
Auton Agent Multi-Agent Syst (2011) 22:356–381
DOI 10.1007/s10458-010-9129-2

Reasoning about agent deliberation

N. Alechina · M. Dastani · B. S. Logan ·
J.-J. Ch. Meyer

Published online: 23 April 2010
© The Author(s) 2010

Abstract We present a family of sound and complete logics for reasoning about delibera-
tion strategies for SimpleAPL programs. SimpleAPL is a fragment of the agent programming
language 3APL designed for the implementation of cognitive agents with beliefs, goals and
plans. The logics are variants of PDL, and allow us to prove safety and liveness properties
of SimpleAPL agent programs under different deliberation strategies. We show how to axi-
omatise different deliberation strategies for SimpleAPL programs, and, for each strategy we
prove a correspondence between the operational semantics of SimpleAPL and the models of
the corresponding logic. We illustrate the utility of our approach with an example in which
we show how to verify correctness properties for a simple agent program under different
deliberation strategies.

Keywords Agent programming languages · Agent logics · Reasoning about agent
programs · Verification of agent programs · Agent deliberation and agent executions

1 Introduction

The design and development of software agents have become important and challenging
topics of research. However there remains a gap between theory and practice in this area,
in particular when the design of cognitive, BDI-based agents is concerned. For this kind of

N. Alechina · B. S. Logan
School of Computer Science, University of Nottingham, Nottingham, NG8 1BB, UK
e-mail: nza@cs.nott.ac.uk

B. S. Logan
e-mail: bsl@cs.nott.ac.uk

M. Dastani (B) · J.-J. Ch. Meyer
Intelligent Systems Group, Utrecht University, Utrecht, The Netherlands
e-mail: mehdi@cs.uu.nl

J.-J. Ch. Meyer
e-mail: jj@cs.uu.nl

123

Auton Agent Multi-Agent Syst (2011) 22:356–381 357

advanced software agent, methods are needed to verify whether their implementation con-
forms to their specification. In this paper we pursue our investigations in this direction in the
sense that we aim at verifying (agent) programs written in a BDI-based agent programming
language. In particular we focus here on logical means to reason about the agent’s deliberation
strategy.

The deliberation strategy, also called the deliberation process, is the core building block
of the interpreters of the agent programming languages. The deliberation strategy determines
which goals the agent will attend to and when, and how the agent’s plans to achieve these
goals are executed. Even if the agent’s program is capable in principle of achieving a partic-
ular goal in a given situation, a particular deliberation strategy may mean that the relevant
actions never get executed, or are executed in such a way as not to achieve the goal.

For some existing BDI-based agent programming languages [6] the deliberation strategy
forms integral part of their semantics. However most agent platforms provide customisation
mechanisms that allow the agent developers to influence aspects of the deliberation strategy,
for example, Jason [8], 3APL [12], 2APL [9,10] and Jadex [21]. In some cases, a BDI-based
agent programming language gives the agent developer complete control of the deliberation
strategy. For example, PRS [15] allows an agent’s deliberation strategy to be tailored to a par-
ticular problem through the use of ‘Meta-Acts’—plans which can determine which goals or
events give rise to intentions and the order in which the currently intended plans are executed.
In our opinion, such control over (aspects of) program execution and the deliberation process
in particular is extremely important in allowing the agent developer to tailor the execution of
an agent’s program to the requirements of a particular problem, e.g., by varying the balance
between reactive and deliberative behaviour, or varying the number of goals an agent will
attend to simultaneously.

As an agent’s behaviour is determined by both the agent’s program and the deliberation
strategy used, it is important for the agent developers to verify properties of programs in
the context of a particular deliberation strategy. Of course, one can ignore the impact of any
particular deliberation strategy and examine the properties of an agent program that are valid
under all deliberation strategies. However, we believe that most interesting properties of
agent programs, e.g., goal attainment, depend critically on the chosen deliberation strategy,
and that the correctness of agent programs can only be examined if one is able to reason
about deliberation strategies. While there has been considerable research on reasoning about
and verification of BDI agents, e.g., [4,7,17,18,23], there has been much less work on delib-
eration strategies. An exception is the work of Mulder et al. [20] who present a model of
the execution of PRS in an executable temporal logic, MML. Agent plans are represented as
temporal formulas and deliberation strategies are represented by sets of MML rules. The rules
define the behaviour of a meta-interpreter operating on terms which are names for temporal
formulas. The MML model allows the direct specification and verification (via execution in
concurrent MetateM) of agent properties.

In this paper we explore a different approach. We present a family of PDL-like logics for
reasoning about deliberation strategies; deliberation strategies are expressed as axioms in the
logics, and the logics are complete and decidable. Declarative agent programs can naturally
be expressed in the form of logical axioms (compared to, say, a model-checking approach).
We believe such axiomatisations helps in understanding the semantics of different delib-
eration strategies. We consider deliberation strategies in the context of a simple APL-like
[6,11] agent programming language, SimpleAPL introduced in [2]. We sketch the syntax of
SimpleAPL, give its operational semantics, and define four alternative deliberation strategies
for SimpleAPL programs which are typical of those used in BDI-based agent programming
languages. We then introduce the syntax and semantics of the logics to reason about safety

123

358 Auton Agent Multi-Agent Syst (2011) 22:356–381

and liveness properties of SimpleAPL programs under these deliberation strategies. We pro-
vide sound and complete axiomatisations of the logics, and prove a correspondence between
the operational semantics of SimpleAPL and the models of the logics for the program delib-
eration strategies we consider. Finally, we show how to translate agent programs written in
SimpleAPL into logical expressions, and, using a simple example program, show how the
agent’s deliberation strategy can determine whether a given program will achieve a particular
goal.

In contrast to previous work, e.g., [2] where two basic deliberation strategies, interleaved
and non-interleaved, were ‘hard-coded’ into the translation of an agent program or model-
checking based approaches, the approach presented here uses a single fixed translation of
the agent program together with an axiomatisation of the agent’s deliberation strategy. The
modularity of our approach makes it easy to verify a property under different deliberation
strategies—rather than developing a new encoding for the combined program and delibera-
tion strategy, we simply need to replace the axioms which define the deliberation strategy.
Moreover, although we focus on a particular agent programming language and a small number
of deliberation strategies, our methodology is general enough to accommodate any deliber-
ation strategy that can be formulated in terms of distinct phases such as plan selection and
plan execution phases, and the kinds of operations that can be performed in each phase. As
such, we believe it represents a significant advance on previous work, both in the ease with
which meta reasoning strategies can be expressed and in more clearly characterising their
properties.

2 SimpleAPL

SimpleAPL is a fragment of the agent-oriented programming language 3APL [6,11]. Sim-
pleAPL contains the core features of 3APL, and allows the implementation of agents with
beliefs, goals, actions, plans, and planning rules. The main features of 3APL we have omitted
are a first order language for beliefs and goals, belief and goal test actions, and some basic
actions such as actions for adopting/dropping goals and beliefs. We have omitted these fea-
tures in order to simplify the presentation; they do not present a significant technical challenge
for our approach. 3APL assumes finite domains and can be reduced to a propositional lan-
guage by considering all possible substitutions. Belief and goal test actions were considered
in [2] and the omission of actions to adopt/drop subgoals, while an important practical issue,
does not result in a reduction in expressive power. SimpleAPL retains the declarative goals
of 3APL and the agent chooses which plan to adopt to achieve a goal using planning goal
rules (see below).

In SimpleAPL, an agent’s state is specified in terms of its beliefs and goals and its pro-
gram by a set of plans. The beliefs of an agent represent the agent’s information about its
environment, while its goals represent situations the agent wants to realise (not necessary
all at once). For simplicity, we only allow the agent’s beliefs to be a set of atoms (positive
literals) and goals to be a set of literals. For beliefs we assume the closed-world assumption,
i.e., the agent believes−p if and only if p is not a belief. For example, an agent might believe
that it is at home and that it is raining:

Beliefs: home, raining

and its goals may be to have breakfast and go to work:

Goals: breakfast, work

123

Auton Agent Multi-Agent Syst (2011) 22:356–381 359

The beliefs and goals of an agent are related to each other: if an agent believes p, then it will
not pursue p as a goal. In other words, in each state, the agent’s beliefs and goals are disjoint.

Belief update actions change the beliefs of the agent. A belief update action is specified
in terms of its pre- and postconditions (which are sets of literals), and can be executed if
the belief literals in one of its preconditions are entailed by the agent’s current set of beliefs
(under the closed-world assumption). Executing the action updates the agent’s beliefs with
the belief literals in the action’s postcondition. For example, the following belief update
specification

BeliefUpdates:
{home} walk_work {-home, work}

can be read as “if the agent is at home it can walk to work, after which it is at work (and not
at home)”. Belief update actions maintain consistency of the agent’s beliefs, i.e., if p is in
the belief set and the belief set is updated by−p, then p is removed from the belief set. Goals
which are achieved by the postcondition of an action are dropped. For example, if the agent
is at home and has a goal of being at work, executing a walk_work action will cause it to
drop the goal. For simplicity, we assume that the agent’s beliefs about its environment are
always correct and its actions in the environment are always successful. This assumption can
be relaxed, which would require including the state of the environment in the models, so that
we can talk about properties of the environment and about agent’s beliefs about those prop-
erties. Pre- and post-conditions of actions would then be expressed in terms of propositions
about the environment, and the agent may have incorrect beliefs concerning preconditions
or results of actions.

In order to achieve its goals, an agent adopts plans. A plan consists of belief update actions
composed by sequence, conditional choice and conditional iteration operators. The sequence
operator ‘;’ takes two plans as arguments and indicates that the first plan should be per-
formed before the second plan. The conditional choice and conditional iteration operators
allow branching and looping and generate plans of the form ‘if φ then π1 else π2’
and ‘while φ do π ’ respectively. The condition φ is evaluated with respect to the agent’s
current beliefs. For example, the plan

if raining then take_umbrella else take_sunglasses ;
walk_work

causes the agent to take an umbrella if it is raining and sunglasses if it is not, and then walk
to work.

To select appropriate plans, the agent uses planning goal rules. A planning goal rule con-
sists of three parts: an (optional) goal query specifying the goal(s) the plan achieves, a belief
query characterising situation(s) in which it could be a good idea to adopt the plan, and the
body of the rule. Applying a planning goal rule causes the agent to adopt the plan which
forms the body of the rule. For example, the planning goal rule:

work <- home | if raining then take_umbrella
else take_sunglasses ;
walk_work

states that “if the agent’s goal is to be at work and it believes it is at home, then it will adopt
the specified plan”. For simplicity, we assume that agents do not have initial plans, i.e., plans
can only be generated during the agent’s execution by planning goal rules.

The syntax of SimpleAPL is given below in EBNF notation. We assume a set of belief
update actions and a set of propositions, and use 〈aliteral〉 to denote the name of a belief
update action, 〈atom〉 to denote an atom, and 〈literal〉 to denote a literal.

123

360 Auton Agent Multi-Agent Syst (2011) 22:356–381

〈APL_Prog〉 ::= "BeliefUpdates:" 〈updatespecs〉
"Beliefs:" 〈beliefs〉
"Goals": 〈goals〉
"PG rules:" 〈pgrules〉

〈updatespecs〉 ::= [〈updatespec〉 ("," 〈updatespec〉)*]
〈updatespec〉 ::= "{" 〈literals〉 "}" 〈aliteral〉 "{"〈literals〉"}"
〈beliefs〉 ::= [〈atom〉 ("," 〈atom〉)*]
〈goals〉 ::= [〈literals〉]
〈plan〉 ::= 〈baction〉 | 〈sequenceplan〉 | 〈ifplan〉 | 〈whileplan〉
〈baction〉 ::= 〈aliteral〉
〈sequenceplan〉 ::= 〈plan〉 ";" 〈plan〉
〈ifplan〉 ::= "if" 〈query〉 "then {" 〈plan〉 "}" ["else {" 〈plan〉 "}"]
〈whileplan〉 ::= "while" 〈query〉 "do {" 〈plan〉 "}"
〈pgrules〉 ::= [〈pgrule〉 ("," 〈pgrule〉)*]
〈pgrule〉 ::= [〈literal〉] "<-" 〈query〉 "|" 〈plan〉
〈query〉 ::= 〈literal〉 | 〈query〉 "and" 〈query〉 | 〈query〉 "or" 〈query〉
〈literals〉 ::= [〈literal〉 ("," 〈literal〉)*]

We will use the following simple agent program as a running example in the remainder
of the paper:

BeliefUpdates:
{home} take_umbrella {umbrella}
{home} take_sunglasses {sunglasses}
{home} walk_work {-home, work}
{home} eat_breakfast {breakfast}

Beliefs:
home, raining

Goals:
breakfast, work

PG rules:
r1: work <- home |

if raining then take_umbrella
else take_sunglasses;
walk_work

r2: breakfast <- home | eat_breakfast

This program implements an agent that initially believes it is at home and it is raining,
and wants to have breakfast and to be at work. It is important to note that the agent does not
necessarily need to achieve these goals at the same time. The first planning goal rule can be
applied to get the agent from home to work. The application of this rule causes the agent to
take an umbrella if it rains or otherwise take sunglasses, after which it will walk to work.
The second planning goal rule can be applied to get the agent to have breakfast when it is
at home. As already explained, the belief updates specify when the agent’s actions can be
performed and what are their effects.

123

Auton Agent Multi-Agent Syst (2011) 22:356–381 361

3 Operational semantics

We define the formal semantics of SimpleAPL in terms of a transition system. Each transition
corresponds to a single execution step and takes the system from one configuration (defined
as the agent’s current beliefs, goals and plans) to another. We assume that the execution of
basic actions and the application of planning goal rules are atomic operations.

Definition 1 The configuration of an agent is defined as 〈σ, γ,�〉 where σ is a set of atoms
representing the agent’s beliefs, γ is a set of literals representing the agent’s goals, and � is
a set of plan entries ri : π representing the agent’s current active plans, where π is a plan
(possibly partially executed) and ri the planning goal rule which caused the agent to adopt
this plan. An agent’s initial beliefs and goals are specified by its program, and � is initially
empty.

For the formulation of the operational semantics we need to formalise some basic assump-
tions. In particular, we use the notion of belief entailment based on the closed-world assump-
tion. This notion of entailment, which we denote by |�cwa , is defined as follows:

σ |�cwa p ⇔ p ∈ σ
σ |�cwa −p ⇔ p �∈ σ
σ |�cwa φ and ψ ⇔ σ |�cwa φ and σ |�cwa ψ

σ |�cwa φ or ψ ⇔ σ |�cwa φ or σ |�cwa ψ

σ |�cwa {φ1, . . . , φn} ⇔ ∀1 ≤ i ≤ n σ |�cwa φi

The notion of goal entailment, denoted by |�g , corresponds to a formula being classically
entailed by one of the goals in the goal base γ , and is defined as follows:

γ |�g p ⇔ p ∈ γ
γ |�g −p ⇔ −p ∈ γ

Note that these are the only goal queries allowed by the EBNF definition of the language
above.

Each belief update action α has a set of preconditions prec1(α), …, preck(α). Each
preci(α) is a finite set of belief literals, and any two preconditions for an actionα,preci(α)
and precj(α) (i �= j), are mutually exclusive (both sets of propositional variables cannot be
satisfied simultaneously). For each preci(α) there is a unique corresponding postcondition
posti(α), which is also a finite set of literals. A belief update action α can be executed if
σ |�cwa precj(α) for some precondition j . The effect of updating a set of beliefs σ with α
is given by Tj (α, σ) = σ ∪ ({p : p ∈ postj(α)}\{p :−p ∈ postj(α)}), (i.e., executing
the belief update action α adds the positive literals in its postcondition to the agent’s beliefs
and removes any existing beliefs if their negations are in the postcondition).

Executing the agent’s program modifies its (initial) configuration in accordance with the
transition rules presented below.

The successful execution of a belief update action α in a configuration where the plan
ri : α;π is in the set of the agent’s current plans is given by:

ri : α;π ∈ � σ |�cwa prec j (α) Tj (α, σ) = σ ′
〈σ, γ,�〉 −→ 〈σ ′, γ ′, (�\{ri : α;π}) ∪ {ri : π}〉 (1a)

where γ ′ = γ \{φ ∈ γ | σ ′ |�cwa φ} (executing a belief update action causes the agent to
drop any goals it believes to be achieved as a result of the update). In this and the following
transition rules, the plan π in the sequence plan α;π can be empty in which case α;π is
identical to α. Moreover, we stipulate that � ∪ {ri : } = �.

123

362 Auton Agent Multi-Agent Syst (2011) 22:356–381

If an agent has a plan ri : α;π but none of the preconditions of α hold, then attempting to
execute α removes the plan from the plan base and does not change the agent’s beliefs and
goals:

ri : α;π ∈ � ∀ j σ �|�cwa precj(α)

〈σ, γ,�〉 −→ 〈σ, γ,�\{ri : α;π}〉 (1b)

Composite plans. The following transition rules specify the effect of executing the conditional
choice and conditional iteration operators, respectively.

ri : (if φ then π1 else π2);π ∈ � σ |�cwa φ

〈σ, γ,�〉 −→ 〈σ, γ,�′ ∪ {ri : π1;π}〉 (2a)

ri : (if φ then π1 else π2);π ∈ � σ �|�cwa φ

〈σ, γ,�〉 −→ 〈σ, γ,�′ ∪ {ri : π2;π}〉 (2b)

where �′ = �\{ri : (if φ then π1 else π2);π}.
ri : (while φ do π1);π ∈ � σ |�cwa φ

〈σ, γ,�〉 −→ 〈σ, γ,�′ ∪ {ri : (π1;while φ do π1);π}〉 (3a)

ri : (while φ do π1);π ∈ � σ �|�cwa φ

〈σ, γ,�〉 −→ 〈σ, γ,�′ ∪ {ri : π}〉 (3b)

where �′ = �\{ri : (while φ do π1);π}. Note that the sequence operator is specified
implicitly by the other rules which specify how to execute the first operation in the sequence.

A planning goal rule ri = κi ← βi |πi can be applied if κi is entailed by the agent’s
goals and βi is entailed by the agent’s beliefs, and if the plan base does not already contain
a (partially executed) plan added by ri . Applying the rule ri adds πi to the agent’s plans.

γ |�g κi σ |�cwa βi ri : π �∈ �
〈σ, γ,�〉 −→ 〈σ, γ,� ∪ {ri : πi }〉 (4)

3.1 Specifying deliberation strategies

The transition rules presented above define the most general model of agent execution in
which any atomic operation can be interleaved with any other. More precisely, this fully-
interleaved deliberation strategy (which we denote by (i)) can be defined as: “either apply a
planning goal rule, or execute the first action in any of the current plans; repeat”. Particular
deliberation strategies are restrictions of this fully-interleaved deliberation which prohibit
certain execution paths. For example, a simple non-interleaved deliberation strategy which
executes a single plan to completion before choosing another plan, i.e., “when in a configu-
ration with no plan, choose a planning goal rule non-deterministically, apply it, execute the
resulting plan; repeat”.

Many deliberation strategies are possible and it is impossible to consider them all in detail.
Instead we characterise some typical deliberation strategies in terms of the execution paths
they admit. We focus on the non-interleaved strategy (which we denote by (ni)) and two
simple ‘alternating’ strategies: one which first applies a planning goal rule and then executes
a single basic action of one of the agent’s current plans (which we denote (as)); and another
which first applies a planning goal rule and then executes a single basic action from each
of the agent’s current plans (which we denote (am)). These strategies were chosen as rep-
resentative of deliberation strategies found in the literature and in current implementations

123

Auton Agent Multi-Agent Syst (2011) 22:356–381 363

of BDI-based agent programming languages. However none of these strategies (or any other
single strategy) is clearly “best” for all agent task environments. For example, the (ni) strat-
egy is appropriate in situations where a sequence of actions must be executed ‘atomically’
in order to ensure the success of a plan. However it means that the agent is unable to respond
to new goals until the plan for the current goal has been executed. Conversely, the (as) and
(am) strategies allow an agent to pursue multiple goals at the same time, e.g., allowing an
agent to respond to an urgent, short-duration task while engaged in a long-term task. However
they can increase the risk that actions in different plans will interfere with each other. It is
therefore important that the agent developer has the freedom to choose the strategy which is
most appropriate to a particular problem.

To define the deliberation strategies, we assume that the following control actions are
available:

apply_rule(�,�) if the conditions of transition rule (4) are satisfied for some plan-
ning goal rule ri in�, returns�∪ {ri : πi } where πi is the plan
which forms the body of ri ; otherwise returns �

choose_plan(�) choose a plan πi from �

execute_step(�,πi) if the appropriate conditions of transition rules (1a)–(3b) are
satisfied, executes the next step in πi ∈ �, updates the configu-
ration accordingly and returns the updated plan base; otherwise
(if the next step in π is not executable) returns �\{πi }.

Note that the apply_rule(�,�) control action constitutes to the plan selection phase
(transition rule (4)). Similarly, the choose_plan(�) control action followed by one or
moreexecute_step(�,πi) control actions together form the plan execution phase (tran-
sition rules (1)–(3)).

The non-interleaved strategy (ni) can then be defined as:

repeat
� := apply_rule(�, �)
πi := choose_plan(�)
while (� != {})
� := execute_step(�, πi)

The alternating (single action) strategy (as) can be defined as:

repeat
� := apply_rule(�, �)
πi := choose_plan(�)
� := execute_step(�, πi)

and the alternating (multi-action) strategy (am) as:

repeat
� := apply_rule(�, �)
foreach πi in �

� := execute_step(�, πi)

Other strategies can be defined in a similar way. For example, by changing the definition
of the apply_rule control action we can prioritise adopting plans for particular types of
goals or which are triggered by particular beliefs (e.g., high priority beliefs or goals). Simi-
larly, by changing the definition of the choose_plan control action, we can preferentially
return plans which achieve high priority goals etc.

123

364 Auton Agent Multi-Agent Syst (2011) 22:356–381

Consider the planning goal rules from the example program:

r1: work <- home |
if raining then take_umbrella
else take_sunglasses;
walk_work

r2: breakfast <- home | eat_breakfast

In a state where both rules are applicable and it is raining, the non-interleaved execu-
tion strategy results in one of two possible executions. The first one will apply rule r1
first - the resulting plan base will contain if raining then take_umbrella else
take_sunglasses; walk_work and executing the plan. Note that after getting to
work, the second rule is not applicable. Informally, for brevity, we will represent the se-
quence of steps in this execution as

r1, rain?, take_umbrella, walk_work

Another possible sequence of steps is

r2, eat_breakfast, r1, rain?, take_umbrella, walk_work

However, if the agent adopts the alternating single step strategy, we may get

r1, rain?, r2, take_umbrella, (no rule), walk_work

(note that at the action execution stage, the agent has to execute the next step of some plan
in the plan base, so it may always execute the next step of the plan asserted by r1. After the
agent performed walk_work, the next step of the second plan, namely eat_breakfast,
is not executable). An example of program execution under the alternating multi-step strategy
would be

r1, rain?, r2, take_umbrella, eat_breakfast, (no rule),
walk_work

Note that after eat_breakfast is executed, no rule is applicable, so we again execute the
first step of a plan.

4 Logic

In this section we introduce a series of logics to describe transition systems corresponding
to the (i), (ni), (as) and (am) deliberation strategies. The language of our logic is based
on (test-free) Propositional Dynamic Logic PDL (see, e.g., [16]). PDL is a logic to reason
about programs. The language of test-free PDL language is defined with respect to a set of
propositional variables and a set of atomic programs. Complex program expressions are built
from atomic programs, sequential composition ‘;’ (ρ1; ρ2 means program ρ1 followed by
ρ2), union ‘∪’ (ρ1 ∪ ρ2 means executing either ρ1 or ρ2), and finite iteration ‘∗’ (ρ∗ means
executing ρ 0 or finitely many times). For each program expression ρ, the language contains
a modality 〈ρ〉. PDL formulas are defined as follows: p | ¬φ | φ1∧φ2 | 〈ρ〉φ and interpreted
on labelled transition systems, where labels are atomic programs. A formula 〈ρ〉φ is true in
a state s if there exists a state reachable from s by a path described by ρ, which satisfies φ;
intuitively, if there is a possible execution of program ρ which results in a state satisfying φ.

123

Auton Agent Multi-Agent Syst (2011) 22:356–381 365

4.1 Language

We extend the standard language of PDL with belief and goal operators, and with an inter-
leaving program constructor ‖ [1], where ρ1 ‖ ρ2 means the interleaved execution of actions
of ρ1 and actions of ρ2.1 The belief modality B and goal modality G are introduced to indi-
cate the modality of a proposition, i.e., to indicate whether a proposition should be evaluated
with respect to an agent’s beliefs or to its goals. They are not interpreted using accessibility
relations but as properties of the agent’s state. Essentially, the agent believes a propositional
variable if it is in the agent’s belief base, and the agent has a literal as a goal if it is in the
agent’s goal base. We have chosen this approach since it has an obvious correspondence with
the semantics of SimpleAPL.

We define the language of our logic relative to a set of planning goal rules � with plans
�(�) and pre- and post conditions for belief updates C(�). Let� = {r1, . . . , rn} be the set of
planning goal rules, each of which is of the form ri = κi ← βi | πi . Let�(�) = {π1, . . . πn}
be the set of plans occurring in the rules, and Ac(�) the finite set of belief update actions
occurring in those plans. Let P be the set of atoms, i.e., positive belief and goal literals,
occurring in �. For each belief update α, we have a set of pre- and postcondition pairs
C(α) = {(prec1(α),post1(α)),…, (preck(α),postk(α))}. We denote the set of all pre-
and postconditions for all belief updates in� by C(�), that is, C(�) = {C(α) : α ∈ Ac(�)}.

We identify key phases in the deliberation cycle by propositional flags, and then write
axioms which capture the possible transitions between phases. For the (i), (ni), (as) and (am)
strategies we consider, the flags are: starti , which indicates that planπi has started execution;
stepi , which indicates that the next step of πi has been executed; and f aili , which indicates
that πi has failed, namely the next belief update action in πi cannot be executed because its
preconditions do not hold.

The set of atomic propositions of our logic consists of:

– a set of propositional variables P
– a set of boolean flags Pc = {starti , f aili , stepi : ri ∈ �};

The set of ‘atomic programs’ of our logic consists of:

– for every rule ri ∈ �, an atomic action δr i for apply ri

– a set of atomic actions Acind(�) = {αi | α ∈ Ac(�) and α appears in πi ∈ �(�)} (i.e.
we introduce a new atomic action αi for every plan πi in which the belief update action
α appears)

– for every test formula φ (appearing in an if- or while- plan) in a plan πi ∈ �(�), a
test action ti ((¬)φ). Essentially this is a PDL test operator restricted to tests expressible
in SimpleAPL, however unlike PDL tests, it can change the state (set stepi to true, for
example)

– for each plan πi , an atomic action ei . This action is introduced for technical reasons, and
will be used in our translation of� as a PDL expression. We append it after each plan to
reset the control flags after the plan has finished executing.

A formula of L is defined as follows: if p ∈ P , then Bp and G(−)p are formulas (note that
B and G operators cannot be nested and that the B operator can only be applied to positive
literals). If p ∈ Pc, then p is a formula; if ρ is a program expression and φ a formula, then
〈ρ〉φ is a formula; and L is closed under the usual boolean connectives. We define [ρ]φ as
¬〈ρ〉¬φ and use the abbreviation 〈[ρ]〉φ for [ρ]φ ∧ 〈ρ〉φ. (As will be clear from the next
section, in general [ρ]φ does not entail 〈ρ〉φ.)

1 Note that every formula with the interleaving operator can be rewritten without the interleaving operator,
however the resulting formula may be doubly exponentially larger [1].

123

366 Auton Agent Multi-Agent Syst (2011) 22:356–381

4.2 Semantics

A model M is defined as (W, {Rαi : αi ∈ Acind(�)}, {Rδr i : ri ∈ �}, Rei , V) where

– W is a non-empty set of states
– V = (Vb, Vg, Vc) is the evaluation function consisting of belief and goal valuation func-

tions Vb and Vg and control valuation function Vc such that for every s ∈ W ,
Vb(s) = {p1, . . . , pm : pi ∈ P} is the agent’s beliefs in s
Vg(s) = {(−)u1, . . . , (−)un : ui ∈ P} is the agent’s goals in s (note that Vg assigns literals
rather than propositional variables)
Vc(s) ⊆ Pc are the control variables true in s

– Rαi , Rti (φ), Rδr i , Rei are binary relations on W ; Rαi corresponds to belief updates, Rti (φ)

to belief tests, Rδr i to firing a rule, and Rei corresponds to executing the ei action (intui-
tively, removing a plan from the plan base).

The conditions on Rαi , Rδr i and Rei depend on the deliberation strategy and are defined
below.

Given the relations corresponding to atomic programs in M , we can define sets of paths
in the model corresponding to any PDL program expression ρ in M . A set of paths τ(ρ) ⊆
(W ×W)∗ is defined inductively:

– τ(αi) = {(s, s′) : Rαi (s, s′)}
– τ(ti (φ)) = {(s, s′) : Rti (φ)(s, s′)}
– τ(ρ1 ∪ ρ2) = {z : z ∈ τ(ρ1) ∪ τ(ρ2)}
– τ(ρ1; ρ2) = {z1 ◦ z2 : z1 ∈ τ(ρ1), z2 ∈ τ(ρ2)}, where ◦ is concatenation of paths.
– τ(ρ∗) is the set of all paths consisting of zero or finitely many concatenations of paths in
τ(ρ)

– τ(ρ1 ‖ ρ2) is the set of all paths obtained by interleaving atomic actions and tests from
τ(ρ1) and τ(ρ2).

By an interleaving of two sequences of atomic programs a1; . . . ; an and b1; . . . ; bm we mean
any sequence of as and bs such that the order within as and bs is preserved; namely ai should
precede a j in the sequence if i < j , and the same for bs. The set of all interleavings of
a1; a2 and b1 is {a1; a2; b, a1; b; a2, b; a1; a2}. However, in the definition of τ(ρ1 ‖ ρ2)

we talk about interleavings of paths from τ(ρ1) and τ(ρ2), where paths are sequences of
pairs of states. In order to be able to define all possible interleavings of paths inductively,
we allow ‘illegal paths’ of the form (s0, s1), (s2, s3) in τ(ρ), where s1 �= s2; in other words,
concatenation z1 ◦ z2 is defined for paths z1 and z2 even when the last state of z1 is not
the same as the first state of z2. This is different from standard P DL . To see why this is
necessary in the presence of the interleaving operator, consider the following example. A
path (s0, s1),(s1, s2), (s2, s3) where (s0, s1) ∈ τ(α1), (s1, s2) ∈ τ(α3) and (s2, s3) ∈ τ(α2)

should be in τ(α1;α2 ‖ α3) but this means that an illegal path (s0, s1),(s2, s3) should be in
τ(α1;α2). We will call paths without such ‘jumps’ legal paths. Only legal paths are used in
evaluating PDL modalities (see the truth definition below).

The satisfaction relation |� of a formula being true in a state of a model is defined induc-
tively as follows:

– M, s |� Bp iff p ∈ Vb(s)
– M, s |� G(−)p iff (−)p ∈ Vg(s)
– M, s |� p iff p ∈ Vc(s), where p ∈ Pc

– M, s |� ¬φ iff M, s �|� φ
– M, s |� φ ∧ ψ iff M, s |� φ and M, s |� ψ

123

Auton Agent Multi-Agent Syst (2011) 22:356–381 367

– M, s |� 〈ρ〉φ iff there is a legal path in τ(ρ) starting in s which ends in a state s′ such
that M, s′ |� φ.

We use the starti flags to signal that plan πi has started executing; it is set to true when the
planning goal rule ri is applied and prevents repeated application of ri . We use the stepi flags
to say that a single step of plan πi has been executed. If a belief update action αi of plan πi

cannot be executed, the f aili flag is set. Finally, the special action ei , which is appended to
the end of plan πi in our translation of the agent program, resets the starti , stepi and f aili
flags to false.

Models for all deliberation strategies satisfy the following conditions, for all s ∈ W :
C1 Vg(s) ∩ Vb(s) = ∅ and {p :−p ∈ Vg(s)} ⊆ Vb(s) (Beliefs and goals are disjoint.)

C2 If f aili ∈ Vc(s), then for every ui where ui is an action αi or test ti (φ) of plan
πi , Rui (s, s) and for no s′ �= s, Rui (s, s′).
(If the f aili flag has been set, this causes all subsequent actions in πi to be ‘consumed’
without changing the state, mimicking the deletion of the remaining steps of πi .)

C3 Rei (s, s′) iff Vb(s′) = Vb(s), Vg(s′) = Vg(s) and Vc(s′) = Vc(s)\{starti , f aili , stepi }.
(ei sets starti , f aili and stepi to false.)

C4 If φ and f aili are false in s, then there is no s′ such that Rti (φ)(s, s′) (strictly speaking,
if the translation of φ in our logical language, fb(φ), which is defined in the next section,
is false in s).

5 Axiomatisation

Different deliberation strategies require different conditions on applicability of actions and
rules and can be characterised by different sets of axioms. In order to specify different condi-
tions and axiomatisations for different strategies, we first explain how different components
of agent programs can be translated into PDL expressions.

The beliefs, goals and plans of agent programs are translated into PDL expressions using
translation functions fb, fg and f p as follows:

– translation of belief formulas: let p ∈ P and φ,ψ be belief query expressions of Sim-
pleAPL (boolean combinations of literals)

• fb(p) = Bp
• fb(φ and ψ) = fb(φ) ∧ fb(ψ)

• fb(φ or ψ) = fb(φ) ∨ fb(ψ)

In addition,

• fb(¬φ) = ¬ fb(φ) (we need this clause for translating expressions of the form ti (¬φ)
in translations of if- and while- plans below)
• fb(X) =∧

p∈X Bp ∧∧
−p∈X ¬Bp where X is a set of literals (this is for translating

pre- and post-conditions of a belief update)

– translation of goal formulas: let p ∈ P

• fg(p) = Gp
• fg(−p) = G –p

– translation of plan expressions: let α be a belief update action, φ a belief query expression,
and π, π1, π2 be plan expressions of SimpleAPL, all occurring in a plan i :

123

368 Auton Agent Multi-Agent Syst (2011) 22:356–381

• f p(α) = αi

• f p(π1;π2) = f p(π1); f p(π2)

• f p(if φ then π1 else π2) = (ti (φ); f p(π1)) ∪ (ti (¬φ); f p(π2))

• f p(while φ do π) = (ti (φ); f p(π))
∗; ti (¬φ)

Different deliberation strategies require different conditions on models. We now state these
conditions and provide complete axiomatisations for the corresponding classes of models.

5.1 Conditions on models for the fully-interleaved strategy (i)

Models corresponding to the fully-interleaved deliberation strategy (i) in addition conform
to the following constraints.
C5 If fb(prec j (α)) and ¬ f aili are true in s, then Rαi (s, s′) iff Vb(s′) = Tj (α, Vb(s)),

Vg(s′) = Vg(s)\({p : p ∈ Vb(s′)} ∪ {−p : p �∈ Vb(s′)}) and Vc(s′) = Vc(s).
(Corresponds to transition (1a): when action α is successfully executed, transit to a state
where the beliefs and goals are modified according to the action specification.)

C6 If fb(φ) and ¬ f aili are true in s, then Rti (φ)(s, s′) iff Vb(s′) = Vb(s), Vg(s′) = Vg(s)
and Vc(s′) = Vc(s). (Corresponds to evaluating the test formula in transitions (2a) and
(3a).)

C7 If ∨ j fb(prec j (α)) and f aili are false in s, then Rαi (s, s′) iff Vb(s′) = Vb(s) and
Vg(s′) = Vg(s) and Vc(s′) = Vc(s) ∪ { f aili }.
(Corresponds to transition (1b): if an action of πi is not executable (i.e., none of its
preconditions hold) transit to a state where f aili is true.)

C8 If ri = κi ← βi | πi is a PG rule, then Rδr i (s, s′) iff ¬starti , fg(κi), fb(βi) are true in
s and Vb(s′) = Vb(s), Vg(s′) = Vg(s), and Vc(s′) = Vc(s) ∪ {starti }. (Corresponds to
transition (4): ri can be fired if, and only if, πi has not started and the belief and goal
conditions of ri are true.)

Let the class of transition systems defined above be denoted M(�, i).

5.2 Axiomatisation for the fully-interleaved strategy (i)

CL classical propositional logic
PDL axioms of PDL (see, e.g., [16]) excluding interleaving since it is expressible

A1 Bp→ ¬Gp (corresponds to C1)
A2 G− p→ Bp (corresponds to C1)
A3 f aili ∧ φ → 〈[ui]〉(f aili ∧ φ) where φ is any formula and ui is either αi or ti (φ)

(corresponds to C2)
A4 φ → 〈[ei]〉(φ ∧ ¬starti ∧ ¬ f aili ∧ ¬stepi) for any formula φ not containing starti

and f aili (corresponds to C3).
A5 ¬ fb(φ) ∧ ¬ f aili → [ti (φ)]⊥ (corresponds to C4: test is not executable if the formula

is false and the plan has not failed)
A6 fb(precj(α))∧¬ f aili ∧ φ→ 〈[αi]〉(fb(postj(α))∧ φ), where φ does not contain

variables from postj(α) (corresponds to C5)
A7 fb(φ) ∧ ψ → 〈[ti (φ)]〉ψ (corresponds to C6: tests are executable and don’t change the

state if the test formula is true)
A8

∧
j ¬ fb(precj(α))∧¬ f aili ∧φ→ 〈[αi]〉(f aili ∧φ)where φ does not contain f aili

(corresponds to C7)

123

Auton Agent Multi-Agent Syst (2011) 22:356–381 369

A9 ¬starti ∧ fg(κi)∧ fb(βi)∧ φ→ 〈[δr i]〉(starti ∧ φ), where φ does not contain starti
(corresponds to C8; φ encodes the frame condition that the state does not change apart
from setting the starti flag to true)

A10 starti ∨ ¬(fg(κi) ∧ fb(βi))→ [δr i]⊥ (corresponds to C8 ‘only if’)
Let us call the axiom system above Ax(�, i).

Theorem 1 Ax(�, i) is sound and (weakly) complete for the class of models M(�, i).

Proof The proof of soundness is by straightforward induction on the length of a derivation.
All axioms are clearly sound (since they closely correspond to conditions on models), and
the inference rules are standard.

The proof of completeness is standard as far as the PDL part is concerned, see for example
[5]. Take a consistent formula φ. As the building blocks in our construction we will use a
set C L(φ) which includes subformulas of φ and a finite number of other formulas specified
below. First of all, we define the set of subformulas of φ in the usual way, but considering
subformulas of the form Bp and G(−)p as atomic formulas (that is, p and−p are not included
in the set of subformulas). Then we require that C L(φ) is closed under subformulas and in
addition satisfies the usual conditions for the Fischer–Ladner closure and closure under single
negations:

– if 〈ρ1; ρ2〉ψ ∈ C L(φ) then 〈ρ1〉〈ρ2〉ψ ∈ C L(φ)
– if 〈ρ1 ∪ ρ2〉ψ ∈ C L(φ) then 〈ρ1〉ψ ∨ 〈ρ2〉ψ ∈ C L(φ)
– if 〈ρ∗〉ψ ∈ C L(φ) then 〈ρ〉〈ρ∗〉ψ ∈ C L(φ)
– if ψ ∈ C L(φ) and ψ is not of the form ¬χ , then ¬ψ ∈ C L(φ).

plus the following extra conditions:

– starti , stepi , f aili ∈ C L(φ)
– if an action αi occurs in φ, then C L(φ) contains fb translations of all pre- and postcon-

ditions for α, e.g. if one of α’s preconditions is {p,−q} then Bp,¬Bq ∈ C L(φ)
– if 〈t (φ′)〉ψ ∈ C L(φ) then fb(φ

′) ∈ C L(φ)

The states of the satisfying model M will be all maximal consistent subsets of C L(φ). Let
A, B be such maximal consistent sets, and a be any ofαi , ti (φ), δr i or ei . Then Ra(A, B)holds
if and only if the conjunction of formulas in A, Â, is consistent with 〈a〉B̂ (conjunction of for-
mulas in B preceded by 〈a〉). Similarly for accessibility relations corresponding to complex
programs ρ: Rρ(A, B) iff Â∧ 〈ρ〉B̂ is consistent. By the standard PDL proof, Rρ so defined
does in fact correspond to the relation in a regular model, for example Rρ1∪ρ2 = Rρ1 ∪ Rρ2 ,
similarly for ; and ∗.

We define the assignments Vb, Vg and Vc in an obvious way:

– p ∈ Vb(A) iff Bp ∈ A, where Bp ∈ C L(φ);
– (−)p ∈ Vg(A) iff G(−)p ∈ A, where G(−)p ∈ C L(φ);
– p ∈ Vc(A) iff p ∈ A.

The truth lemma follows easily: for every ψ ∈ C L(φ),

ψ ∈ A ⇔ M, A |� ψ
Since our formula φ is consistent, it belongs to at least one maximal consistent set A, so it is
satisfied in some state in M .

Now we have to show that the model we constructed satisfies conditions on M(�, (x))
for the interleaved strategy. First we show that the conditions common to all strategies hold
for the model we constructed:

123

370 Auton Agent Multi-Agent Syst (2011) 22:356–381

C1 Clearly, since the states are consistent with respect to the axiom schemas A1 and
A2, and by the truth lemma, beliefs are consistent, and beliefs and goals are dis-
joint.

C2 Let A be a maximal consistent set containing f aili . By axiom A3, if f aili ∧ Â is
consistent, then f aili ∧ Â ∧ 〈ui 〉 Â is consistent, so Rui (A, A) holds. Observe that for
any B �= A, Rui (A, B) does not hold because by A3 again, f aili ∧ Â→ [ui] Â so all
the states accessible by Rui should satisfy all the formulas in A. Since the states are
maximal, this means that the only accessible state is A.

C3 Let Rei (A, B). Let us denote by Ab (Bb) the set of all formulas in A (B) starting with

the belief operator. Since Âb does not contain starti , f aili and stepi , by axiom A4,

Âb → [ei] Âb, so since Â ∧ 〈ei 〉B̂ is consistent, so is Âb ∧ B̂, therefore Bb = Ab

and Vb(B) = Vb(A). Similarly for the goal formulas and control flags other than
starti , f aili and stepi . Finally, since Â→ [ei](¬starti ∧¬ f aili ∧¬stepi), Vc(B) =
Vc(A)\{starti , f aili , stepi }. Similarly, using the 〈ei 〉 version of A4 we can show that
for any B which differs from A only in its assignment of false to starti , f aili and
stepi , Rei (A, B) holds.

C4 If the test formula fb(φ) is not true in A, and ¬ f aili is true in A, then there is no ti (φ)
transition out of A by A5.

For the conditions specific to i strategy, the proof also exploits the close correspondence
between the axioms and conditions on models:

C5 If a state A does not contain a control flag f aili indicating that some action of plan πi is
not executable, and preconditions of an action αi hold, axiom A6 ensures that all states
B for which Â∧〈αi 〉B̂ is consistent, that is Rαi (A, B) holds, satisfy the postconditions
of αi and are otherwise the same as A.

C6 Similar condition for test actions is enforced by axiom A7.
C7 If A contains none of the preconditions of αi , then the only Rαi transition out of A is to

a state which is the same as A but contains f aili , by the axiom A8.
C8 Let A contain ¬starti , fg(κi), fb(βi) (which are the conditions for firing a planning

goal rule ri). Then by the axiom A9 (〈δri 〉 part), Â∧〈δri 〉B̂ is consistent, where B has the
same formulas as A apart from starti instead of ¬starti . By the [δri] part of the same
axiom, all Bs such that Rδri

(A, B) holds are like that, so they have the same assignment
of belief and goal formulas and the only difference in control flags is assigning true
to starti . Axiom A10 ensures that if a state does not satisfy the conditions for firing a
planning goal rule, there is no δri transition from that state. ��

5.3 Conditions on models for the non-interleaved strategy (ni)

Models corresponding to the non-interleaved strategy (ni) satisfy conditions C1–C7 above.
C8 is replaced with

C9 If
∧

j ¬start j , fg(κi) and fb(βi) are true in s, then Rδr i (s, s′) iff Vb(s′) = Vb(s),
Vg(s′) = Vg(s) and Vc(s′) = Vc(s) ∪ {starti }.
(This strengthens C8 to require that no other planning rule has been fired (not just ri) to
ensure that the agent has only one plan at a time.)

Let the class of transition systems defined above be denoted M(�,ni).

123

Auton Agent Multi-Agent Syst (2011) 22:356–381 371

5.4 Axiomatisation of the non-interleaved strategy (ni)

CL, PDL, A1–A8 as above:

A11 fg(κi) ∧ fb(βi) ∧∧
j ¬start j ∧ φ → 〈[δr i]〉(starti ∧ φ), where φ does not contain

starti
A12 ¬(fg(κi) ∧ fb(βi)) ∨∨

j star t j → [δr i]⊥.
A11 and A12 replace A9 and A10 from the fully-interleaved strategy and correspond to

C9.
Let us call the axiom system above Ax(�,ni).

Theorem 2 Ax(�,ni) is sound and (weakly) complete for the class of models M(�,ni).

The proof of soundness and completeness is similar to the proof of Theorem 1. The only
difference is in the condition on models for PG rule transitions Rδr i , which corresponds to
the axioms A11 and A12.

5.5 Conditions on models for the (as) strategy

Recall that the (as) strategy assumes the application of one planning goal rule followed by
the execution of one action of one plan. We use boolean flags stepi to say that a single step
of plan πi has been executed; when this flag is true for some i , all actions are disabled and
we must apply a planning goal rule. Rule application sets all stepi flags to false, re-enabling
action execution and disabling rule application. If some stepi is true, but no rules are appli-
cable, we continue to execute actions; conversely, if all stepi are false but all current plans
have failed, we re-enable rule application.

To make the conditions more readable, we introduce several abbreviations:

– execution phase: x =∧
ri∈� ¬stepi

– plan base is empty:
noplans =∧

ri∈�(starti → f aili)
– no rules are applicable:
norules =∧

ri∈�(starti ∨ ¬(fg(κi) ∧ fb(βi)))

Models corresponding to (as) strategy satisfy C1–C4 above and in addition conform to
the following constraints.
C10 If fb(prec j (α)),¬ f aili and x∨ norules are true in s, then Rαi (s, s′) iff Vb(s′) =

Tj (α, Vb(s)),
Vg(s′) = Vg(s)\({p : p ∈ Vb(s′)} ∪ {−p : p �∈ Vb(s′)}) and Vc(s′) = Vc(s) ∪ {stepi }.
(Corresponds to transition (1a) for (as): an action can be executed if one of its precondi-
tions holds and either action execution is enabled or no rules are applicable.)

C11 If fb(φ),¬ f aili and x ∨ norules are true in s, then Rti (φ)(s, s′) iff Vb(s′) =
Vb(s), Vg(s′) = Vg(s) and Vc(s′) = Vc(s) ∪ {stepi }.
(Corresponds to transitions (2a) and (3a) for (as): a test action can be executed if one of
its preconditions holds and either action execution is enabled or no rules are applicable.)

C12 If
∨

j fb(prec j (α)) and f aili are false in s, and x ∨ norules is true, then Rαi (s, s′)
iff Vb(s′) = Vb(s) and Vg(s′) = Vg(s) and Vc(s′) = Vc(s) ∪ { f aili , stepi }.
(Corresponds to transition (1b): if an action is not executable (i.e., none of its precondi-
tions hold), transit to a state where f aili and stepi are true, enabling rule execution.)

C13 If
∨

j step j and ¬ f aili are true in s and norules is false in s, then Rui (s, s′) holds
for no ui (where ui is αi or ti (φ)) (it is not possible to execute the next step of any plan
if a step of some plan has been executed, and there are applicable rules).

123

372 Auton Agent Multi-Agent Syst (2011) 22:356–381

C14 Rδr i (s, s′) iff ¬starti , fg(κi), fb(βi) and ¬x ∨ noplans are true in s and Vb(s′) =
Vb(s), Vg(s′) = Vg(s) and Vc(s′) = Vc(s) ∪ {starti } ∪ {¬step j : r j ∈ �}.
(Corresponds to transition (4) for the (as) strategy: a rule is applicable if the correspond-
ing plan is not in the plan base, the belief and goal conditions of the rule hold, and either
rule execution is enabled or all the plans in the plan base have failed.)

Let the class of transition systems defined above be denoted M(�, as).

5.6 Axiomatisation of the (as) strategy

CL, PDL, A1–A5 as above

A13 fb(precj(α))∧¬ f aili∧(x ∨ norules)∧φ→ 〈[αi]〉(stepi∧ fb(postj(α))∧φ),
where φ does not contain variables from postj(α) and stepi . (Corresponds to C10.)

A14 fb(ψ) ∧ ¬ f aili ∧ (x ∨ norules) ∧ φ → 〈[ti (ψ)]〉(stepi ∧ φ), where φ does not
contain stepi . (Corresponds to C11.)

A15
∧

j ¬ fb(precj(α))∧¬ f aili ∧ (x ∨ norules)∧ φ→ 〈[αi]〉(f aili ∧ stepi ∧ φ)
where φ does not contain f aili and stepi . (Corresponds to C12.)

A16
∨

j step j∧¬ f aili∧¬norules→ [ui]⊥where ui is eitherαi or ti (φ). (Corresponds
to C13.)

A17 ¬starti ∧ fg(κi)∧ fb(βi)∧(¬x ∨ noplans)∧φ→ 〈[δr i]〉(starti∧∧
j ¬step j ∧φ)

where φ does not contain starti and step j for any j . (Corresponds to C14.)
A18 ¬(fg(κi) ∧ fb(βi)) ∨ (x ∧ ¬noplans)→ [δr i]⊥. (Corresponds to C14, only if.)
Let us call the axiom system above Ax(�, as).

Theorem 3 Ax(�, as) is sound and (weakly) complete for the class of models M(�, as).

Again the proof is very similar to the proof of Theorem 1. It exploits the same close corre-
spondence between conditions on models and axioms. The main difference is in the use of
an extra type of control flag stepi in conditions and axioms.

5.7 Conditions on models for the (am) strategy

Recall that (am) strategy assumes the application of one planning goal rule followed by the
execution of one action of each plan in the plan base. Below we use the following abbrevia-
tion:

– planning phase: p =∧
ri∈�(starti → stepi ∨ f aili)

Models corresponding to the (am) strategy satisfy C1–C4 above and in addition
C15 If fb(prec j (α)),¬ f aili and ¬stepi are true in s, then Rαi (s, s′) iff Vb(s′) =

Tj (α, Vb(s)), Vg(s′) = Vg(s)\({p : p ∈ Vb(s′)} ∪ {−p : p �∈ Vb(s′)}) and Vc(s′) =
Vc(s) ∪ {stepi }.
(Corresponds to transition (1a) with the additional requirement that πi has not yet exe-
cuted the next step; executing αi sets stepi to true.)

C16 If fb(prec j (α)),¬ f aili and p∧ norules are true in s, then Rαi (s, s′) iff Vb(s′) =
Tj (α, Vb(s)),
Vg(s′) = Vg(s)\({p : p ∈ Vb(s′)} ∪ {−p : p �∈ Vb(s′)}) and Vc(s′) = Vc(s)\{step j :
j �= i}.
(Corresponds to transition (1a) with the additional requirement that no planning rules are
applicable; in such a case every current plan gets to execute one more step.)

123

Auton Agent Multi-Agent Syst (2011) 22:356–381 373

C17 If fb(φ),¬ f aili and¬stepi are true in s, then Rti (φ)(s, s′) iff Vb(s′) = Vb(s), Vg(s′) =
Vg(s) and Vc(s′) = Vc(s) ∪ {stepi }.

C18 If fb(φ),¬ f aili ,p and norules are true in s, then Rti (φ)(s, s′) iff Vb(s′) =
Vb(s), Vg(s′) = Vg(s) and Vc(s′) = Vc(s)\{step j : j �= i}.

C19 If
∨

j fb(prec j (α)) and f aili are false in s, and ¬stepi is true, then Rαi (s, s′) iff
Vb(s′) = Vb(s) and Vg(s′) = Vg(s) and Vc(s′) = Vc(s) ∪ { f aili , stepi }.
(Corresponds to transition (1b) for the case when πi has not performed a step.)

C20 If
∨

j fb(prec j (α)) and f aili are false in s, and p∧norules is true, then Rαi (s, s′)
iff Vb(s′) = Vb(s) and Vg(s′) = Vg(s) and Vc(s′) = (Vc(s) ∪ { f aili })\{step j : j �= i}
(Corresponds to transition (1b) whenπi has performed a step, but no rules are applicable.)

C21 If stepi and¬ f aili are true in s and (p∧norules) is false in s, then Rui (s, s′) holds
for no ui (where ui is αi or ti (φ)) (it is not possible to execute the next step of a plan if
a step of this plan has been executed, and there are applicable rules).

C22 Rδr i (s, s′) iff ¬starti , fg(κi), fb(βi) and p are true in s and Vb(s′) = Vb(s), Vg(s′) =
Vg(s) and Vc(s′) = Vc(s) ∪ {starti } ∪ {¬step j : r j ∈ �}.
(A rule can be applied if the corresponding plan has not started, the belief and goal
conditions of the rule hold, and all current plans have performed a step or failed.)

Let the class of transition systems defined above be denoted M(�, am).

5.8 Axiomatisation of the (am) strategy

CL, PDL, A1–A5 as above

A19 fb(precj(α))∧¬ f aili ∧¬stepi ∧ φ→ 〈[αi]〉(stepi ∧ fb(postj(α))∧ φ), where
φ does not contain variables from postj(α) and stepi . (Corresponds to C15.)

A20 fb(precj(α)) ∧ ¬ f aili ∧ stepi ∧ p ∧ norules ∧ φ→
〈[αi]〉(fb(postj(α)) ∧ ∧

j �=i ¬step j ∧ φ), where φ does not contain variables from
postj(α) and step j for all j �= i . (Corresponds to C16.)

A21 fb(ψ)) ∧ ¬ f aili ∧ ¬stepi ∧ φ → 〈[ti (ψ)]〉(stepi ∧ φ), where φ does not contain
stepi . (Corresponds to 17.)

A22 fb(ψ)∧¬ f aili ∧ p∧ norules∧ φ→ 〈[ti (ψ)]〉(∧ j �=i ¬step j ∧ φ), where φ does
not contain step j for all j �= i . (Corresponds to C18.)

A23
∧

j ¬ fb(precj(α)) ∧ ¬ f aili ∧ ¬stepi ∧ φ → 〈[αi]〉(f aili ∧ stepi ∧ φ) where φ
does not contain f aili and stepi . (Corresponds to C19.)

A24
∧

j ¬ fb(precj(α))∧¬ f aili∧p∧norules∧φ→ 〈[αi]〉(f aili∧∧
j �=i ¬step j∧φ)

where φ does not contain f aili and step j for all j �= i . (Corresponds to C20.)

A25 stepi ∧ ¬ f aili ∧ ¬(p ∧ norules)→ [ui]⊥ where ui is either αi or ti (φ). (Corre-
sponds to condition C21).

A26 ¬starti ∧ Gκi ∧ Bβi ∧ p ∧ φ → 〈[δr i]〉(starti ∧∧
j ¬step j ∧ φ) where φ does not

contain starti and step j for any j . (Corresponds to C22.)

A27 ¬(Gκi ∧ Bβi) ∨ ¬starti ∨ ¬p→ [δr i]⊥ (Corresponds to C22 only-if.)

Let us call the axiom system above Ax(�, am).

Theorem 4 Ax(�, am) is sound and (weakly) complete for the class of models M(�, am).

The proof is again similar to the proof of Theorem 1 and exploits close correspondence
between conditions on models and axioms.

123

374 Auton Agent Multi-Agent Syst (2011) 22:356–381

6 Verifying agent programs

Our aim is to verify properties of the agent such as ‘in all states (or in some state) reachable
by a path corresponding to the execution of the agent’s program, property φ holds’. In this
section we show how to translate the agent’s program into an expression of L which does
not depend on the agent’s deliberation strategy but which describes exactly the paths corre-
sponding to the agent’s execution under a given deliberation strategy in the models for this
strategy.

The basic building blocks of our translation are expressions of the form δr i ; f p(πi); ei

which correspond to firing a rule, executing the corresponding plan, and resetting the boolean
flags for this plan. Before the agent fires the rule ri again, it has to finish executing the plan (or
the plan has to fail). The agent may also interleave this plan execution with firing other rules
and executing the corresponding plans. It may also be that several consecutive executions of
δr i ; f p(πi); ei , that is (δr i ; f p(πi); ei)

+, may be interleaved with several consecutive exe-
cutions of δr j ; f p(π j); e j , that is, (δr j ; f p(π j); e j)

+. Note that the agent does not have to
and probably will not be able to execute all of its rules and plans.

This gives rise to the following translation of the agent program:

ξ(�) =
⋃

�′⊆�,�′ �=∅
‖ri∈�′ (δr i ; f p(πi); ei)

+

that is, the interleaving of one or more repetitions of all possible subsets of the agent’s plans.
We are interested in safety and liveness properties of agent programs, namely properties

of the form φ0 → [ξ(�)]φ and φ0 → 〈ξ(�)〉φ where φ0 is the description of the initial state
and φ is the property of interest (such as achievement of a goal). To prove properties of the
agent program under a particular deliberation strategy we need to show that the property is
derivable from the corresponding axioms. For example, to show that an agent with program
�, initial belief p and goal q is guaranteed to achieve its goal under the interleaved delib-
eration strategy, we need to derive Bp ∧ Gq ∧ ini t → [ξ(�)]Bq from Ax(�, i) (where
ini t =∧

ri∈�(¬starti ∧ ¬ f aili ∧ ¬stepi) describes the initial configuration).
To prove such properties, we must ensure that there is a correspondence between paths in

the operational semantics plus a deliberation strategy and paths in the PDL models satisfying
the axioms for this strategy. If a path exists in the operational semantics, then there is a corre-
sponding path in the PDL model. Note that the converse is not true; for example, in the PDL
model from any state there is a transition by a belief update action, and in the operational
semantics this only holds if the belief update is the first action of some plan which is in the
plan base in that state. However, we can prove that if a there is a path in the PDL model
which is described by ξ(�), then there is a corresponding path in the operational semantics.

Before we state the theorems precisely, we need to introduce some definitions. For each
deliberation strategy, we define what it means for configurations of an agent and states in
the models of the logic to correspond to each other. First we define this correspondence for
the (i) deliberation strategy. Given a configuration c = 〈σ, γ,� = {r1 : π ′1, . . . , rn : π ′n}〉, a
state s is in the correspondence relation ∼(i) to c, s ∼(i) c, if:

– Vb(s) = σ, Vg(s) = γ (beliefs and goals are the same in c and s),
– starti ∈ Vc(s) iff ri : π ∈ � (starti means that a plan has been added to the plan base

by ri)
– f aili �∈ Vc(s) for any ri ∈ � (only the states where f aili is false for all plans correspond

to ‘real’ configurations).

123

Auton Agent Multi-Agent Syst (2011) 22:356–381 375

 =
 =

{ri : ; }

¬starti
¬faili

starti
faili

starti
¬faili

eii

i

c c

s st

Fig. 1 Correspondence between operational semantics and models (α not executable)

By a path in an operational semantics transition system S, we will mean a sequence of config-
urations c1, label1, c2, label2, . . . , cm where c j+1 is obtained from c j by one of the transition
rules (1a)–(4). For convenience, we label each transition by the corresponding operation; a
(1a) transition executing an update action α by ‘execute α in πi ’, a (1b) transition by ‘fail α
in πi ’, a (2a) transition by ‘test if φ in πi ’, a (2b) transition by ‘test if ¬φ in πi ’, similarly
for (3a) and (3b), and a (4) transition of firing a rule ri by ‘fire ri ’. We claim that if there is a
path c = c1, . . . , cn = c′ in S with a certain sequence of labels, then there is a corresponding
path s = s1, . . . , sk = s′ in M such that s ∼(i) c and s′ ∼(i) c′. It remains to define what
we mean by a ‘corresponding path’. For each single step c j , label j , c j+1 on a path in S, the
corresponding path in M is as follows:

(1a): c j , ‘executeα inπi ’, c j+1: the corresponding path is s j , t, s j+i or s j , s j+1 depending
on whether α is the last action in πi , where s j ∼(i) c j and s j+1 ∼(i) c j+1. If α is the last
action in πi , then Rαi (s j , t) and Rei (t, s j+1). If α is not the last action, then Rαi (s j , s j+1).

(1b): c j , ‘fail α in πi ’, c j+1: the corresponding path is s j , t, . . . , t, s j+1 where s j ∼(i)
c j , s j+1 ∼(i) c j+1, Rαi (s j , t), t satisfies f aili and has otherwise the same assignments as
s j , and Rei (t, s j+1). Intuitively, the path contains as many t loops as there are update actions
remaining in the plan when it failed, and the last step on the path is along the ei action which
resets the starti and f aili flags to false and leaves the rest of the assignments the same.
Figure 1 illustrates this point; we assume that action α in a plan generated by a PG rule ri is
not executable, so in the operational semantics the plan is removed from the plan base, while
in the model the rest of the plan is ‘consumed’ in a state where f aili flag is set to true. The
ei transition resets the starti and f aili flags to false.

(2a)–(3b): the corresponding path is s j , s j+1 where s j ∼(i) c j , s j+1 ∼(i) c j+1 and
s j+1 = s j .

(4): the corresponding path is s j , s j+1 where s j ∼(i) c j , s j+1 ∼(i) c j+1 and
Rδr i (s j , s j+1).

Theorem 5 Let � be the program of an agent using the (i) deliberation strategy. Let c0 be
an initial configuration in a operational semantics transition system S for this agent. Let
M ∈ M(�, i) be generated by s0 ∼(i) c0. There exists a path from c0 to c in S, if and only
if, there is a path in M described by ξ(�) from s0 to a state s ∼(i) c.

To prove the theorem, we need the following two lemmas. S and M in the lemmas refer to S
and M in Theorem 5.

123

376 Auton Agent Multi-Agent Syst (2011) 22:356–381

Lemma 1 For any two configurations c = 〈σ, γ,�〉 and c′ = 〈σ ′, γ ′,�′〉 in S, if there is a
path between them in S, then there is a corresponding path in M between a state s ∼(i) c
and a state s′ ∼(i) c′.

Proof By induction on the number of labels in the path in S, using the preconditions of
the transitions of the operational semantics, the definition of the deliberation strategy cycle,
and conditions on M(�, i). We show that for every configuration c, the set of transitions
possible in c is included in the set of transitions possible in a state s ∼(i) c, and moreover
the configurations reachable from c are in the relation ∼(i) with the states reachable by the
corresponding transitions from s.

Under the interleaved execution strategy, the possible transitions from c = 〈σ, γ,� =
{r1 : π ′1, . . . , rn : π ′n}〉 are (1a)–(4), namely the agent can fire an applicable rule ri which is not
in {r1, . . . , rn}, or apply transition rules (1a)–(3) with respect to one of its plans {π ′1, . . . , π ′n}.
Let s ∼(i) c.

(1a): if some plan in � is of the form ri : α;π and σ |�cwa prec j (α), then there is
a transition to c′ where the belief base is σ ′ = Tj (α, σ), the goal base is the same apart
from removing goals which became true, and instead of ri : α;π the plan base contains
ri : π . By the condition C5, Rαi (s, s′) where Vb(s′) = Tj (α, Vb(s)), Vg(s′) = Vg\({p : p ∈
Vb(s′)} ∪ {−p : p �∈ Vb(s′)}) and control flags do not change. In other words, s′ ∼(i) c′.

(1b): if some plan in � is of the form ri : α;π and none of the preconditions of α
holds in σ , there is a transition to c′ with the same belief and goal base but the plan base
�′ = �\{ri : α;π}. By C6, Rαi (s, t) where t has the same beliefs and goals but satisfies
f aili . By C3, Rei (t, s′)where s′ has the same beliefs and goals, but f aili is false and starti
is false. So, s′ ∼(i) c′.

(2a), (2b), (3a), (3b): if φ is true in c, then fb(φ) is true in s, so Rti (φ)(s, s) and s ∼(i) c′;
otherwise fb(¬φ) is true in c, and Rti (¬φ)(s, s) and s ∼(i) c′.

(4): if there is some rule ri which is not in {r1, . . . , rn}, and its belief and goal conditions
βi and κi hold in c, then there is a reachable configuration c′ which has the same belief and
goal base, and contains the plan ri : πi in its plan base. Then by condition C4, Rδr i (s, s′)
where beliefs and goals are the same as in s and starti is set to true. Therefore, s′ ∼(i) c′. ��
Lemma 2 For every pair of states s and s′ in M, which have a corresponding configuration
with an empty plan base in S, there exists a path between s and s′ described by ξ(�) iff there
is a corresponding path between c and c′, where s ∼(i) c and s′ ∼(i) c′.

Proof The ‘only if’ direction is easy to show by an argument similar to the previous lemma.
For the ‘if’ direction, assume that there is a path between s and s′ which is described by
ξ(�). We want to show that a corresponding path exists between c and c′. Imagine that we
have two markers, one for states in M and another for configurations in S. The first marker
starts at s and the second at c. We move the first marker along the path in M , sometimes
several steps at a time, and the second marker along the corresponding transition in S, so that
when the markers are on s j and c j , s j ∼(i) c j . If such a move is always possible, we will
find a corresponding path in S, because by the time the first marker reaches s′, the second
one is on c′ such that s′ ∼(i) c′. Since the path in M is fixed, we always know what is the
next move in M and hence what should be the answering move in S. The existence of the
corresponding transition in S follows from the fact that the conditions enabling a transition
in M match exactly the conditions for corresponding configurations in S, given the history of
the corresponding configuration. For example, if the next transition from s j is αi , this means
that earlier on the path there was an δr i transition, followed by transitions corresponding to
the statements preceding α in πi (this is because the path is described by ξ(�)). So we can

123

Auton Agent Multi-Agent Syst (2011) 22:356–381 377

assume that c j has ri : α;π ′i in its plan base, and the preconditions of α hold in c j ; the first
marker moves to a state s j+1 such that Rαi (s j , s j+1) and the second marker to a configuration
c j+1 such that s j+1 ∼(i) c j+1 where the plan base contains ri : π ′i . ��

Theorem 5 follows immediately from the two lemmas. Correspondence proofs for other
deliberation strategies are similar.

Theorem 6 Let � be the program of an agent using the (ni) deliberation strategy. Let S
be the transition system generated by the operational semantics for this agent with initial
configuration c0. Let M ∈M(�,ni) be generated by s0 ∼(i) c0. There exists a path from c0

to c if, and only if, in M there is a path described by ξ(�) from s0 to a state s ∼(i) c.

The proof is similar to the proof of Theorem 5 but uses the restrictions imposed by (ni)
strategy on transition rules, and corresponding conditions on M(�,ni).

Correspondence for the alternating strategies needs to take into account the stepi flags.
We define s ∼(as) c to hold if s ∼(i) c and in addition the following condition holds:

– stepi ∈ Vc(s) iff this configuration has been obtained by transition (1a) (executing a
belief update for plan πi).

Theorem 7 Let � be the program of an agent using the (as) deliberation strategy. Let S
be the transition system generated by the operational semantics for this agent with initial
configuration c0. Let M ∈ M(�, as) be generated by s0 ∼(as) c0. There exists a path from
c0 to c if, and only if, in M there is a path described by ξ(�) from s0 to a state s ∼(as) c.

The proof is similar to the proof of Theorem 5 but uses the restrictions imposed by (as)
strategy on transition rules, and corresponding conditions on M(�, as).

Correspondence between states and configurations for (am) is defined as: s ∼(am) c if
s ∼(i) c and in addition the following condition holds:

– stepi ∈ Vc(s) iff on the path leading to c, since the last execution of a planning rule, a
belief update in πi was executed.

Theorem 8 Let � be the program of an agent using the (am) deliberation strategy. Let S
be the transition system generated by the operational semantics for this agent with initial
configuration c0. Let M ∈M(�, am) be generated by s0 ∼(am) c0. There exists a path from
c0 to c if, and only if, in M there is a path described by ξ(�) to a state s ∼(am) c.

The proof is similar to the proof of Theorem 5 but uses the restrictions imposed by (am)
strategy on transition rules, and corresponding conditions on M(�, am).

6.1 Complexity of the verification problem

Given an agent program�, the size of its translation ξ(�) is linear in�. The axiomatisation
of any execution strategy involves schema axioms such as A5 which hold for arbitrary for-
mulas φ (essentially such axioms serve as frame axioms and state that if φ was true before
an action was executed, and φ does not mention any effects of the action, then φ remains
true). A naive automatic generation of all possible frame axioms is exponential in the number
of literals in � (since it has to talk about all possible states). Therefore, the set of axioms
Ax(�) required for proving properties of � may be exponential in the size of �. Once we
have Ax(�), the problem of checking whether it entails a property φ of � has the same
complexity as satisfiability problem for PDL with interleaving [19]: double exponential in
the size of � and φ. In other words, the problem is decidable but triple exponential in the
size of �.

123

378 Auton Agent Multi-Agent Syst (2011) 22:356–381

6.2 Example

In this section, we briefly illustrate how to prove properties of agents in our logic using the
running example.

Let us abbreviate home as h,work as o (for “office”), breakfast as b,raining
as r,take_umbrella as u,take_sunglasses as s,walk_work as w, and eat_
athttbreak f ast as t .

The translation of the agent’s program � = {r1; r2} is

ξ(�) =
(δr 1; ((t1(r); u1) ∪ (t1(¬r); s1));w1; e1)

+ ∪
(δr 2; t2; e2)

+ ∪
((δr 1; ((t1(r); u1) ∪ (t1(¬r); s1));w1; e1)

+ ‖ (δr 2; t2; e2)
+)

The expression ξ(�) has an equivalent interleaving-free form which can be generated
automatically, and we can use a PDL theorem prover such as pdl- tableau [22] to automat-
ically verify properties of the agent program. For example, the agent is guaranteed to achieve
both its goals under the (am) strategy. Namely, the following formula:

ini t ∧ Bh ∧ Br ∧ Gb ∧ Go→ 〈[ξ(�)]〉(Bb ∧ Bo)

where ini t = ∧
i=1,2(¬starti ∧ ¬ f aili ∧ ¬stepi), is derivable in Ax(�, am) from the

axioms such as the following instances of A26, A21, A5, A25:

¬start1 ∧¬start2 ∧Go∧Gb∧ Bh ∧ Br → 〈[δr 1]〉(start1 ∧¬start2 ∧¬step1 ∧Go∧
Gb ∧ Bh ∧ Br)
start1∧¬start2∧¬step1∧Go∧Gb∧ Bh∧ Br → 〈[t1(r)]〉(start1∧¬start2∧ step1∧
Go ∧ Gb ∧ Bh ∧ Br)
start1 ∧ ¬start2 ∧ ¬step1 ∧ Go ∧ Gb ∧ Bh ∧ Br → [t1(¬r)]⊥
start1 ∧ ¬start2 ∧ step1 ∧ Go ∧ Gb ∧ Bh ∧ Br → [u1]⊥

Under other strategies, the agent is not guaranteed to achieve both its goals. As a simple
counterexample, consider the following path which is possible from the start state under (i)
and (ni): δr 1; t1(r); u1;w1; e1. In the state reachable by this path, δr 2 cannot be applied since
its belief condition h fails. Therefore, from that state it is impossible to reach a state where
Bb is true by following δr 2; t2; e2. Similarly, for (as), a sequence δr 1; t1(r); u1; δr 2;w1; t2
does not reach the goal, because w1 destroys the preconditions of t2, so although, there are
states reachable by this sequence under (as), execution of t2 fails and does not make its
postcondition true.

7 Related work

There has been a considerable amount of work on verifying properties of agent programs
implemented in other agent programming languages such as ConGolog, MetateM, 3APL,
2APL, and AgentSpeak. Shapiro et al. in [23] describe CASLve, a framework for verifying
properties of agents implemented in ConGolog. CASLve is based on the higher-order the-
orem prover PVS and has been used to prove, e.g., termination of bounded-loop ConGolog
programs. However, its flexibility means that verification requires user interaction in the form
of proof strategies. Properties of agents implemented in programming languages based on
executable temporal logics such as MetateM [14], can also easily be automatically verified.

123

Auton Agent Multi-Agent Syst (2011) 22:356–381 379

However these languages are quite different from languages like SimpleAPL, in that the agent
program is specified in terms of temporal relations between states rather than branching and
looping constructs. Other related attempts to bridge the gap between agent programs such as
3APL and 2APL on the one hand and verification logics on the other, e.g., [13,17], have yet
to result in an automated verification procedure.

In [20] Mulder et al. present a model of the execution of PRS in an executable temporal
logic, MML. Agent plans are represented as temporal formulas and deliberation strategies
are represented by sets of MML rules. The rules define the behaviour of a meta-interpreter
operating on terms which are names for temporal formulas. The MML model allows the direct
specification and verification (via execution in concurrent MetateM) of agent properties.

There has also been considerable work on the automated verification of multi-agent sys-
tems using model-checking [4,18]. For example, in [7], Bordini et al. describe work on
verifying programs written in Jason, an extension of AgentSpeak(L). In this approach, agent
programs together with the semantics of Jason are translated into either Promela or Java, and
verified using Spin or JPF model checkers respectively. There has also been work on using
model checking techniques to verify agent programming languages similar to SimpleAPL
[3,24]. In this approach agent programs and execution strategies are encoded directly into
the Maude term rewriting language, allowing the use of the Maude LTL model checking tool
to verify temporal properties describing the behaviour of agent programs.

The work reported here is closely related to our previous work on using theorem proving
techniques to verify agent deliberation strategies [2]. However in that work, different execu-
tion strategies were specified using different PDL program expressions, rather than in terms
of a fixed general execution strategy which is constrained by the execution model to obtain
different execution strategies, as in this paper.

8 Conclusion

In this paper we analysed the implications of an agent’s deliberation strategy in determining
the behaviour of BDI-based agent programs. In order to illustrate the problem, we presented
a simple agent programming language, SimpleAPL, and explored some of its possible delib-
eration strategies. We proposed a family of logics to reason about deliberation strategies of
SimpleAPL programs and showed how these can be used to verify the correctness of agent
programs. Using a simple example program, we illustrated how the choice of deliberation
strategy can determine whether a given program will achieve a particular goal. Although
we investigated only a small number of deliberation strategies, our approach of associat-
ing propositions with phases in the agent’s deliberation cycle and using these transitions to
axiomatise the possible transitions between phases is general enough to accommodate any
deliberation strategy that can be formulated in terms of distinct phases of execution and the
kinds of operations that can be performed in each phase. The axiomatisations share signif-
icant structure, concisely characterising the similarities and differences between strategies,
and facilitating the formalisation of new strategies.

In future work we plan to investigate other deliberation strategies. For example, it would
also be interesting to investigate strategies which prioritise particular goals and the plans that
achieve them. Another direction for future work is extending the programming language,
e.g., to introduce variables in the language of beliefs, goals, plans and planning goal rules,
and to extend the setting to include additional phases in the agent’s cycle, such as events or
sensing, and actions performed in an external environment.

123

380 Auton Agent Multi-Agent Syst (2011) 22:356–381

Acknowledgements Natasha Alechina and Brian Logan were supported by the Engineering and Physi-
cal Sciences Research Council [grant number EP/E031226]. We would like to thank Fahad Khan and the
anonymous reviewers for useful comments and suggestions.

References

1. Abrahamson, K. R. (1980). Decidability and expressiveness of logics of processes. PhD thesis,
Department of Computer Science, University of Washington.

2. Alechina, N., Dastani, M., Logan, B., & Meyer, J.-J. Ch. (2007). A logic of agent programs. In
Proceedings of the Twenty-Second National Conference on Artificial Intelligence (AAAI 2007) (pp.
795–800). AAAI Press.

3. Astefanoaei, L., Dastani, M., de Boer, F. S., & Meyer, J.-J. Ch. (2008). A verification framework for
normative multi-agent systems. In The Proceedings of the 11th Pacific Rim International Conference
on Multi-Agents (PRIMA 2008). LNCS (Vol. 5357). Springer.

4. Benerecetti, M., Giunchiglia, F., & Serafini, L. (1998). Model checking multiagent systems. Journal
of Logic and Computation, 8(3), 401–423.

5. Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal logic. Cambridge Tracts in Theoretical
Computer Science (Vol. 53). Cambridge, UK: Cambridge University Press.

6. Bordini, R. H., Dastani, M., Dix, J., & Seghrouchni, A. E. F (2005). Multi-agent programming—lan-
guages, platforms and applications. Berlin: Springer.

7. Bordini, R. H., Fisher, M., Visser, W., & Wooldridge, M. (2006). Verifying multi-agent programs by
model checking. Autonomous Agents and Multi-Agent Systems, 12(2), 239–256.

8. Bordini, R. H., Hübner, J. F., & Vieira, R. (2005). Jason and the golden fleece of agent-oriented
programming. In R. H. Bordini, M. Dastani, J. Dix, & A. E. F. Seghrouchni (Eds.), Multi-agent
programming—languages, platforms and applications. Heidelberg: Springer.

9. Dastani, M. (2008). 2APL: A practical agent programming language. International Journal of
Autonomous Agents and Multi-Agent Systems (JAAMAS), 16(3), 214–248, Special Issue on Computational
Logic-based Agents. F. Toni, & J. Bentahar (Eds.).

10. Dastani, M., & Meyer, J. J. Ch. (2007). A practical agent programming language. In The Proceedings
of the Fifth International Workshop on Programming Multi-agent Systems (ProMAS’07). LNAI (Vol.
4908, pp. 107–123). Springer.

11. Dastani, M., van Riemsdijk, M. B., Dignum, F., & Meyer, J.-J. Ch. (2004). A programming language
for cognitive agents: Goal directed 3APL. In Proceedings of ProMAS 2003. LNCS (Vol. 3067, pp.
111–130). Springer.

12. Dastani, M., van Riemsdijk, M. B., & Meyer, J.-J. Ch. (2005). Programming multi-agent sys-
tems in 3APL. In R. H. Bordini, M. Dastani, J. Dix, A. E. F. Seghrouchni (Eds.), Multi-agent
programming—languages, platforms and applications. Berlin: Springer.

13. Dastani, M., van Riemsdijk B., & Meyer J.-J. Ch. (2007). A grounded specification language for agent
programs. In The Proceedings of the Sixth International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS’07) (pp. 578–585). ACM Press.

14. Fisher, M. (2006). Metate M: The story so far. In The Proceedings of the Third International Workshop
on Programming Multi-agent Systems (ProMAS’05). LNAI (Vol. 3862, pp. 3–22). Springer.

15. Georgeff, M. P., & Lansky, A. L. (1987). Reactive reasoning and planning. In Proceedings of the
Sixth National Conference on Artificial Intelligence, AAAI-87 (pp. 677–682).

16. Harel, D., Kozen, D., & Tiuryn, J. (2000). Dynamic logic. Cambridge: MIT Press.
17. Hindriks K. V., & Meyer J.-J. Ch. (2007). Agent logics as program logics: Grounding KARO. In

Proceedings of the 29th German Conference on AI (KI 2006). LNAI (Vol. 4314). Heidelberg: Springer.
18. Lomuscio, A., & Raimondi, F. (2006). MCMAS: A tool for verifying multi-agent systems. In

Proceedings of the 12th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS06). LNCS (Vol. 3920, pp. 450–454). Vienna, Austria: Springer.

19. Mayer, A. J., & Stockmeyer, L. J. (1996). The complexity of PDL with interleaving. Theoretical
Computer Science, 161(1&2), 109–122.

20. Mulder, M., Treur, J., & Fisher, M. (1997). Agent modelling in METATEM and DESIRE. In M.
P.Singh, A. S. Rao, & M. Wooldridge (Eds.), Intelligent agents IV, agent theories, architectures, and
languages, 4th international workshop (ATAL’97). Lecture Notes in Computer Science (Vol. 1365,
pp. 193–207). Springer.

123

Auton Agent Multi-Agent Syst (2011) 22:356–381 381

21. Pokahr, A., Braubach, L., & Lamersdorf, W. (2005). Jadex: A BDI reasoning engine. In: R. H.
Bordini, M. Dastani, J. Dix, & A. E. F. Seghrouchni (Eds.), Multi-agent programming—languages,
platforms and applications. Heidelberg: Springer.

22. Schmidt, R. A. (2003). pdl-tableau. http://www.cs.man.ac.uk/~schmidt/pdltableau.
23. Shapiro, S., Lespérance, Y., & Levesque, H. J. (2002). The cognitive agents specification language

and verification environment for multiagent systems. In The Proceedings of the First International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS’02) (pp. 19–26). ACM
Press.

24. van Riemsdijk, M. B., de Boer, F. S., Dastani, Mehdi., & Meyer J.-J. Ch. (2006). Prototyping 3APL
in the Maude term rewriting language. In Proceedings of the Fifth International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS’06) (pp. 1279–1281). New York, NY, USA:
ACM.

123

http://www.cs.man.ac.uk/~schmidt/pdltableau

	Reasoning about agent deliberation
	Abstract
	1 Introduction
	2 SimpleAPL
	3 Operational semantics
	3.1 Specifying deliberation strategies

	4 Logic
	4.1 Language
	4.2 Semantics

	5 Axiomatisation
	5.1 Conditions on models for the fully-interleaved strategy (i)
	5.2 Axiomatisation for the fully-interleaved strategy (i)
	5.3 Conditions on models for the non-interleaved strategy (ni)
	5.4 Axiomatisation of the non-interleaved strategy (ni)
	5.5 Conditions on models for the (as) strategy
	5.6 Axiomatisation of the (as) strategy
	5.7 Conditions on models for the (am) strategy
	5.8 Axiomatisation of the (am) strategy

	6 Verifying agent programs
	6.1 Complexity of the verification problem
	6.2 Example

	7 Related work
	8 Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

