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Abstract During face-to-face interactions, listeners use backchannel feedback such as
head nods as a signal to the speaker that the communication is working and that they should
continue speaking. Predicting these backchannel opportunities is an important milestone for
building engaging and natural virtual humans. In this paper we show how sequential probabi-
listic models (e.g., Hidden Markov Model or Conditional Random Fields) can automatically
learn from a database of human-to-human interactions to predict listener backchannels using
the speaker multimodal output features (e.g., prosody, spoken words and eye gaze). The
main challenges addressed in this paper are automatic selection of the relevant features and
optimal feature representation for probabilistic models. For prediction of visual backchannel
cues (i.e., head nods), our prediction model shows a statistically significant improvement
over a previously published approach based on hand-crafted rules.

Keywords Listener backchannel feedback · Nonverbal behavior prediction · Sequential
probabilistic model · Conditional random field · Head nod · Multimodal

1 Introduction

Natural conversation is fluid and highly interactive. Participants seem tightly enmeshed in
something like a dance, rapidly detecting and responding, not only to each other’s words, but
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to speech prosody, gesture, gaze, posture, and facial expression movements. These “extra-
linguistic” signals play a powerful role in determining the nature of a social exchange. When
these signals are positive, coordinated and reciprocated, they can lead to feelings of rap-
port and promote beneficial outcomes in such diverse areas as negotiations and conflict
resolution [9,13], psychotherapeutic effectiveness [37], improved test performance in class-
rooms [10] and improved quality of child care [4].

Not surprisingly, supporting such fluid interactions has become an important topic of
virtual human research. Most research has focused on individual behaviors such as rapidly
synthesizing the gestures and facial expressions that co-occur with speech [5,25,22,35] or
real-time recognition the speech and gesture of a human speaker [30,8]. But as these tech-
niques have matured, virtual human research has increasingly focused on dyadic factors such
as the feedback a listener provides in the midst of the other participants speech [16,23]. These
include recognizing and generating backchannel or jump-in points [39] turn-taking and floor
control signals, postural mimicry [14] and emotional feedback [19,1]. In particular, back-
channel feedback (the nods and paraverbals such as “uh-huh” and “mm-hmm” that listeners
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Fig. 1 Our prediction model is designed for generating in real-time backchannel feedback for a listener virtual
agent. It uses speaker multimodal features such as eye gaze and prosody to make predictions. The timing of
the backchannel predictions and the optimal subset of features is learned automatically using a sequential
probabilistic model
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produce as some is speaking) has received considerable interest due to its pervasiveness
across languages and conversational contexts and this paper addresses the problem of how
to predict and generate this important class of dyadic nonverbal behavior.

Generating appropriate backchannels is a notoriously difficult problem. Listener back-
channels are generated rapidly, in the midst of speech, and seem elicited by a variety of
speaker verbal, prosodic and nonverbal cues. Backchannels are considered as a signal to
the speaker that the communication is working and that they should continue speaking [40].
There is evidence that people can generate such feedback without necessarily attending to the
content of speech [3], and this has motivated a host of approaches that generate backchannels
based solely on surface features (e.g., lexical and prosodic) that are available in real-time.

This paper describes a general probabilistic framework for learning to predict and gen-
erate dyadic conversational behavior from multimodal conversational data, and applies this
framework to listener backchanneling behavior. As shown in Fig. 1, our approach is designed
to generate real-time backchannel feedback for virtual agents. The paper provides several
advances over prior art. Unlike prior approaches that use a single modality (e.g., speech), we
incorporate multi-modal features (e.g., speech and gesture). We present a machine learning
method that automatically selects appropriate features from multimodal data and produces
sequential probabilistic models with greater predictive accuracy than prior approaches. The
general probabilistic framework presented in this paper was originally published at the IVA
2008 conference [29].

The following section describes previous work in backchannel generation and explains the
differences between our prediction model and other predictive models. Section 3 describes
the details of our prediction model including the encoding dictionary and our feature selection
algorithm. Section 4 presents the way we collected the data used for training and evaluating
our model as well as the methodology used to evaluate the performance of our prediction
model. In Sect. 5 we discuss our results and conclude in Sect. 6.

2 Previous work

Several researchers have developed models to predict when backchannel should happen. In
general, these results are difficult to compare as they utilize different corpora and present
varying evaluation metrics. In fact, we are not aware of a paper that makes a direct comparison
between alternative methods.

Ward and Tsukahara [39] propose a unimodal approach where backchannels are associ-
ated with a region of low pitch lasting 110 ms during speech. Models were produced manually
through an analysis of English and Japanese conversational data.

Nishimura et al. [31] present a unimodal decision-tree approach for producing backchan-
nels based on prosodic features. The system analyzes speech in 100 ms intervals and generates
backchannels as well as other paralinguistic cues (e.g., turn taking) as a function of pitch
and power contours. They report a subjective evaluation of the system where subjects were
asked to rate the timing, naturalness and overall impression of the generated behaviors but
no rigorous evaluation of predictive accuracy.

Cathcart et al. [6] propose a unimodal model based on pause duration and trigram part-
of-speech frequency. The model was constructed by identifying, from the HCRC Map Task
Corpus [2], trigrams ending with a backchannel. For example, the trigram most likely to
predict a backchannel was (〈NNS〉 〈pau〉 〈bc〉), meaning a plural noun followed by a pause
of at least 600 ms. The algorithm was formally evaluated on the HCRC data set, though
there was no direct comparison to other methods. As part-of-speech tagging is a challenging
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requirement for a real-time system, this approach is of questionable utility to the design of
interactive virtual humans.

Fujie et al. [11] used Hidden Markov Models to perform head nod recognition. In their
paper, they combined head gesture detection with prosodic low-level features from the same
person to determine strongly positive, weak positive and negative responses to yes/no type
utterances.

Maatman et al. [27] present a multimodal approach where Ward and Tsukhara’s prosodic
algorithm is combined with a simple method of mimicking head nods. No formal evaluation
of the predictive accuracy of the approach was provided but subsequent evaluations have
demonstrated that generated behaviors do improve subjective feelings of rapport [20] and
speech fluency [14].

To our knowledge, no system has demonstrated how to automatically learn a predictive
model of backchannel feedback from multi-modal conversational data nor have there been
definitive head-to-head comparisons between alternative methods.

3 Prediction model

The goal of our prediction model is to create real-time predictions of listener backchannel
based on multimodal features from the human speaker. Our prediction model learns auto-
matically which speaker feature is important and how they affect the timing of listener back-
channel. For example, in our experiments described in Sect. 4 we learn a prediction model
of when a listener is likely to head nod based on the speaker actions (prosody, pause, visual
gestures and spoken words). We achieve this goal by using a machine learning approach: we
train a sequential probabilistic model from a database of human–human interactions and use
this trained model in a real-time backchannel generator (as depicted in Fig. 1).

3.1 Sequential probabilistic model

A sequential probabilistic model takes as input a sequence of observation features (e.g., the
speaker features) and returns a sequence of probabilities (i.e., probability of listener back-
channel). Two of the most popular sequential models are Hidden Markov Model (HMM) [33]
and Conditional Random Field (CRF) [24]. One of the main difference between these two
models is that CRF is discriminative (i.e., tries to find the best way to differentiate cases
where the listener gives backchannel to cases where it does not) while HMM is generative
(i.e., tries to find the best way to generalize the samples from the cases where the listener
gives backchannel without looking at the cases where the listener did not give backchannel).
Our prediction model is designed to work with both types of sequential probabilistic models.

Sequential probabilistic models such as HMM and CRF have some constraints that need
to be understood and addressed before using them:

– Limited learning: The more informative your features are, the better your sequential model
will perform. If the input features are too noisy (e.g., direct signal from microphone), it
will make it harder for the HMM or CRF to learn the important part of the signal. Also,
because of the pre-processing your input features to highlight their influences on your
label (e.g., listener backchannel) you improve your chance of success.

– Over-fitting The more complex your model is, the more training data it needs. Every input
feature that you add increases its complexity and at the same time its need for a larger
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training set. Since we usually have a limited set of training sequences, it is important to
keep the number of input features low.

In our prediction model we directly addressed these issues by focusing on the feature
representation and feature selection problems:

– Encoding dictionary: To address the limited learning constraint of sequential models,
we suggest to use more than binary encoding to represent input features. Our encoding
dictionary contains a series of encoding templates that were designed to model different
relationship between a speaker feature (e.g., a speaker in not currently speaking) and
listener backchannel. The encoding dictionary and its usage are described in Sect. 3.2.

– Automatic feature and encoding selection: Because of the over-fitting problem happening
when too many uncorrelated features (i.e., features that do not influence listener back-
channel) are used, we suggest two techniques for automatic feature and encoding selection
based on co-occurrence statistics and performances evaluation on a validation dataset.
Our feature selection algorithms are described in Sect. 3.3.2.

The following two sections describe our encoding dictionary and feature selection algo-
rithm. Section 3.4 describes how the probabilities output from our sequential model are used
to generate backchannel.

3.2 Encoding dictionary

The goal of the encoding dictionary is to propose a series of encoding templates that capture
the coarse relationship between speaker features and listener backchannel. These encoding
templates will help to represent long-range dependencies (when the influence of an input fea-
ture decay slowly, possibly with a delay) that are otherwise hard to learn using a sequential
probabilistic model. An example of a long-range dependency will be the effect of low-pitch
regions on backchannel feedback with an average delay of 0.7 s (observed by Ward and
Tsukahara [39]). In our framework, the prediction model will pick an encoding template
with a 0.5 s delay and the exact alignment will be learned by the sequential probabilistic
model which will also take into account the influence of other input features.

The Fig. 2 shows the 13 encoding templates used in our experiments. These encoding
templates were selected to represent a wide range of ways that a speaker feature can influ-
ence the listener backchannel. These encoding templates were also selected because they can
easily be implemented in real-time since the only needed information is the start time of the
speaker feature. Only the binary feature also uses the end time. In all cases, no knowledge
of the future is needed.

The three main types of encoding templates are:

– Binary encoding: This encoding is designed for speaker features which influence on
listener backchannel is constraint to the duration of the speaker feature.

– Step function: This encoding is a generalization of binary encoding by adding two param-
eters: width of the encoded feature and delay between the start of the feature and its
encoded version. This encoding is useful if the feature influence on backchannel is con-
stant but with a certain delay and duration.

– Ramp function: This encoding linearly decreases for a set period of time (i.e., width
parameter). This encoding is useful if the feature influence on backchannel is changing
over time.

It is important to note that a feature can have an individual influence on backchannel
and/or a joint influence. An individual influence means the input feature directly influences
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-Binary:

-Step (width=1.0, delay = 0.0):

-Ramp (width=0.5, delay=0.0):  

Example of a speaker feature:

Encoding templates:

-Step (width=0.5, delay = 0.0):

-Step (width=1.0, delay = 0.5):

-Step (width=0.5, delay = 0.5):

-Step (width=1.0, delay = 1.0):

-Step (width=0.5, delay = 1.0):

-Ramp (width=1.0, delay=0.0):  

-Ramp (width=2.0, delay=0.0): 

-Ramp (width=0.5, delay=1.0):  

-Ramp (width=1.0, delay=1.0):  

-Ramp (width=2.0, delay=1.0):  

Fig. 2 Encoding dictionary: This figure shows the different encoding templates used by our prediction model.
Each encoding templates were selected to model different relationships between speaker features (e.g., a pause
or an intonation change) and listener backchannels. We included a delay parameter in our dictionary since
listener backchannels can sometime happen later after speaker features (e.g., Ward and Tsukahara [39]). This
encoding dictionary gives a more powerful set of input features to the sequential probabilistic model which
improves the performance of our prediction model

listener backchannel. For example, a long pause can by itself trigger backchannel feedback
from the listener. A joint influence means that more than one feature is involved in triggering
the feedback. For example, saying the word “and” followed by a look back at the listener can
trigger listener feedback. This also means that a feature may need to be encoded more than
one way since it may have a individual influence as well as one or more joint influences.

One way to use the encoding dictionary with a small set of features is to encode each input
feature with each encoding template. We tested this approach in our experiment with a set
of 12 features (see Sect. 5) but because of the problem of over-fitting, a better approach is
to select the optimal subset of input features and encoding templates. The following section
describes our feature selection algorithm.

3.3 Automatic feature selection

We perform the feature selection based on the same concepts of individual and joint influ-
ences described in the previous section. Individual feature selection is designed to asses the
individual performance of each speaker feature while the joint feature selection looks at how
features can complement each other to improve performance.

3.3.1 Individual feature selection

Individual feature selection is designed to do a pre-selection based on (1) the statistical
co-occurrence of speaker features and listener backchannel, and (2) the individual perfor-
mance of each speaker feature when trained with any encoding template and evaluated on a
validation set.

The first step of individual selection looks at statistics of co-occurrence between back-
channel instances and speaker features. The number of co-occurrence is equal to the number
of times a listener backchannel instance happened between the start time of the speaker
feature and up to 2 s after it. This threshold was selected after analysis of the average
co-occurrence histogram for all features. After this step the number of features is reduced to
50.
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Fig. 3 Joint Feature selection: This figure illustrates the feature encoding process using our encoding dictio-
nary as well as two iterations of our joint feature selection algorithm. The goal of joint selection is to find a
subset of features that best complement each other for prediction of listener backchannel

The second step is to look at the best performance an individual feature can reach when
trained with any of the encoding templates in our dictionary. For each top-50 feature, 13 prob-
abilistic sequential model (e.g., HMM or CRF) are trained (one for each encoding template)
and then evaluated. A ranking is made based on the best performance of each individual
feature (out of all 13 encoding templates) and a subset of 12 best features is selected.

3.3.2 Joint feature selection

Given the subset of features that performed best when trained individually, we now build the
complete set of feature hypothesis to be used by the joint feature selection process. This set
represents each feature encoded with all possible encoding templates from our dictionary.
The goal of joint selection is to find a subset of features that best complements each other
for prediction of backchannel. Figure 3 shows the first two iterations of our algorithm.

The algorithm starts with the complete set of feature hypothesis and an empty set of best
features. At each iteration, the best feature hypothesis is selected and added to the best feature
set. For each feature hypothesis, a sequential model is trained and evaluated using the feature
hypothesis and all features previously selected in the best feature set. While the first iteration
of this process is really similar to the individual selection, every iteration afterward will
select a feature that best complement the current best features set. Note that during the joint
selection process, the same feature can be selected more than once with different encodings.
The procedure stops when the performance starts decreasing.

3.4 Generating listener backchannel

The goal of the prediction step is to analyze the output from the sequential probabilistic
model (see example in Fig. 1) and make discrete decision about when backchannel should
happen. The output probabilities from HMM and CRF models are smooth over time since both
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models have a transition model that insures no instantaneous transitions between labels. This
smoothness of the output probabilities makes it possible to find distinct peaks. These peaks
represent good backchannel opportunities. A peak can easily be detected in real-time since
it is the point where the probability starts decreasing. For each peak we get a backchannel
opportunity with associated probability.

Interestingly, Cathcart et al. [6] note that human listeners varied considerably in their
backchannel behavior (some appear less expressive and pass up “backchannel opportuni-
ties”) and their model produces greater precision for subjects that produced more frequent
backchannels. The same observation was made by Ward and Tsukahara [39]. An important
advantage of our prediction model over previous work is the fact that for each backchannel
opportunity returned, we also have an associated probability. This makes it possible for our
model to address the problem of expressiveness. By applying an expressiveness threshold
on the backchannel opportunities, our prediction model can be used to create virtual agents
with different levels of nonverbal expressiveness.

4 Experiments

For training and evaluation of our prediction model, we used a corpus of 50 human-to-human
interactions. This corpus is described in Sect. 4.1. Section 4.2 describes the speaker features
used in our experiments as well as our listener backchannel annotations. Finally Sect. 4.3
discusses our methodology for training the probabilistic model and evaluate it (see Fig. 4).

4.1 Data collection

One hundred and four participants (67 women, 37 men) were recruited through Craigslist.com
from the greater Los Angeles area and compensated $20. Of the 52 subject pairs, two were
excluded due to recording equipment failure, resulting in 50 valid sessions.

We elicited natural conversational behaviors from pairs of subjects via a face-to-face
quasi-monologue storytelling task. In this task, one subject (‘the Speaker’) describes a

Fig. 4 Setup for training and evaluation corpus. This study of face-to-face narrative discourse (‘quasi-mo-
nologic’ storytelling) included 104 subjects. The speaker was instructed to retell the stories portrayed in two
video clips to the listener
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previously-watched movie clip to another subject (‘the Listener’) that has not seen the movie.
The movie was selected to elicit a range of nonverbal feedback from listeners. Speakers
watched and described a 2-min video taken from a sexual harassment awareness video by
Edge Training Systems, Inc. The video dramatizes two incidents of workplace harassment:
The first incident is about a woman at work who receives unwanted instant messages from
a colleague at work and the second is about a man at work who is confronted by a female
business associate, who asks him for a foot massage in return for her business. Subjects face
each other across a table (approximately 8’ apart) and could see see and respond to each
other’s nonverbal feedback.

Participants in groups of two entered the laboratory and were told they were participat-
ing in a study to evaluate communication technology. They completed a consent form and
pre-experiment questionnaire contained questions about subject’s demographic background,
personality [18], self-monitoring [26], self-consciousness [34] and shyness [7]. Subjects were
randomly assigned the role of listener or speaker. The listener was asked to wait outside the
room while the speaker viewed the short video clip. The listener was then led back into the
computer room, where the speaker was instructed to retell the stories portrayed in the clips
to the listener. Elicited stories were approximately 2 min in length on average.

Finally, the experimenter led the speaker to a separate side room. The speaker completed a
post-questionnaire assessing their impressions of the interaction while the listener remained
in the room and spoke to the camera what s/he had been told by the speaker. Participants
were debriefed individually and dismissed.

We collected synchronized multimodal data from each participant including voice and
upper-body movements. Both the speaker and listener wore a lightweight headset with micro-
phone. Three camcorders were used to videotape the experiment: one was placed in front
the speaker, one in front of the listener, and one was attached to the ceiling to record both
speaker and listener.

4.2 Speaker features and listener backchannels

From the video and audio recordings several features were extracted. In our experiments the
speaker features were sampled at a rate of 30 Hz so that visual and audio feature could easily
be concatenated.

Pitch and intensity of the speech signal were automatically computed from the speaker
audio recordings, and acoustic features were derived from these two measurements. The
following prosodic features were used (based on Ward and Tsukahara [39]):

– Regions of pitch lower than the 26th percentile continuing for at least 110 ms (i.e.,
lowness)

– Downslopes in pitch (at least 1.5 percentile) continuing for at least 40 ms
– Utterances longer than 700 ms
– Gradual drop or rise in intensity of speech
– Fast drop or rise in intensity of speech
– Vowel volume (spoken softer than 80% of the average volume)

Human coders manually annotated the narratives with several relevant features from the
audio recordings. All elicited narratives were transcribed, including pauses, filled pauses
(e.g., “um”), incomplete and prolonged words. These transcriptions were double-checked
by a second transcriber. This provided us with the following extra lexical and prosodic
features:
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– All individual words (i.e., unigrams)
– Pause (i.e., no speech)
– Filled pause (e.g. “um”)
– Lengthened words (e.g., “I li::ke it”)
– Emphasized or slowly uttered words (e.g., “ex_a_c_tly”)
– Incomplete words (e.g., “jona-”)
– Words spoken with continuing intonation
– Words spoken with falling intonation (e.g., end of an utterance)
– Words spoken with rising intonation (i.e., question mark)

From the speaker video the eye gaze of the speaker was annotated on whether he/she was
looking at the listener. After a test on five sessions we decided not to have a second annotator
go through all the sessions, since annotations were almost identical (less than 2 or 3 frames
difference in segmentation). The feature we obtained from these annotations is:

– Speaker looking at the listener

Note that although some of the speaker features were manually annotated in this corpus,
all of these features can be recognized automatically given the recent advances in real-time
keyword spotting [17], eye gaze estimation and prosody analysis. Our feature Speaker looking
at the listener can be computed from a coarse estimate of the eye gaze (e.g., intensity-based
eye gaze systems [32,38]) since it only needs to do a binary decision: is the speaker looking
at the listener or not?

Finally, the listener videos were annotated for visual backchannels (i.e., head nods) by
two coders. These annotations form the labels used in our prediction model for training and
evaluation.

4.3 Methodology

To train our prediction model we split the 50 session into three sets, a training set, a validation
set and a test set. This is done by doing a 5-fold testing approach. This means that 10 sessions
are left out for test purposes only and the other 40 are used for training and validation. This
process is repeated five times in order to be able to test our model on each session. Validation
is done by using the holdout cross-validation strategy. In this strategy a subset of 10 sessions
is left out of the training set.

The performance is measured by using the F-measure since it is well established in Natural
Language Processing (NLP) and speech recognition. This is the weighted harmonic mean of
precision and recall. Precision is the probability that predicted backchannels correspond to
actual listener behavior. Recall is the probability that a backchannel produced by a listener in
our test set was predicted by the model. We use the same weight for both precision and recall,
so called F1. During validation we find all the peaks in our probabilities. A backchannel is
predicted correctly if a peak in our probabilities (see Sect. 3.4) happens during an actual
listener backchannel.

As discussed in Sect. 3.4, the expressiveness level is the threshold on the output probabili-
ties of our sequential probabilistic model. This level is used to generate the final backchannel
opportunities. In our experiments we picked the expressiveness level which gave the best F1

measurement on the validation set. This level is used to evaluate our prediction model in the
testing phase. For space constraint reason, all the results presented in this paper are using
Conditional Random Fields [24] as sequential probabilistic model. We performed the same
series of experiments with Hidden Markov Models [33] but the results were constantly lower.
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Algorithm 1 Rule based approach of Ward and Tsukahara [39]
Upon detection of
P1: a region of pitch less than the 26th percentile pitch level and
P2: continuing for at least 100 milliseconds
P3: coming after at least 700 milliseconds of speech,
P4: providing you have not output backchannel feedback within the preceding 800 milliseconds,
P5: after 700 milliseconds wait,
you should produce backchannel feedback.

The hCRF library was used for training the CRF model [15]. The regularization term for the
CRF model was validated with values 10k, k = −1 . . . 3.

5 Results and discussion

We compared our prediction model with the rule based approach of Ward and Tsuka-
hara [39] since this method has been employed effectively in virtual human systems and
demonstrates clear subjective and behavioral improvements for human/virtual human inter-
action [14]. We re-implemented their rule based approach summarized in Algorithm 1. The
two main features used by this approach are low pitch regions and utterances (see Sect. 4.2).
We also compared our model with a “random” backchannel generator as defined in Ward and
Tsukahara [39]: randomly generate a backchannel cue every time conditions P3, P4 and P5
are true (see Algorithm 1). The frequency of the random predictions was set to 60% which
provided the best performance for this predictor, although differences were small.

Table 1 shows a comparison of our prediction model with both approaches. We performed
an one-tailed t-test comparing our prediction model to both random and Ward’s approach
over our 50 independent sessions. Our performance is significantly higher than both random
and the hand-crafted rule based approaches with p-values below 0.05. A second result from
this table is that the performance of the rule-based and random approaches on our multi-
modal dataset are similar to the results previously published by Ward and Tsukahara [39] on
a unimodal dataset predicting audio back-channel feedback. The one-tailed t-test comparison
between Ward’s system and random shows that that difference is statistically significant, sug-
gesting that Ward and Tsukahara rule-based approach does also apply to visual backchannel
prediction. Our prediction model outperforms both the random approach and the rule-based
approach of Ward and Tsukahara [39].

Table 1 Comparison of our prediction model with previously published rule-based system of Ward and
Tsukahara [39]

Result t-Test (p-value)

F1 Precision Recall Random Rule-based

Our prediction model 0.2562 0.1862 0.4106 <0.0001 0.0210

Rule-based approach [12] 0.1824 0.1262 0.3290 0.0042 –

Random 0.1137 0.1042 0.1250 – –

By integrating the strengths of a machine learning approach with multimodal speaker features and auto-
matic feature selection, our prediction model shows a statistically significant improvement over the unimodal
rule-based and random approaches
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Table 2 Compares the performance of our prediction model before and after joint feature selection (see
Sect. 2)

Result t-Test (p-value)

F1 Precision Recall

Joint and individual feature selections 0.2562 0.1862 0.4106 0.1312

Only individual feature selection 0.2210 0.1407 0.5145

We can see that joint feature selection is an important part of our prediction model

Table 3 Compares the performance of our prediction model with and without the visual speaker feature (i.e.,
speaker looking at the listener)

Result t-Test (p-value)

F1 Precision Recall

Multimodal features 0.2210 0.1407 0.5145 0.1454

Unimodal features 0.2064 0.1398 0.3941

We can see that the multimodal factor is an important part of our prediction model

Our prediction model uses two types of feature selections: individual feature selection and
joint feature selection (see Sect. 3.3.2 for details). It is very interesting to look at the features
and encoding selected after both processes:

– Pause using binary encoding
– Speaker looking at the listener using ramp encoding with a width of 2 s and a 1 s delay
– ‘and’ using step encoding with a width 1 s and a delay of 0.5 s
– Speaker looking at the listener using binary encoding

The joint selection process stopped after four iterations, the optimal number of iterations
on the validation set. Note that Speaker looking at the listener was selected twice with two
different encodings. This reinforces the fact that having different encodings of the same fea-
ture reveals different information of a feature and is essential to get high performance with
this approach. It is also interesting to see that our prediction algorithm outperform Ward and
Tsukahara without using their feature corresponding of low pitch. In Table 2 we show that
the addition joint feature selection improved performance over individual feature selection
alone. In the second case the sequential model was trained with all the 12 features returned
by the individual selection algorithm and every encoding templates from our dictionary.
These speaker features were: pauses, energy fast edges, lowness, speaker looking at listener,
“and”, vowel volume, energy edge, utterances, downslope, “like”, falling intonations, rising
intonations.

In Table 3 the importance of multimodality is showed. Both of these models were trained
with the same 12 features described earlier, except that the unimodal model did not include
the Speaker looking at the listener feature. Even though we only added one visual feature
between the two models, the performance of our prediction model increased by approximately
3%. This result shows that multimodal speaker features is an important concept.

The capability to automatically learn nonverbal prediction models has wide applicability
beyond the generation of nonverbal behavior of interactive virtual humans. The outcome is
notable because it demonstrates the potential of a very general approach to learning to extract
patterns of nonverbal behavior that can potentially illuminate fundamental questions in social
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psychology and communication studies. Predicting such nonverbal feedback also has broad
applicability to a number of human–machine systems. We have recently demonstrated that
such prediction models can improve the accuracy of gesture recognition techniques by set-
ting prior expectations [28]. For example if a head nod is more likely than a look down,
given what the speaker just said, knowing this information can help distinguish ambiguous
gestures. Additionally, prediction models can potentially help diagnose normal from abnor-
mal behavior (for example, by training two prediction models on normal and schizophrenic
subjects, it may be possible to automatically distinguish individuals on the basis of their
nonverbal behavior). Finally, these capabilities can be combined to inform the behavior of
advance virtual humans that can both recognize and synthesize natural nonverbal behavior
for a variety of training and entertainment applications [36,21,12].

6 Conclusion

In this paper we presented how sequential probabilistic models can be used to automatically
learn from a database of human-to-human interactions to predict listener backchannel using
the speaker multimodal output features (e.g., prosody, spoken words and eye gaze). The main
challenges addressed in this paper were automatic selection of the relevant features and opti-
mal feature representation for probabilistic models. For prediction of visual backchannel cues
(i.e., head nods), our prediction model was showed a statistically significant improvement
over a previously published approach based on hand-crafted rules. Although we applied the
approach to generating backchannel behavior, the method is proposed as a general proba-
bilistic framework for learning to recognize and generate meaningful multimodal behaviors
from examples of face-to-face interactions including facial expressions, posture shifts, and
other interactional signals. Thus, it has importance, not only as a means to improving the
interactivity and expressiveness of virtual humans but as an fundamental tool for uncovering
hidden patterns in human social behavior.
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