating the DCOP algorithm
ADOPT. INAAMAS

Armstrong, A., & Durfee, E. F. (1997). Dynamic prioritizati of complex agents in distributed constraint
satisfaction problems. IRroceedings of 15th IJCAI

Benisch, M., & Sadeh, N. (2006). Examining dcsp coordimatiadeoffs. IPAAMAS

Bessiere, C., Brito, |., Maestre, A., & Meseguer, P. (20@&ynchronous backtracking without adding links:
A new member in the abt familArtificial Intelligence 161, 7-24.

Bistarelli, S., Fargier, H., Montanari, U., Rossi, F., Sp4iT., & Verfaillie, G. (1996). Semiring-based
CSPs and Valued CSPs: Basic Properties and ComparisonmimelaM., Freuder, E., & Maher, M.
(Eds.),Over-Constrained Systems (Selected papers from the WigrkshOver-Constrained Systems
at CP’95, reprints and background paper§pl. 1106, pp. 111-150.

Bistarelli, S., Montanari, U., & Rossi, F. (1995). Constitasolving over semirings. IRroceedings IJCAI
pp. 624—630, Montreal.

Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Vdifa, G., & Fargier, H. (1999). Semiring-based CSPs
and valued CSPs: Frameworks, properties, and compar@omstraints 4(3), 199-240.

Chechetka, A., & Sycara, K. (2005). A decentralized vagatdering method for distributed constraint
optimization. INAAMAS

Chechetka, A., & Sycara, K. (2006). No-commitment brancti bound search for distributed constraint
optimization. INAAMAS

Collin, Z., Dechter, R., & Katz, S. (2000). Self-stabiligidistributed constraint satisfactioBhicago Journal
of Theoretical Computer Science

Dago, P. (1997). Backtrack dynamique valué.JRPLC, pp. 133-148.

Dago, P., & Verfaillie, G. (1996). Nogood recording for vatiiconstraint satisfaction problems.. IGITAI,
pp. 132-139.

Davin, J., & Modi, P. J. (2005). Impact of problem centratiaa in distributed cops. IDCR

Dechter, R. (1990). Enhancement schemes for constraitepsing: Backjumping, learning, and cutset
decompositionAl’'90.

Dechter, R. (2003)Constraint Processingviorgan Kaufman.

Franzin, M., Rossi, F.,, E.C., F., & Wallace, R. (2004). Mualgent meeting scheduling with preferences:
efficiency, privacy loss, and solution quali@omputational Intelligence0(2).

Freuder, E. C., & Wallace, R. J. (1992). Partial constraatisfaction.Artificial Intelligence 58(1-3), 21-70.

Gershman, A., Meisels, A., & Zivan, R. (2006). Asynchron@arsvard-bounding for distributed constraints
optimization. InECAL

Gershman, A., Meisels, A., & Zivan, R. (2007). Asynchronéaisvard-bounding with backjumping. In
IJCAI DCR Workshop

Ginsberg, M. L. (1993). Dynamic backtrackingpurnal of Al ResearcH.

Greenstadt, R., Pearce, J., Bowring, E., & Tambe, M. (20B&perimental analysis of privacy loss in dcop
algorithms. INAAMAS pp. 1024-1027.

Hamadi, Y., & Bessiere, C. (1998). Backtracking in distitidd constraint networks. IBCAI'98, pp. 219-
223.

Hirayama, K., & Yokoo, M. (1997). Distributed partial corant satisfaction problem. IRroceedings of the
Conference on Constraint Processing (CP-97),LNCS 18p0222—-236.

Jagota, A., & Dechter, R. (1997). Simple distributed altforis for the cycle cutset problem. 8AC '97:
Proceedings of the 1997 ACM symposium on Applied compygm@66—373, New York, NY, USA.
ACM Press.

Larrosa, J. (2002). Node and arc consistency in weightedlosihAAI-2002 Edmonton.

Liu, J., & Sycara, K. P. (1995). Exploiting problem stru@uor distributed constraint optimization. In
ICMAS

Maheswaran, R., Tambe, M., Bowring, E., Pearce, J., & Vardiam, P. (2004). Taking DCOP to the real
world: Efficient complete solutions for distributed eveahsduling. INAAMAS

Mailler, R., & Lesser, V. (2004). Solving distributed corent optimization problems using cooperative
mediation. INAAMAS pp. 438—445.

Marcellino, F. M., Omar, N., & Moura, A. V. (2007). The plamg of the oil derivatives transportation by
pipelines as a distributed constraint optimization problén IJCAI-DCR Workshopindia.

Meisels, A., Kaplansky, E., Razgon, |, & Zivan, R. (2002pn@paring performance of distributed constraints
processing algorithms. IAAMAS02 DCR Workshopp. 86-93.

Meseguer, P., & Jiménez, M. (2000). Distributed forwaréaking. InCP’2000 Distributed Constraint
Satisfaction Workshop

Modi, P., & Veloso, M. (2005). Bumping strategies for the tragent agreement problem. FAMAS

Modi, P. J., Shen, W.-M., Tambe, M., & Yokoo, M. (2005). ADQMsynchronous distributed constraint
optimization with quality guaranteeélJ, 161

Modi, P. J., Tambe, M., Shen, W.-M., & Yokoo, M. (2002). A gexdepurpose asynchronous algorithm
for distributed constraint optimization. Iistributed Constraint Reasoning, Proc. of the AAMAS’'02
WorkshopBologna. AAMAS.

Neystadt, J., & Har’El, N. (1997). Israeli internet guidgyide). http://www.iguide.co.il/isp-sum.htm.

Submitted to JAAMAS on 5/07.

Petcu, A., & Faltings, B. (2005a). Approximations in distried optimization. IfPrinciples and Practice of
Constraint Programming CP 2005

Petcu, A., & Faltings, B. (2005b). A scalable method for nagient constraint optimization. IGCAI.

Petcu, A., & Faltings, B. (2006a). Distributed generatotintenance scheduling. IRroceedings of the
First International ICSC Symposium on ARTIFICIAL INTELHBSCE IN ENERGY SYSTEMS AND
POWER: AIESP’0gMadeira, Portugal.

Petcu, A., & Faltings, B. (2006b). ODPOP: an algorithm foeofaistributed constraint optimization. In
AAAL

Ringwelski, G., & Hamadi, Y. (2005). Multi-directional ditouted search with aggregation. IWCAI-DCR

Schiex, T., Fargier, H., & Verfaillie, G. (1995). Valued airaint satisfaction problems: hard and easy prob-
lems.. InProcs. IJCAI'95 pp. 631-637.

Silaghi, M.-C. (2002)Asynchronously Solving Distributed Problems with PrivReguirementsPhD Thesis

2601, (EPFL) http://www.cs.fit.edu/ ~msilaghi/teza
Silaghi, M.-C. (2003a). Asynchronous PFC-MRDABdopt —consistency-maintenance in ADOPT—. In
[JCAI-DCR

Silaghi, M.-C. (2003b). Howto: Asynchronous PFC-MRDAC #iopzation in distributed constraint prob-
lems +/-ADOPT-. INAT, Halifax.

Silaghi, M.-C. (2006). Framework for modeling reorderirgpinistics for asynchronous backtrackingIAT.

Silaghi, M.-C., & Faltings, B. (2002). A comparison of DisE&lgorithms with respect to privacy. In
AAMAS-DCR

Silaghi, M.-C., & Faltings, B. (2004). Asynchronous aggregn and consistency in distributed constraint
satisfaction Artificial Intelligence Journal161(1-2), 25-53.

Silaghi, M.-C., Landwehr, J., & Larrosa, J. B. (2004). Vol2lof Frontiers in Artificial Intelligence and
Applications chap. Asynchronous Branch & Bound and A* for DisSWCSPs wigluffistic function
based on Consistency-Maintenance. |I0OS Press.

Silaghi, M.-C., & Mitra, D. (2004). Distributed constraisatisfaction and optimization with privacy enforce-
ment. In3rd IC on Intelligent Agent Technologpp. 531-535.

Silaghi, M.-C., Sam-Haroud, D., & Faltings, B. (2000). Astinonous search with aggregations Piroc. of
AAAI200Q pp. 917-922, Austin.

Silaghi, M.-C., Sam-Haroud, D., & Faltings, B. (2001a). ARith asynchronous reordering. IAT.
Silaghi, M.-C., Sam-Haroud, D., & Faltings, B. (2001b). Hiring ABT and AWC into a polynomial
space, complete protocol with reordering. Tech. rep. #4/BEPFL.

Silaghi, M.-C., Sam-Haroud, D., & Faltings, B. (2001c). Gmmtency maintenance for ABT. IRroc. of
CP’2001%, pp. 271-285, Paphos,Cyprus.

Silaghi, M.-C., Sam-Haroud, D., & Faltings, B. (2000). Maiming hierarchical distributed consistency. In
Workshop on Distributed CSPSingapore. 6th International Conference on CP 2000.

Stallman, R. M., & Sussman, G. J. (1977). Forward reasonimgdependency-directed backtracking in a
system for computer-aided circuit analysigtificial Intelligence 9, 135-193.

Sultanik, E., Modi, P. J., & Regli, W. (2006). Constraint pagation for domain bounding in distributed task
scheduling. IICP.

Wallace, R., & Silaghi, M.-C. (2004). Using privacy loss toige decisions in distributed CSP search. In
FLAIRS'04

Walsh, T. (2007). Traffic light scheduling: a challengingtdbuted constraint optimization problem.CR,
India.

Yeoh, W., Koenig, S., & Felner, A. (2007). Idb-adopt : A defitet search dcop algorithm. IlICAI DCR
Workshop

Yokoo, M. (1993). Constraint relaxation in distributed stmint satisfaction problem. IKCDCS’'93 pp.
56-63.

Yokoo, M., Durfee, E. H., Ishida, T., & Kuwabara, K. (1992)isDibuted constraint satisfaction for formal-
izing distributed problem solving. ICDCS pp. 614-621.

Yokoo, M., Durfee, E. H., Ishida, T., & Kuwabara, K. (1998hddistributed constraint satisfaction problem:
Formalization and algorithm$EEE TKDE 10(5), 673-685.

Yokoo, M., & Hirayama, K. (1998). Distributed constraintiséaction algorithm for complex local problems.
In Proceedings of 3rd ICMAS’'9®p. 372-379.

Yokoo, M., Suzuki, K., & Hirayama, K. (2002). Secure distribd constraint satisfaction: Reaching agree-
ment without revealing private information. @P.

Zhang, W., & Wittenburg, L. (2002). Distributed breakoutisited. InProc. of AAA] Edmonton.

Zivan, R., & Meisels, A. (2005). Dynamic ordering for asynmhous backtracking on discsps. @, pp.
161-172.

Submitted to JAAMAS on 5/07.

